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Abstract: Early detection of late-onset sepsis (LOS) in preterm infants is crucial since timely treat-
ment initiation is a key prognostic factor. We hypothesized that fecal volatile organic compounds
(VOCs), reflecting microbiota composition and function, could serve as a non-invasive biomarker for
preclinical pathogen-specific LOS detection. Fecal samples and clinical data of all preterm infants
(≤30 weeks’ gestation) admitted at nine neonatal intensive care units in the Netherlands and Bel-
gium were collected daily. Samples from one to three days before LOS onset were analyzed by gas
chromatography—ion mobility spectrometry (GC-IMS), a technique based on pattern recognition,
and gas chromatography—time of flight—mass spectrometry (GC-TOF-MS), to identify unique
metabolites. Fecal VOC profiles and metabolites from infants with LOS were compared with matched
controls. Samples from 121 LOS infants and 121 matched controls were analyzed using GC-IMS, and
from 34 LOS infants and 34 matched controls using GC-TOF-MS. Differences in fecal VOCs were
most profound one and two days preceding Escherichia coli LOS (Area Under Curve; p-value: 0.73;
p = 0.02, 0.83; p < 0.002, respectively) and two and three days before gram-negative LOS (0.81;
p < 0.001, 0.85; p < 0.001, respectively). GC-TOF-MS identified pathogen-specific discriminative
metabolites for LOS. This study underlines the potential for VOCs as a non-invasive preclinical
diagnostic LOS biomarker.

Keywords: neonatology; volatile organic compounds; gas chromatography—ion mobility spectrometry;
gas chromatography—time of flight—mass spectrometry; fecal biomarker; microbiota
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1. Introduction

Preterm infants are at increased risk of developing late-onset sepsis (LOS) because
of their immature immune system. LOS results in significant mortality rates and is as-
sociated with long-term neurocognitive deficits [1–6]. Incidence rates are reversely cor-
related with gestational age and birthweight, and range from 12% to 40% [1–3,7–12].
Recognition of LOS may be challenging since early-stage symptoms are commonly subtle
and non-specific. To date, the gold standard for diagnosis of LOS is a positive blood
culture. However, the sensitivity of this test is impaired because often, only small vol-
umes of blood can be obtained from preterm neonates [13,14]. In addition, blood cul-
tures are invasive, prone to contamination and have a 48–72 h laboratory turnaround
time [3,4,15,16]. Since early detection and adequate initiation of targeted antibiotic treat-
ment are important prognostic factors for LOS, there is a yet unmet need for early diagnostic
and predictive biomarkers [17].

Volatile organic compound (VOC) analysis is a non-invasive technique that can moni-
tor alterations of the host’s cellular metabolism and the gut microbiota [18–20]. Different
VOC measuring techniques on various sample types have been employed to detect and
predict diseases over the last decade, including variants of mass spectrometry (MS), such
as liquid chromatography-MS (LC-MS) and the portable electronic nose (e-nose) [21]. The
generated data is often analyzed by advanced machine learning techniques, resulting in
accurate detection of inflammatory bowel disease, Alzheimer’s disease, preterm birth, and
several types of cancer [22–30]. Recently, VOC-evoked neuronal fingerprints generated by
insect brains were used as a biological brain-based pattern-sensing technique for detection
of cancer in vitro [31]. The rapid advancements in VOC detection methods and machine
learning open up a wide research area with great opportunities for non-invasive, early
disease detection.

The potential of fecal VOCs as early, non-invasive biomarkers for LOS has been recog-
nized in different studies [32–34]. Fecal VOCs are largely produced by the gut microbiota
and its interaction with the host; they are therefore considered to reflect microbial compo-
sition and functional activity [35]. Our research group previously measured VOC profiles
using two pattern recognition techniques—-a 32-sensor e-nose and high field asymmetric
waveform ion mobility spectrometry (FAIMS). Profound differences were described between
LOS and controls up to three days before clinical onset of the disease [32–34].

In the current study, we aimed to test the potential of two complementary sensitive tech-
niques for LOS prediction in a novel validation cohort. Gas chromatography—ion mobility spec-
trometry (GC-IMS) was used for fecal VOC pattern recognition, and gas chromatography—
time of flight—MS (GC-TOF-MS) for identification of unique fecal volatile metabolites.

2. Materials and Methods
2.1. Subjects

This study was embedded in a large ongoing prospective cohort study in the Nether-
lands and Belgium. Inclusion criteria were birth <30 weeks of gestation and hospitalization
in one of nine participating neonatal intensive care units during (part of) the first 28 days of
life. Infants with congenital gastrointestinal anomalies were excluded. For the current mul-
ticenter case-control study, additional exclusion criteria were early-onset sepsis, necrotizing
enterocolitis (NEC) Bell’s stage ≥ 2A and spontaneous intestinal perforation. Additionally,
infants that had participated in other sub-studies on VOCs were excluded.

