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Abstract: The biosynthesis of nanoparticles using green technology is emerging as a cost-efficient,
eco-friendly and risk-free strategy in nanotechnology. Recently, tellurium nanoparticles (TeNPs)
have attracted growing attention due to their unique properties in biomedicine, electronics, and
other industrial applications. The current investigation addresses the green synthesis of TeNPs
using a newly isolated mangrove-associated bacterium, Gayadomonas sp. TNPM15, and their impact
on the phytopathogenic fungi Fusarium oxysporum and Alternaria alternata. The biogenic TeNPs
were characterized using transmission electron microscopy (TEM), scanning electron microscopy
(SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy
and Fourier transform infrared (FTIR). The results of TEM revealed the intracellular biosynthesis of
rod-shaped nanostructures with a diameter range from 15 to 23 nm and different lengths reaching up
to 243 nm. Furthermore, the successful formation of tellurium nanorods was verified by SEM-EDX,
and the XRD pattern revealed their crystallinity. In addition, the FTIR spectrum provided evidence
for the presence of proteinaceous capping agents. The bioinspired TeNPs exhibited obvious inhibitory
effect on the spores of both investigated phytopathogens accomplished with prominent ultrastructure
alternations, as evidenced by TEM observations. The biogenic TeNPs impeded spore germination
of F. oxysporum and A. alternata completely at 48.1 and 27.6 µg/mL, respectively. Furthermore, an
increase in DNA and protein leakage was observed upon exposure of fungal spores to the biogenic
TeNPs, indicating the disruption of membrane permeability and integrity. Besides their potent
influence on fungal spores, the biogenic TeNPs demonstrated remarkable inhibitory effects on the
production of various plant cell wall-degrading enzymes. Moreover, the cytotoxicity investigations
revealed the biocompatibility of the as-prepared biogenic TeNPs and their low toxicity against the
human skin fibroblast (HSF) cell line. The biogenic TeNPs showed no significant cytotoxic effect
towards HSF cells at concentrations up to 80 µg/mL, with a half-maximal inhibitory concentration
(IC50) value of 125 µg/mL. The present work spotlights the antifungal potential of the biogenic TeNPs
produced by marine bacterium against phytopathogenic fungi as a promising candidate to combat
fungal infections.

Keywords: tellurium nanoparticles; green synthesis; biogenic nanoparticles; phytopathogenic fungi;
antifungal activity
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1. Introduction

The antimicrobial activity of various nanomaterials has gained increasing interest
owing to their diverse medical, agricultural and environmental applications. Undoubtedly,
nanoparticles have extraordinary advantages compared to bulk materials due to their
larger surface-to-volume ratios and higher spatial confinement [1]. In this trend, extensive
attempts have been employed to fabricate metal, metal oxide and metalloid nanoparticles as
alternative antimicrobial agents, such as silver, gold, copper, zinc, selenium, and tellurium
nanoparticles [2–11]. Recently, tellurium nanoparticles (TeNPs) have drawn significant
attention due to their antibacterial and antifungal activity, besides biocompatibility [12].
Tellurium is a toxic rare element metalloid that belongs to chalcogens, with intermediate
properties between metals and non-metals [13]. In a recent approach, the employment of
the high efficiency of some tellurite-resistant microorganisms to biomineralize the metalloid
oxyanions to less toxic elemental TeNPs resulted in a reduction in tellurium toxicity and
increased its biocompatibility [14].

Green nanotechnology employs natural biological resources such as bacteria, fungi,
algae and plants to achieve an eco-friendly cost-effective fabrication of nanoparticles [15–17].
The ability of these organisms to act as nanofactories for the biosynthesis nanoparticles
makes them an excellent green alternative to chemical synthesis, avoiding the use of harsh
and toxic chemicals. In this regard, many TeNPs-producing microorganisms have been
isolated from diverse environments and have been reported to synthesize various shapes
of TeNPs, such as a pillar, needle, spherical, cube and rod-shaped nanoparticles [18–21]. It
has been reported that tellurite-biomineralizing bacteria produce black precipitates within
and/or outside the cells as a common feature for intracellular and extracellular production
of TeNPs [22–24]. In extracellular biosynthesis, the added tellurite salts are reduced into
TeNPs in the culture broth, whereas, in the intracellular process, the biosynthesis of TeNPs
occurs inside the cells, followed by cell lysis to be recovered and purified [25–28]. It has been
believed that mangrove sediments contain numerous microbial groups that play vital roles
and environmental processes in the mangrove ecosystem. Indeed, mangrove sediments-
derived microbes have been supposed as a rich reservoir of natural product diversity and
contribute in biomineralization and biotransformation of minerals [29–36]. Though tellurite-
reducing bacteria were isolated from various terrestrial and marine habitats [37–41], their
isolation from mangrove ecosystems is relatively unexplored.

