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This Special Issue aims to contribute to the current knowledge in the field and promote
the practical application of photosynthetic bacteria (PSB) biotechnology. Among various
PSB, purple non-sulfur bacteria (PNSB) in particular have a wide range of biotechnological
applications in agriculture [1,2], aquaculture [3], biomaterial production [4–6], renewable
energy production [7,8], wastewater treatment [9], and bioremediation [10].

In this Special Issue, Koga et al. [11] reported the application of marine PNSB as
probiotics for shrimp aquaculture. Segura et al. [12] used a mixture of volatile fatty acids
(VFAs) as a carbon source for Rhodospirillum rubrum and discovered their effects on CO2
metabolic pathways and cellular redox balance. Edreira et al. [13] reported the effects of
voltage on the performance of bioelectrochemical systems to fix CO2 with a mixed culture
of PNSB and purple sulfur bacteria (PSB).

The most widely used application of PNSB is to promote plant growth and improve
the quality of food crops in agriculture. This Special Issue includes two reviews on PNSB
applications in agriculture. Lee et al. [14] provided a comprehensive overview of the
beneficial effects of PNSB in agriculture, as well as their accomplishments in developing
elite PNSB for agriculture. Maeda [15] gave an in-depth analysis of the mechanisms and
regulations of nitrogen fixation by nitrogenase of PNSB, and he also provided field data on
PNSB’s contribution to nitrogen fixation in rice fields.

Hayashi et al. [16] reported the growth-promoting effect of lipopolysaccharide (LPS)
from PNSB in plants for the first time, and the effective concentration of LPS from
Rhodobacter sphaeroides was 10 pg/mL. In mammals, LPS acts as an endotoxin through the
Toll-like receptor 4 (TLR4) signaling pathway at a concentration of pg/mL to ng/mL, caus-
ing inflammatory responses. In plants, LPS also acts as an inducer of immune response, but
the effective concentration of LPS from various Gram-negative bacteria in plants reportedly
ranged from 10 µg to 100 µg/mL [17,18]. The effective concentration of R. sphaeroides LPS
for the plant was therefore approximately millions of times lower than those reported in
previous studies. Iwai et al. [19] reported that biopriming by LPS from R. sphaeroides at a
concentration of 5 ng/mL improved the root growth of rice seedlings, providing further
evidence of the effectiveness of LPS from PNSB in plants at low concentrations. The much
lower effective concentration of PNSB LPS than those of other bacteria is likely attributable
to its unique lipid A property. Lipid A, a domain of LPS, is a hydrophobic molecule that
anchors LPS to the outer membrane of Gram-negative bacteria [20]. Lipid A acts as the
active component of the endotoxicity of LPS. The LPS of R. sphaeroides and its lipid A are
known to exhibit unique properties in mammals [21]. They show no endotoxic activity
but have an endotoxin-antagonistic activity for TLR4. The chemically synthesized lipid A
of R. sphaeroides, named eritoran (E5564; Eisai), has also been developed for therapeutic
application [22], and eritoran has been shown to protect animals from inflammation by
blocking the TLR4 signaling pathway [23,24]. In view of these facts, it will be of great
interest to investigate the effects of lipid A from R. sphaeroides, as well as eritoran, on plant
growth in the future.
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