Infants diagnosed with LOS within the first 28 days of life were included when all
Vermont Oxford criteria for LOS were met: (1) clinical signs of generalized infection,
(2) a positive blood culture ≥72 h after birth, and (3) initiation of antibiotic treatment with
the intention to treat for ≥5 consecutive days [36]. Only the first episode of LOS was
considered. Clinical onset of LOS was defined as the postnatal age at which the positive
blood culture sample was drawn. Infants with coagulase-negative staphylococci (CoNS)
isolated from the blood culture were only included if the CRP level was ≥10 mg/L to
limit the risk of including infants with contaminated blood cultures. Controls were eligible
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to participate if they did not fulfil the Vermont Oxford criteria for LOS during the study
period or if case CRP levels did not exceed 10 mg/L during the study period. Every LOS
case was matched to a control infant, based on the center of birth, gestational age (±2 days),
birthweight (±150 g), and postnatal age at LOS onset (±0 days). All LOS cases and controls
needed at least one fecal sample in the three days prior to clinical LOS onset to be included.

2.2. Data and Sample Collection

Fecal samples and clinical data were collected daily from all included subjects, from
birth up to 28 days of life. Feces was scooped from diapers by the nursing staff, placed
in a container (Stuhlgefäß 10 mL, Frickenhausen, Germany), and subsequently stored at
−20 ◦C. Demographic and baseline clinical data were collected from electronic patient
records (EPD). Feeding type was based on the following proportions of human and formula
milk (HM and FM, respectively): (1) Predominant HM feeding was defined as >80% of
average daily enteral intake consisting of HM, (2) Predominant FM feeding as >80% of
average daily enteral intake consisting of FM, and (3) combined HM and FM with average
enteral intake of both HM and FM between 20–80%. No distinction was made between
mother’s own milk and donor breastmilk.

Before shipment to the laboratory, collected samples were transferred (frozen) into
sterile glass vials (20 mL headspace vial, Thames Restek, Saunderton, UK), and shipped
on dry ice (−78.5 ◦C) to the School of Engineering at the University of Warwick (Coventry,
UK) for VOC analysis, where they were stored at −20 ◦C until further handling.

2.3. Fecal VOC Analysis

Samples from cases with LOS were analyzed both together and separately based on
the observed LOS-causing pathogens:

1. Gram-positive LOS (excluding CoNS): Subcategory Staphylococcus aureus (S. aureus) LOS.
2. CoNS-LOS
3. Gram-negative LOS: Subcategory Escherichia coli (E. coli) LOS

For all categories together and for each separate subgroup, analyses were performed
for all time points combined (t−1–(−3)), and at three separate time points: (1) one (t−1),
(2) two (t−2), and (3) three (t−3) days prior to LOS onset. The corresponding postnatal age
was analyzed in controls. In every subgroup, the LOS cases were compared with their
matched controls.

Two different techniques were used for fecal VOC analysis. First, all samples were
analyzed using GC-IMS, which is based on pattern recognition. A subgroup of fecal
samples was additionally analyzed using GC-TOF-MS, which is a lab-based un-targeted
metabolomics approach for the detection and identification of unique metabolites in the
headspace (emitted VOCs from samples) of fecal samples by measuring its mass-to-charge
ratio. The samples for GC-TOF-MS were selected based on availability of sufficient samples
and sample mass following GC-IMS analysis. For GC-TOF-MS, only infants who provided
at least two fecal samples within three days prior to LOS onset, or at the corresponding
postnatal days in controls, with a sample weight of ≥150 mg per sample (cases and controls),
were included. This was done to ensure sufficient headspace concentration. Fecal VOC
analysis was performed in random order.

2.3.1. Fecal VOC Analysis Using GC-IMS

The GC-IMS device (GC-IMS, FlavourSpec®, G.A.S., Dortmund, Germany) was fit-
ted with a CTC PAL autosampler (CTC, Zwingen, Switzerland) [37]. The samples were
analyzed according to the protocol described by Rouvroye et al. [38]. Fecal samples were
heated inside the vials for eight minutes at 80 ◦C to generate sufficient headspace concen-
tration. The molecules in the headspace were then injected into the GC-IMS instrument and
first pre-separated by retention time based on chemical interactions with the GC column.
After entering the ion mobility spectrometer, the molecules were ionized by a low-radiation
tritium (H3) source, creating reactant ions. Subsequently, these ions were moved to an elec-
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tric field at atmospheric pressure against the flow of an inert drift gas, creating nitrogen/ion
collisions. These collisions result in the ions selectively losing momentum, extending the
travel time through the drift-tube before being detected. Thus, the ions are separated
based on a combination of their mass, charge, and size. The ion current is detected by an
electrometer as a function of time. For the experiments, the selected conditions were as
follows: the GC was a 15 m, SE-54 column (CS Chromatographie, Langerwehe, Germany)
and the analysis was performed with the GC heated to 45 ◦C using nitrogen 99.9% (3.5 bar)
as the carrier gas. The IMS also used nitrogen as the drift gas, and was performed at 45 ◦C.
The flow rate for the nitrogen into the GC was 20 mL/min (34.175 kPa) for six minutes, and
the drift tube flow rate was 150 mL/min (0.364 kPa) (IMS).

2.3.2. Fecal VOC Analysis using GC-TOF-MS

The GC-TOF-MS analysis was conducted using an Rxi-624Sil MS column (length 20 m,
internal diameter 0.18 mm, thickness 1.0 µm; Thames Restek, Saunderton, UK) coupled to
a Markes Bench TOF-HD (Markes International, Bridgend, UK) and a Markes International
TD-100 and Unity-xr thermal desorption unit. The headspace was first loaded from the
vials onto bio-monitoring sorbent tubes from Markes (C2-AAXX-5149). This was done by
heating the samples for 20 min at 40 ◦C before pumping the headspace into the tubes for
20 min (5 ml/minute) using an SKC Pocket Pump (SKC Ltd., Dorset, UK). The sorbent
tubes were loaded into the auto-sampler. Markes TOF-DS software (Version 4.5.1) was used
to add the unique identifier codes to the tubes and select the appropriate run sequence.