Today, extensive losses of crops at the global level are caused by fungal infections,
especially with the continuous emergence of fungicide resistance. It has been thought
that phytopathogenic fungi are responsible for losing up to 20% of the global crop yields
yearly, and about 10% of crops are destroyed due to post-harvest fungal infections [42].
The phytopathogen Fusarium oxysporum is a ubiquitous soilborne fungal pathogen that
ranks 5th among the top 10 fungal plant pathogens, and was reported to cause devas-
tating vascular wilt in more than 100 plant species [43]. Besides being a phytopathogen,
F. oxysporum has also emerged as a human pathogen [44–46]. Additionally, Alternaria al-
ternata is an important fungal pathogen that has a wide host range, causing considerable
losses in the yield of many crops [47–50]. Like F. oxysporum, the fungal pathogen A. alternata
has been documented as a causal agent of human infections [51–53]. The antimicrobial
activity of TeNPs against human bacterial pathogens is well-documented. However, little
data unveiling the antifungal activity of TeNPs against phytopathogens is available. In a
recent study, citric juice-mediated TeNPs exhibited antibacterial effects against multidrug-
resistant Escherichia coli and methicillin-resistant Staphylococcus aureus [54]. TeNP-induced
antibacterial activity has been attributed to superoxide-mediated oxidative stress, lead-
ing to cytoplasmic thiol oxidation and inactivation of the iron–sulfur center-containing
enzymes as well as the peroxidation of the membrane lipids, causing cell death [55,56]. In
addition, biogenic TeNPs produced by Ochrobactrum sp. MPV1 exerted antibacterial and
biofilm eradication activity against Escherichia coli JM109, Pseudomonas aeruginosa PAO1,
and Staphylococcus aureus ATCC 25923 that was associated with the production of reactive
oxygen species [57]. On the other hand, a limited number of published articles demonstrate
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the antifungal activity of TeNPs against yeasts and filamentous fungi. The antifungal
activity of biogenic TeNPs against Candida albicans ATCC14053 is assumed to be due to
the inhibition of squalene monooxygenase, which is a rate step-limiting enzyme in the
ergosterol and cholesterol biosynthesis pathway involved in the synthesis of ergosterol,
cholesterol, and phytosterols [58]. Herein, we report for the first time on the facile biosyn-
thesis and characterization of TeNPs produced as intracellular nanorods by Gayadomonas
sp. TNPM15 isolated from mangrove sediments and evaluate their impact on F. oxysporum,
and A. alternata.

2. Materials and Methods
2.1. Sample Collection

Mangrove sediments were collected from Safaga Island, the Red Sea, Egypt (26◦45′55.6′′ N
33◦57′38.3′′ E) using sterile disposable wooden spatulas during low tides. The collected samples
were placed in sterile Whirl-Pak® sample bags (Nasco, Kellogg, ID, USA) and transported to
the laboratory on ice.

2.2. Isolation of TeNPs-Producing Bacteria

Mangrove sediment samples were suspended in sterile seawater and vigorously
vortexed for 15 min, and then serially diluted in sterile seawater. Thereafter, 100 µL
of each dilution were plated onto tryptone yeast extract seawater (TYS) agar (tryptone
10 g, yeast extract 5 and agar 15 g/L natural seawater) plates supplemented with 1 mM
potassium tellurite. After 24–72 h of incubation at 30 ◦C, black-colored colonies were
picked as presumptive TeNPs-producing bacteria. The selected colonies were re-streaked
on the same medium until discrete colonies were obtained. To ensure that the color was
not an organic bacterial pigment, the selected colonies were re-streaked on TYS agar
plates without potassium tellurite and monitored for black pigment production during
the incubation period (24–72 h) at 30 ◦C. Furthermore, the formation of intracellular
tellurium nanostructures was confirmed by transmission electron microscopy (JEM-1400,
JEOL, Tokyo, Japan) operating at 80 KV, after negative staining of bacterial cells with 1%
phosphotungstic acid (w/v).