Subsequently, the headspace was pre-separated using GC before being injected into
the TOF-MS transfer line. The molecules were ionized and accelerated using an electric
field, resulting in the same kinetic energy for ions with a similar charge. The velocity of
the ions is also determined by their mass (heavier ions with the same charge move slower).
The time to reach the detector at a set distance was measured.

The GC settings were as follows: the standby split of 150 ◦C ran with an overlap
(to reduce overall run time), and the GC temperature increased from 40 ◦C to 280 ◦C by
increments of 20 ◦C per minute. The desorption was performed by pre-purging the sample
for one minute and then heating it for 10 min at 250 ◦C with a trap purge time of one
minute. Subsequently, the trap was cooled to 30 ◦C and then purged for three minutes at
300 ◦C. Other settings were as follows: the filament voltage was set to 1.7 V (10-s filament
delay), the transfer line was set to 250 ◦C, the ion source temperature was 250 ◦C, and
electron ionization was performed at −70 V. Masses from 35 to 350 atomic mass units
were analyzed.

2.4. Statistical Methods
2.4.1. Sample Size Calculation

Sample size calculation for this validation study was based on the results of a previous
study on fecal VOC analysis for early detection of LOS [33]. In that study, using the high-
field asymmetric waveform ion mobility spectrometry (FAIMS) method, 121 LOS cases and
121 matched controls were included. VOC patterns from controls and cases were compared
up to 3 days preceding LOS. The area under the curve (AUC) obtained to discriminate
LOS from controls, caused by gram-positive and gram-negative pathogens, ranged from
0.69 to 0.87, respectively. We aimed to obtain a diagnostic accuracy of approximately
0.85 for both gram-positive and gram-negative LOS for the current study. To obtain an
AUC of 0.85 with a confidence interval (CI) of 0.1, inclusion of at least 117 LOS cases and
117 matched controls was required.

2.4.2. Demographic Data

For statistical analyses of demographic and clinical data, IBM SPSS® version 24 (Armonk,
NY, USA) was used. A χ2 test, an independent t-test, or a non-parametric test were used to
calculate the p-values, as appropriate, with p-values < 0.05 considered significant.
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2.4.3. Pre-Processing GC-IMS Data

Two pre-processing steps were included for the GC-IMS analysis. This was to reduce
the dimensionality of the dataset and make subsequent data analysis less computationally
heavy. The GC-IMS method produces datasets with a high number of data points per
sample (11 million), but with much lower information content. To reduce the dimensionality,
the central section of the data was cropped to only retain relevant sample information.
Then, a threshold was applied to remove background noise, reducing the dimensionality to
approximately 10,000 data points. The same crop parameters and threshold were used on
all the samples and were selected manually by analyzing the raw data.

2.4.4. Pre-Processing GC-TOF-MS Data

During the analysis of the samples, the TOF-DS™ software (Version 4.5.1) applied
dynamic background compensation, which automatically removes chromatogram back-
ground interference. This software also integrates and deconvolutes the peaks in the
chromatogram. Subsequently, the compounds that were present were identified. The
integration settings were as follows: Global Height Reject: 10,000; Global Width Reject:
0.001; Baseline Threshold: 3; and Global Area Reject: 10,000. The NIST (National Institute
of Standards and Technology) database was used to identify specific compounds. Both
forward and reverse were matched with a minimum match factor of 450.

2.4.5. Class Prediction with Machine Learning

The data were analyzed as previously described [22,23,39,40]. A data analysis pipeline
was developed in ‘R’ (version 3.6.1), which has been used in a number of prior VOC
studies [32,33,38]. In short, a 10-fold cross-validation was used for class prediction, with
90% of the data used as a training set and 10% as a test set. The Wilcoxon rank-sum
test was used to calculate the p-values to identify the 20, 50, and 100 (GC-IMS), and 15
(GC-TOF-MS) most discriminatory features. No chemical identification of the features
was carried out for GC-IMS. For GC-TOF-MS, chemical identification of the features was
conducted by selecting the chemicals identified in the training set for each fold. The
machine learning classification algorithms included in this pipeline were random forest,
neural net, sparse logistic regression, Gaussian process, and support vector machine.
Machine learning was conducted on the most discriminatory features. For this study, only
random forest and sparse logistic regression were considered based on 50 features (GC-IMS)
and 15 features (GC-TOF-MS). The predicted probabilities were used to create receiver
operator characteristic (ROC) curves for every comparison with their corresponding AUC,
sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).
A prediction of AUC > 0.75 was considered good.

2.4.6. Metabolite Analysis on GC-TOF-MS Data

Every subgroup comparison resulted in a list of 15 discriminatory metabolites, based
on the importance of these metabolites according to the algorithm. Statistical analysis of the
metabolite data was performed on the non-zero peak height intensities using IBM SPSS®

version 24. The Shapiro–Wilk test was applied to check for normal distribution for each
metabolite separately. Since most of the metabolites showed non-normal distribution, all
metabolite data were treated as non-normal. Frequency tables were created, and subse-
quently, the fold change (FC) was calculated based on the median for every metabolite.
The FC was normalized by calculating log2(FC). This indicates whether metabolite peak
intensities increased or decreased.

3. Results
3.1. Patient Population

In total, 1013 preterm infants born before 30 weeks of gestation between February
2017 and February 2019 were consecutively assessed for eligibility. Of these, 181 infants
(18%) experienced at least one episode of LOS within the first 28 days of life. Based on
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the inclusion criteria, 121 LOS cases and 121 matched controls were included for GC-IMS
analysis, and a subset of 34 cases and 34 controls for GC-TOF-MS analysis. Figure 1 depicts
how the inclusion of infants was performed. In total, VOC analysis was performed on
528 fecal samples.
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TOF-MS analysis. Abbreviations: GC-IMS, gas chromatography—ion mobility spectrometry; GC-

Figure 1. Flow diagram of included preterm infants. A total of 121 LOS cases was included for
analysis and matched to 121 controls. Subsequently, 34 LOS cases and controls were eligible for
GC-TOF-MS analysis. Abbreviations: GC-IMS, gas chromatography—ion mobility spectrometry;
GC-TOF-MS, gas chromatography—time of flight—mass spectrometry; LOS, late-onset sepsis; NEC,
necrotizing enterocolitis; SIP, spontaneous intestinal perforation.

Baseline patient characteristics are listed in Table 1. For infants included in the GC-
IMS analysis, there was a significant difference observed between all LOS and CoNS-LOS
infants and matched controls in antibiotic exposure from birth to the time of fecal sample
analysis. S. epidermidis was the most frequently cultured pathogen (47.1%), followed by
E. coli (14.7%) and S. aureus (13.2%). Full microbiology of the blood cultures can be found
in Supplementary Table S1.

3.2. Fecal VOC Patterns

The sparse logistic regression and random forest classification results for GC-IMS and GC-TOF-
MS, respectively, are listed in Tables 2 and 3, respectively. Supplementary Tables S2 and S3 show
random forest classification for GC-IMS and sparse logistic regression for GC-TOF-MS,
respectively. Supplementary Figures S1–S10 outline the best ROC curves per comparison
for GC-IMS and GC-TOF-MS.

The VOC patterns differed significantly at one and two days before onset of LOS when
measured using GC-IMS, as well as when all time points were combined in both GC-IMS
and GC-TOF-MS.
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Table 1. Demographic characteristics.

GC-IMS GC-TOF-MS
Case (n = 121) Control (n = 121) p-Value a Case (n = 34) Control (n = 34) p-Value a

Gender
Female (n (%)) 44 (36) 59 (49) 0.05 16 (47) 20 (59) 0.33

Mode of delivery
Vaginal (n (%)) 67 (55) 70 (58) 0.70 23 (68) 16 (47) 0.09

GA, weeks + days
(median, (Q1–Q3))

27 + 4
(25 + 6–28 + 6]

27 + 4
(25 + 6–28 + 6) 0.86 26 + 4

(25 + 2–29 + 0)
26 + 4

(25 + 2–29 + 1) 0.69

BW, grams
(median, (Q1–Q3))

965
(744–1165]

990
(823–1213) 0.42 945

(722–1222)
908

(749–1159) 0.55

Multiple gestation (n (%)) 35 (29) 36 (30) 0.89 11 (32) 17 (50) 0.14
LOS DoL, days

(median, (Q1–Q3))
9

(7–13] - - 14
(8–19) - -

Exposure to AB prior to LOS postnatal age (n (%)) 96 (79) 112 (93) 0.002 30 (88) 31 (91) 0.69
Gram-negative (n (%)) 25 (86) 31 (97) 0.13 14 (88) 16 (89) 0.90
Gram-positive (n (%)) 19 (83) 23 (96) 0.15 8 (89) 8 (89) 1.00

CoNS (n (%)) 50 (81) 56 (95) 0.01 8 (89) 9 (100) 0.30
AB duration, days
(median, (Q1–Q3))

3
(2–5)

3
(3–6) 0.20 4

(3–7)
3

(3–5) 0.34

Feeding type
Human milk (n (%)) 61 (50) 52 (43) 20 (69) 18 (60) 0.72

Formula (n (%)) 6 (5) 13 (11) 0.15 3 (10) 2 (7) 0.83
Combination (n (%)) 36 (30) 37 (31) 6 (21) 10 (33) 0.52

Mortality (n (%)) 8 (7) 2 (2) 0.052 3 (11) 1 (4) 0.30
a <0.05 was considered significant. All reported p-values were two-sided. Abbreviations: GA, gestational age; BW,
birth weight; AB, antibiotics; LOS, late-onset sepsis; CoNS, coagulase-negative staphylococci; GC-TOF-MS, gas
chromatography—time of flight—mass spectrometry; GC-IMS, gas chromatography—ion mobility spectrometry;
N.A., not applicable; Q1, first quartile; Q3, third quartile.

For gram-negative LOS, the discriminatory value of GC-IMS was good at three and
two days before clinical onset of LOS (AUC [95% CI]: 0.85 [0.74–0.95] and 0.81 [0.70–0.90],
respectively; p < 0.001), and at one day before onset in the GC-TOF-MS analysis (AUC
: 0.78 [0.69–0.87]; p < 0.001). When all time points were combined, the discriminatory
accuracy was 0.73 and 0.78 for GC-IMS and GC-TOF-MS, respectively (p < 0.001). GC-
IMS additionally allowed for significant discrimination of E. coli LOS from controls at t−1
(0.73 [0.53–0.92]; p = 0.024) and t−2 (0.83 [0.66–1.00]; p = 0.002).