2.3. Bacterial Identification

A promising TeNPs-producing strain designated TNPM15 was identified by amplifi-
cation and sequencing of its 16S rRNA gene. Typically, the genomic DNA was extracted
using a PureLink DNA Purification Kit (Thermo Scientific, Waltham, MA, USA) according
to the manufacturer’s protocol. Genomic DNA was used as a template for the amplification
of the 16S rRNA gene by polymerase chain reaction (PCR), using the universal primers
27F (5′-AGAGTTTGATCMTGGCTCAG-3′) and 1492R (5′-GGYTACCTTGTTACGACTT-3′).
The PCR reaction was carried out by mixing 5 µL 10X Dream Taq buffer, 50 ng genomic
DNA template, 0.4 µM of each primer, 0.2 mM of each dNTP, and one Unit Dream Taq
DNA polymerase (Thermo Scientific, MA, USA), and, finally, nuclease-free water was
added to increase the volume up to 50 µL. The amplification program contained an initial
denaturation step at 95 ◦C for 4 min, followed by 30 cycles of denaturation at 95 ◦C for 40 s,
annealing at 55 ◦C for 40 s, extension at 72 ◦C for 1.5 min and a final extension at 72 ◦C for
8 min in a ProFlex thermocycler (Applied Biosystems, Foster City, CA, USA). The amplified
PCR products were purified using a GeneJET PCR purification kit (Thermo Scientific, MA,
USA) according to the manufacturer’s protocol.

The nucleotide sequence of the purified PCR product was sequenced in both direc-
tions using the 27F and 1492R primers using an ABI 3730xI sequence analyzer (Applied
Biosystems, USA). Subsequently, CodonCode aligner software v. 7.1.2 was used to assemble
the forward and reverse DNA sequence reads. The sequence similarity search was per-
formed at the National Center for Biotechnology Information (NCBI) server using BLASTN
(http://www.ncbi.nlm.nih.gov/blast; accessed on 20 December 2022) and the EzTaxon-e
server database [59]. The phylogenetic tree in the context of 16S rRNA gene sequence was

http://www.ncbi.nlm.nih.gov/blast
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constructed using the Neighbor-Joining method of the MEGA-X software (version 10.0.5)
with a bootstrap analysis based on 1000 replicates.

2.4. Biosynthesis of Tellurium Nanoparticles

The biosynthesis of TeNPs was achieved by culturing the strain TNPM15 in TYS
broth amended with 1 mM potassium tellurite at 30 ◦C for 24 h, with continuous shaking
(180 rpm). Afterwards, the bacterial cells were harvested by centrifugation at 10,000× g
for 20 min, followed by washing the pellet twice with sterile saline solution. The pellets
were then resuspended in a lysis buffer containing 10 mM Tris-HCl (pH 8.3), 1 mM EDTA,
100 mM NaCl, 1% SDS (w/v), and 0.5% Triton X100 (v/v); and the bacterial cells were
disrupted by sonication for 5 min at 100 W. Thereafter, the released TeNPs were purified by
sequential centrifugation at 12,000× g for 15 min and washing with 1.5 M Tris-HCl buffer
(pH 8.3) containing 0.5% SDS (w/v). Then, the purified TeNPs were washed three times
with deionized water and, finally, the pellet was resuspended in ultrapure water (18.2 Mcm
@25 ◦C) and sterilized by filtration through 0.45 µm syringe filters.