The fecal VOC patterns of gram-positive LOS, measured using GC-IMS, but not GC-
TOF-MS, could be discriminated from controls at t−1 (AUC [95% CI]: 0.78 [0.64–0.90];
p = 0.003), and when all time points were combined. For the subcategory of Staphylococcus
aureus LOS, the fecal VOCs were discriminative from controls at t−3 (0.72 [0.50–0.94];
p = 0.04). The VOC patterns of coagulase negative LOS were only discriminative when
all time points were combined (AUC 0.72; p < 0.001 and 0.69; p = 0.03 for GC-IMS and
GC-TOF-MS, respectively).

3.3. Identification of Metabolites using GC-TOF-MS

There were 298 unique volatile metabolites identified in the 158 fecal samples mea-
sured with GC-TOF-MS. The classification algorithm selected 15 unique metabolites in
every comparison, which together, were the most important in discriminating LOS cases
from controls before the onset of clinical symptoms.

Figure 2 depicts the discriminatory metabolites for the subgroups with significantly dif-
ferent VOC profiles when cases were compared with controls. The log2(FC) of the metabo-
lites is provided, indicating whether a metabolite increased or decreased in LOS cases in that
comparison. A group of core metabolites was found to be discriminative in almost all signif-
icant subgroups. This included 2-methylprop-1-ene, 2-(aziridin-1-yl)ethanamine, propan-2-
one, cyclopentane, methoxymethane, propan-2-ol, and dichloromethane. Pathogen-specific
discriminative metabolites were identified by focusing on subgroups. Ethyl acetate, ethyl
2-(methylamino)acetate, ethyl 2-hydroxypropanoate, prop-1-ene, butane-2,3-dione, and
2,2,4,4-tetramethylpentane were found to be important for the discrimination of gram-
negative LOS versus matched controls. Heptanal was identified as the exclusive metabolite
for the discrimination of CoNS-LOS.
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Table 2. Performance characteristics of gas chromatography—ion mobility spectrometry, as analyzed
by sparse logistic regression.

Subgroup
N◦ of Samples

p-Value AUC (±95% CI) Sensitivity (±95% CI) Specificity (±95% CI) PPV (±95% CI) NPV (±95% CI)
Case Control

All categories of late-onset sepsis

3 days before
diagnosis (t−3) 82 77 0.151 0.57 (0.49–0.64) 0.59 (0.49–0.68) 0.57 (0.48–0.67) 0.59 0.56

2 days before
diagnosis (t−2) 79 100 0.0001 0.72 (0.66–0.79) 0.59 (0.50–0.69) 0.73 (0.66–0.80) 0.64 0.70

1 day before
diagnosis (t−1) 89 101 0.003 0.63 (0.56–0.69) 0.52 (0.43–0.60) 0.71 (0.63–0.79) 0.61 0.63

Combined time
points (t−1–(−3))

250 278 0.0001 0.70 (0.66–0.73) 0.58 (0.53–0.63) 0.72 (0.68–0.77) 0.65 0.66

1. Gram-negative late-onset sepsis
3 days before

diagnosis (t−3) 24 20 0.0001 0.85 (0.74–0.95) * 0.88 (0.76–0.97) 0.74 (0.56–0.89) 0.81 0.82

2 days before
diagnosis (t−2) 23 29 0.0001 0.81 (0.70–0.90) * 0.65 (0.48–0.82) 0.83 (0.71–0.93) 0.75 0.75

1 day before
diagnosis (t−1) 25 26 0.094 0.64 (0.49–0.76) 0.64 (0.48–0.79) 0.62 (0.45–0.77) 0.62 0.64

Combined time
points (t−1–(−3))

72 75 0.0001 0.73 (0.66–0.80) 0.64 (0.55–0.73) 0.75 (0.66–0.82) 0.71 0.68

a. Escherichia coli late-onset sepsis

3 days before
diagnosis (t−3) 12 9 0.809 0.61 (0.352–0.87) 0.42 (0.15–0.72) 0.89 (0.52–1.00) 0.80 0.64

2 days before
diagnosis (t−2) 12 14 0.002 0.83 (0.66–1.00) * 0.92 (0.62–1.00) 0.64 (0.35–0.87) 0.69 0.90

1 day before
diagnosis (t−1) 14 13 0.024 0.73 (0.53–0.92) 0.64 (0.35–0.87) 0.77 (0.46–0.95) 0.75 0.67

Combined time
points (t−1–(−3))

38 36 0.379 0.48 (0.34–0.62) 0.53 (0.36–0.69) 0.69 (0.52–0.84) 0.59 0.55

2. Gram-positive late-onset sepsis (excl. coagulase-negative pathogens)

3 days before
diagnosis (t−3) 17 21 0.472 0.43 (0.28–0.60) 0.35 (0.17–0.56) 0.71 (0.55–0.87) 0.50 0.58

2 days before
diagnosis (t−2) 15 22 0.496 0.43 (0.27–0.60) 0.33 (0.14–0.54) 0.55 (0.36–0.71) 0.33 0.55