2.5. Characterization of Tellurium Nanoparticles

The size and shape of biogenic TeNPs were determined using transmission electron
microscopy. In brief, a drop of the diluted suspension of the biogenic TeNP was loaded on
a carbon-coated copper grid and air-dried, and observed using a TEM (JEM-1400, JEOL,
Japan) operating at 80 KV. Scanning electron microscopy (SEM) analysis was performed us-
ing a Quattro S instrument (Thermo Scientific, MA, USA) equipped with energy-dispersive
X-ray spectroscopy (EDX) to determine the chemical composition of the as-prepared nanos-
tructures. The X-ray diffraction (XRD) was investigated by a D8 Discover diffractometer
(Bruker, Karlsruhe, Germany) using Cu Kα radiation as a light source with a current of
30 mA and an applied voltage of 40 kV. The 2θ angles ranged from 20 to 60◦ with a scan
speed of 0.5◦/min. Raman spectra of the biogenic TeNPs were recorded using a LabRAM
HR Evolution Raman spectrometer (HORIBA Ltd., Kyoto, Japan) equipped with an air-
cooled open electrode 1024 × 256-pixel CCD detector. The TeNPs were placed as thin
films on a glass slide and dried in air at ambient temperature. Normal Raman spectra
were acquired using 532 nm excitation (spectral range 50–300 cm−1) with an acquisition
interval of 20 s. Fourier-transform infrared (FTIR) spectroscopy was used to determine the
functional groups. The scanning spectra were obtained in the range of 4000 to 400 cm−1

using a Nicolet 6700 FT-IR spectrometer (Thermo Scientific, MA, USA).

2.6. Fungal Phytopathogens

The antifungal effect of the biogenic TeNPs was investigated against two phytopathogenic
fungi, Fusarium oxysporum AUMC 10313 and Alternaria alternata AUMC 3882, provided from
the Assiut University Mycology Center (AUMC), Assiut, Egypt.

2.7. Germination Test

The inhibitory effect of the biogenic TeNPs on spore germination was evaluated
in vitro. Briefly, F. oxysporum and A. alternata were cultured on potato dextrose agar (PDA)
plates (Condalab, Madrid, Spain) at 28 ◦C for 7 days. Afterwards, spores were harvested,
suspended in sterile saline solution (NaCl, 0.9%) and filtered through sterile muslin to
remove mycelia. The spore count was adjusted to 2 × 106 spores/mL using a hemocytome-
ter. Then, 50 µL of spore suspension was added to each well of a 96-well microtiter plate
containing 100 µL potato dextrose broth (PDB) (Condalab, Madrid, Spain) with different
TeNPs concentrations. The fungicide mancozeb (Santa Cruz Biotechnology, Dallas, TX,
USA) was added at various concentrations (10, 20, 30, 40 and 50 µg/mL) instead of the
TeNPs as a positive control, and sterile saline solution was used as a negative control.
The plates were incubated at 28 ◦C for 16 h for germination. Subsequently, 100 spores
were analyzed with a DM500 optical microscope (Leica, Heerbrugg, Switzerland) and the
percentage of germinated spores was calculated. A spore was considered germinated if
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the germ tube length is equal to or longer than the spore length. The minimum inhibitory
concentration (MIC) was determined as the lowest concentration of biogenic TeNPs that
completely inhibits spore germination. The MIC values were expressed as µg/mL and
calculated from the regression analysis curves.

2.8. Spore Morphology and Ultrastructure Analysis

The probable morphological changes and ultrastructural damage of fungal spores
exposed to TeNPs were observed by using TEM. In brief, spore suspensions of F. oxysporum
and A. alternata were prepared as above and exposed to TeNPs at the half concentration of
their corresponding MIC values. Control groups were prepared using the same procedure,
but TeNPs were not incorporated. After incubation at 28 ◦C for 3 h, the spores were collected
by centrifugation at 6000× g for 10 min, washed twice with sterile saline and fixed with
3% (v/v) glutaraldehyde for 4 h overnight, then post fixed with 1% (w/v) osmium tetroxide
at 4 ◦C for 3 h. Then, samples were sequentially dehydrated using a graded ethanol series
(20 to 100%). Subsequently, the dehydrated spores were placed into an embedding plate,
then permeated with pure propylene oxide, then 100% Spurr. Finally, ultrathin sections
were prepared with a microtome and observed at 80 kV using a JEM-1400 transmission
electron microscope (JEOL, Japan). Ultrastructural alterations of the spores were compared
with untreated controls to assess the effect of TeNPs against spores of F. oxysporum and
A. alternata.

2.9. Leakage of Proteins and DNA

To determine the influence of TeNPs on membrane integrity, the leakage of proteins
and DNA from exposed phytopathogens was assessed. In brief, spore suspension of
F. oxysporum and A. alternata (106 spore/mL) were incubated for 24 h at 28 ◦C with TeNPs
at the half MIC values. Untreated spore suspension sets (without TeNPs) served as controls.
At the end of incubation period, cultures were centrifuged at 10,000 rpm for 15 min at
4 ◦C and the supernatants were collected to measure the extracellular proteins and DNA.
Subsequently, leakage of proteins and DNA upon exposure to the biogenic TeNPs was
investigated following the method described by Khalil et al. [60].