1 day before
diagnosis (t−1) 21 20 0.003 0.78 (0.64–0.90) * 0.75 (0.58–0.90) 0.80 (0.64–0.94) 0.79 0.76

Combined time
points (t−1–(−3))

53 63 0.0001 0.70 (0.62–0.78) 0.51 (0.39–0.63) 0.68 (0.59–0.78) 0.57 0.62

a. Staphylococcus aureus late-onset sepsis

3 days before
diagnosis (t−3) 11 12 0.040 0.72 (0.50–0.94) 0.82 (0.48–0.98) 0.58 (0.28–0.85) 0.64 0.78

2 days before
diagnosis (t−2) 8 13 0.598 0.53 (0.25–0.81) 0.50 (0.16–0.84) 0.77 (0.46–0.95) 0.57 0.71

1 day before
diagnosis (t−1) 15 11 0.520 0.50 (0.26–0.73) 0.27 (0.08–0.55) 1.00 (0.72–1.00) 1.00 0.50

Combined time
points (t−1–(−3))

34 35 0.071 0.60 (0.47–0.74) 0.71 (0.53–0.85) 0.49 (0.31–0.66) 0.57 0.63

3. Coagulase-negative staphylococci late-onset sepsis

3 days before
diagnosis (t−3) 39 36 0.461 0.55 (0.44–0.66) 0.51 (0.38–0.64) 0.61 (0.48–0.74) 0.59 0.54

2 days before
diagnosis (t−2) 41 49 0.476 0.46 (0.35–0.55) 0.41 (0.28–0.55) 0.52 (0.40–0.63) 0.43 0.51

1 day before
diagnosis (t−1) 43 54 0.092 0.60 (0.50–0.70) 0.51 (0.38–0.64) 0.65 (0.54–0.75) 0.54 0.63

Combined
time points
(t−1–(−3))

123 139 0.0001 0.72 (0.66–0.77) 0.67 (0.6–0.74) 0.68 (0.62–0.74) 0.65 0.70

* AUC ≥ 0.75. Abbreviations: AUC, area under curve; NPV, negative predictive value; PPV, positive predictive
value; ±95% CI, 95% confidence interval.
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Table 3. Performance characteristics of gas chromatography—time of flight—mass spectrometry, as
analyzed using random forest classification.

Subgroup
N◦ of Samples

p-Value AUC (±95% CI) Sensitivity (±95% CI) Specificity (±95% CI) PPV (±95% CI) NPV (±95% CI)
Case Control

All categories of late-onset sepsis

3 days before
diagnosis (t−3) 26 27 0.810 0.48 (0.34–0.62) 0.46 (0.30–0.63) 0.59 (0.43–0.75) 0.52 0.53

2 days before
diagnosis (t−2) 26 25 0.231 0.60 (0.45–0.73) 0.69 (0.54–0.83) 0.48 (0.31–0.65) 0.58 0.60

1 day before
diagnosis (t−1) 27 27 0.729 0.53 (0.40–0.67) 0.59 (0.44–0.75) 0.63 (0.48–0.79) 0.62 0.61

Combined time
points (t−1–(−3))

79 79 0.001 0.77 (0.71–0.83) * 0.68 (0.60–0.77) 0.73 (0.65–0.82) 0.72 0.70

1. Gram-negative late-onset sepsis
3 days before

diagnosis (t−3) 11 13 0.060 0.73 (0.54–0.90) 0.55 (0.29–0.78) 0.85 (0.67–1.00) 0.75 0.69

2 days before
diagnosis (t−2) 16 10 0.370 0.61 (0.39–0.82) 0.88 (0.73–1.00) 0.30 (0.08–0.56) 0.67 0.60

1 day before
diagnosis (t−1) 11 12 0.010 0.82 (0.64–0.95) * 0.64 (0.38–0.88) 0.92 (0.77–1.00) 0.88 0.73

Combined time
points (t−1–(−3))

38 35 0.0001 0.78 (0.69–0.87) * 0.74 (0.62–0.85) 0.71 (0.58–0.83) 0.74 0.71

2. Gram-positive late-onset sepsis (excl. coagulase-negative staphylococci pathogens)

3 days before
diagnosis (t−3) 6 9 0.724 0.44 (0.17–0.70) 0.17 (0.00–0.43) 0.56 (0.25–0.82) 0.20 0.50

2 days before
diagnosis (t−2) 4 7 0.449 0.64 (0.25–1.00) 0.75 (0.33–1.00) 0.86 (0.60–1.00) 0.75 0.86

1 day before
diagnosis (t−1) 10 7 0.807 0.54 (0.29–0.80) 0.80 (0.56–1.00) 0.14 (0.00–0.40) 0.57 0.33

Combined time
points (t−1–(−3))

20 23 0.846 0.52 (0.37–0.67) 0.40 (0.23–0.59) 0.65 (0.48–0.81) 0.50 0.56

3. Coagulase-negative staphylococci late-onset sepsis

3 days before
diagnosis (t−3) 9 5 0.841 0.47 (0.06–0.83) 0.89 (0.70–1.00) 0.40 (0.00–0.80) 0.73 0.67

2 days before
diagnosis (t−2) 9 7 0.223 0.32 (0.08–0.60) 0.43 (0.13–0.75) 0.67 (0.38–0.91) 0.50 0.60

1 day before
diagnosis (t−1) 7 8 0.643 0.52 (0.23–0.79) 0.43 (0.13–0.75) 0.63 (0.33–0.90) 0.50 0.56

Combined time
points (t−1–(−3))

23 22 0.026 0.69 (0.57–0.83) 0.74 (0.59–0.88) 0.68 (0.52–0.85) 0.71 0.71

* AUC ≥ 0.75. Abbreviations: AUC, area under curve; NPV, negative predictive value; PPV, positive predictive
value; ±95% CI, 95% confidence interval.
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Figure 2. Discriminatory metabolites identified using GC-TOF-MS. The log2(FC) of the median peak
height intensities is depicted for every significant comparison, indicating an increase (orange) or
decrease (blue) in metabolite abundance in LOS cases. White indicates that the metabolite was not
considered discriminatory for that subgroup. Gram-positive LOS is not depicted since there were no
significant comparisons. Abbreviations: log2(FC), log2(fold change); LOS, late-onset sepsis.
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4. Discussion

In this multicenter case-control study, we identified pathogen-specific fecal VOCs
preceding LOS in preterm infants in a longitudinal setting, using two complementary
analytical techniques. Observed differences were most evident in gram-negative LOS
versus controls, with an accuracy of 0.85 and 0.82 (p < 0.001), three days to one day before
onset, as measured using GC-IMS and GC-TOF-MS, respectively E. coli LOS could be
discriminated one and two days before onset (AUC of 0.73 and 0.83, respectively; p < 0.05).
VOC patterns were also different one day before onset of gram-positive sepsis (AUC of
0.78; p < 0.003), and only to a lesser extent for CoNS-LOS. Analysis using GC-TOF-MS
revealed a unique set of preclinical pathogen-specific metabolites.

In this study, we aimed to validate previous results illustrating the potential of VOCs
as an early, non-invasive biomarker for LOS [32–34]. The largest and most recent study
performed by our research group (n = 127 LOS cases) applied FAIMS technology, which
is based on pattern recognition similar to GC-IMS used in the current study, but with a
smaller amount of sensors [33]. It was demonstrated that VOC profiles of the last produced
stool sample prior to LOS onset can discriminate cases from their matched controls (AUC of
0.77 and 0.74 for gram-negative and gram-positive LOS, respectively) [33]. The increasing
performance when focusing on specific LOS pathogens (AUC of 0.86 for E. coli), was
comparable in the current study. However, the previously observed high accuracy for
S. aureus sepsis discrimination was not observed in the current data. The recurring low
discriminative value of fecal metabolites before CoNS sepsis could be explained by the
usual inoculation through indwelling medical devices or dysfunctional skin barriers rather
that via the gut [41]. In contrast, gram-negative bacteria colonize the gut, produce toxins,
and are capable of effective translocation through the gut lining [42,43]. Gram-negative
related LOS, in particular, results in severe clinical symptoms and significantly higher
morbidity and mortality. Therefore, the prediction of this subcategory of LOS could have a
remarkable impact on neonatal care [44].

As fecal microbiota and VOCs are associated, the distinctive accuracy of VOC measure-
ments in relation to different categories of LOS might reflect the production of unique VOC
profiles by different pathogens [45]. Therefore, not only pattern recognition techniques, but
also measurements of individual metabolites, were applied in this study. Using GC-TOF-
MS, 298 metabolites were identified in the fecal samples. Ethyl acetate—-a signature VOC
emitted by E. coli—-was one of the 15 most discriminative metabolites for gram-negative
sepsis [45–48]. Notably, many of the discriminatory metabolites identified in our study
have also been described as discriminatory metabolites or as being altered in the feces
and breath of patients with (inflammatory) gastrointestinal diseases and colorectal cancer,
as shown in Supplementary Table S4) [35,49–57]. The overlap between discriminative
compounds may suggest the presence of shared underlying local and systemic (oxidative
or immunological) stress and inflammatory pathways.

Both VOC devices used in the current study have distinct characteristics (pattern
recognition versus VOC-identification at a molecular level), and can therefore be consid-
ered complementary. Advantages of pattern recognition approaches include the short
duration of analysis and relatively low-cost high-throughput capacities, favoring the poten-
tial application as a point-of-care tool in daily clinical practice [48]. Additionally, GC-IMS
is considered reproducible, and column ageing is less influential than other techniques.
Therefore, we decided to analyze all available samples. We first used a pattern recognition
technique (GC-IMS) to search for the presence of LOS-specific VOC profiles. Remaining
material was additionally analyzed using GC-TOF-MS in order to identify discriminative
molecules. The identification of discriminatory molecules could aid in the future devel-
opment of an e-nose that can predict LOS of different pathogens by recognizing these
specific molecules.

This study is strengthened by its multicenter design with prospective data collection
and a relatively large number of LOS cases based on a formal power calculation. In
addition, the sample preparation and fecal VOC analysis were executed using an evidence-
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based, standardized, and optimized protocol to release maximal VOC concentrations in the
headspace of neonatal samples [58].

This study has some limitations. First, only a limited number of samples was eligi-
ble for GC-TOF-MS analysis after GC-IMS was first performed. As a result, the sample
size for the GC-TOF-MS analysis, especially for the gram-positive LOS subgroups, was
limited. Second, no chemical confirmation of the identified metabolites was performed.
Furthermore, although we have tried to limit the risk of including CoNS-contaminated
blood cultures by including only cases with CRP concentrations > 10 mg/L, contamination
remains a possibility as CRP is a non-specific marker for inflammation. Finally, there was a
significant difference between all cases and matched controls regarding antibiotic exposure,
which has been suggested to influence fecal VOCs [59]. However, this significant difference
was only observed in the GC-IMS CoNS-LOS subgroup and when all cases were combined.
Therefore, antibiotic exposure was hypothesized to have only limited influence on the other
categories of LOS.

Future studies need to validate the key discriminatory compounds observed in the
current study using targeted metabolomics lab-based approaches in larger subgroups. Fu-
ture research should aim to simultaneously analyze microbiota and (volatile) metabolomics
preceding LOS, allowing for computational modelling of metabolic and microbial networks
and pathways, as well as predicting the functional activity of the metabolites. This could
possibly help elucidate the complex pathogenesis of LOS and support the development
of time-sensitive, predictive biomarkers and targeted interventions aimed at prevention
of LOS.

To conclude, we confirmed the potential of fecal VOC analysis for the preclinical
detection of gram-negative and E. coli LOS up to three days prior to clinical onset. Analysis
using GC-TOF-MS revealed pathogen-specific VOC patterns and metabolites which, in the
future, may contribute to development of a targeted VOC-based point-of-care device to
predict LOS preceding onset in a non-invasive manner.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms11030572/s1. Refs. [60,61] are cited in the
supplementary materials.

Author Contributions: N.M.F. conceptualized and designed the study, performed initial measure-
ments, and was involved in obtaining, analyzing, and interpreting data, as well as the statistical
analysis. N.M.F. also wrote the first version of the manuscript, obtained funding, and reviewed
and revised the manuscript. T.G.J.d.M. and S.e.M.e.H. conceptualized and designed the study, and
were involved in obtaining, analyzing, and interpreting data, statistical analysis, and drafting the
manuscript. They also coordinated and supervised data collection, supervised the study, obtained
funding, and reviewed and revised the manuscript. H.J.N. and N.K.H.d.B. conceptualized and de-
signed the study, were involved in obtaining, analyzing, and interpreting data, as well as revising and
critically reviewing the manuscript for important intellectual content. J.A.C. analyzed and interpreted
data, performed the statistical analysis, and revised and reviewed the manuscript for important
intellectual content. A.N.W. analyzed and interpreted data, performed the statistical analysis, and
revised the manuscript for important intellectual content. N.D. was involved in interpreting data and
data analysis, conceptualizing the manuscript, and critically reviewing and revising the manuscript
for important intellectual content. W.P.d.B., V.C., C.V.H., A.H.v.K., B.W.K., E.J.d.H, J.B.v.G., D.C.V.
and M.M.v.W. were involved in the study design, obtaining and interpreting data, as well as critically
reviewing and revising the manuscript for important intellectual content. W.J.d.J. and M.A.B. were
involved in the study design and data interpretation as well as critically reviewing and revising the
manuscript for important intellectual content. All authors approved the submitted version of the
manuscript and agreed to be accountable for all aspects of the work by ensuring that questions re-
garding the accuracy or integrity of any part of the work are appropriately investigated and resolved.
All authors have read and agreed to the published version of the manuscript.

https://www.mdpi.com/article/10.3390/microorganisms11030572/s1
https://www.mdpi.com/article/10.3390/microorganisms11030572/s1


Microorganisms 2023, 11, 572 12 of 15

Funding: This work was supported by unrestricted grants from the Landelijke Vereniging van
Crematoria (Dr. C.J. Vaillant Fonds); Zeldzame Ziekten Fonds and the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement [grant
number 814168]. None of the funding sources had any role in the design or conduct of the study.

Institutional Review Board Statement: The study was approved by the Medical Ethics Review
Board of the VU University Medical Centre and the local medical ethics committee of all participating
centers (2014.386 amendment A2016.363).

Informed Consent Statement: Written informed consent was obtained from all infants’ caregivers.

Data Availability Statement: The data is publicly available at DOI: 10.6084/m9.figshare.19323905.

Acknowledgments: We would like to thank the nurses at all participating neonatal intensive care
units for their daily efforts in the collection of the fecal samples.

Conflicts of Interest: None of the co-authors received a honorarium, grant, or other form of payment
for the production of this manuscript. Outside the submitted work, N.K.H.d.B. has served as a
speaker for AbbVie and MSD. He has also served as a consultant and/or principal investigator for
TEVA Pharma BV and Takeda. He has received a (unrestricted) research grant from Dr Falk, TEVA
Pharma BV, MLDS and Takeda. The other authors have nothing to declare.

Abbreviations

AUC area under the curve
BM breastmilk
BW birth weight
CI confidence interval
CoNS coagulase negative staphylococci
CRP C-reactive protein
Escherichia coli E. coli
FC fold change
FM formula milk
GA gestational age
GC-IMS gas chromatography—ion mobility spectrometry
GC-TOF-MS gas chromatography—time of flight—mass spectrometry
LOS late-onset sepsis
NICU neonatal intensive care unit
ROC receiver operator characteristic
Staphylococcus aureus S. aureus
t−1 one day prior to late-onset sepsis
t−2 two days prior to late-onset sepsis
t−3 three days prior to late-onset sepsis
t−1–(−3) all three time points prior to late-onset sepsis combined
VOCs volatile organic compounds
χ2-test Chi-squared test
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