2.10. Impact of TeNPs on Plant Cell Wall-Degrading Enzymes (CWDEs)

The potential inhibitory effect of TeNPs on the CWDEs of F. oxysporum and A. alternata
was investigated. We focused on the influence of TeNPs on essential hydrolases associated
with their pathogenicity as cellulase, pectinase and xylanase. To determine the activities of
the CWDEs, each phytopathogen was inoculated into an induction broth [(g/L): NaNO3 2;
K2HPO4 1; KCl 0.5; MgSO4 7H2O 0.5; FeSO4 7H2O 0.01] amended with 1% carboxymethyl
cellulose (CMC), pectin or xylan for cellulase, pectinase and xylanase, respectively. All
treated media were supplemented with TeNPs at the half concentration of their correspond-
ing MIC values. Control groups were prepared using the same procedure, but TeNPs
were not incorporated. After incubation at 28 ◦C for 7 days, cellulases, pectinases and
xylanases were determined by measuring the amounts of reducing sugar released from
1% CMC, pectic acid and xylan by 3,5-dinitrosalicylic acid (DNSA) method using glucose,
D-galacturonic acid and xylose as a standard, respectively [61]. Finally, the enzymatic
activities were compared with those of untreated controls.

2.11. Cytotoxicity Assay

The Human Skin Fibroblast (HSF) cell line, obtained from Nawah Scientific Inc.
(Mokatam, Cairo, Egypt), was used for the cytotoxicity investigations. The Dulbecco’s
Modified Eagle medium (DMEM) supplemented with 10% heat-inactivated fetal bovine
serum (Gibco; Thermo Fisher Scientific, Loughborough, UK) and antibiotics (100 µg/mL
streptomycin and 100 units/mL penicillin) was used for culturing and maintenance of
the cell line. The HSF cells were cultured in a water-jacketed incubator (BINDER GmbH,
Tuttlingen, Germany) at 37 ◦C under 5% CO2 in a high humidity atmosphere.
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The cytotoxicity of TeNPs against HSF cells was assessed using the sulforhodamine
B (SRB) assay. Briefly, aliquots of 100 µL cell suspension (5 × 103 cells) were added to a
96-well microtitre plate, and various concentrations of TeNPs were added and incubated
for 72 h. In another set, untreated HSF cells served as control. Afterwards, the media was
replaced with 150 µL of 10% trichloroacetic acid (TCA) solution and incubated at 4 ◦C for
1 h. Subsequently, the TCA solution was discarded and the plates were gently washed five
times with distilled water and allowed to dry. Aliquots of 70 µL SRB solution (0.4% w/v
in 1% glacial acetic acid) were added and incubated in the dark at room temperature
for 10 min. Thereafter, plates were washed thrice with 1% acetic acid and allowed to
air-dry again. Then, the protein-bound SRB stain was dissolved in 150 µL of Tris buffer
(10 mM, pH 10.5) and the absorbance was measured at 540 nm using Epoch2 microplate
spectrophotometer (BioTek, Santa Clara, CA, USA).

2.12. Statistical Analysis

The measured data were subjected to the analysis of variance (ANOVA) appropriate
to the design. The significant differences between treatments were compared with the
critical difference at 5% level of probability by the Duncan’s test using IBM SPSS software
version 22.

3. Results
3.1. Isolation of TeNPs-Producing Bacteria

Several strains isolated from the mangrove sediments were able to grow in the presence
of 1 mM potassium tellurite. The reduction of Te (IV) to Te(0) by bacterial isolates was
detected by the black-colored precipitate in the culture, indicating the reduction of tellurite
to black Te(0) precipitate. Black precipitates were not detected in cultures grown on the
same medium without emendation, confirming the production of elemental tellurium
rather than organic pigmentation. Furthermore, TEM analysis confirmed the production of
intracellular rod-shaped nanostructures by a bacterial strain designated TNPM15 exhibiting
a characteristic black color in the presence of tellurite (Figure 1). The selected strain
TNPM15 was identified as Gayadomonas sp. based on its 16S rRNA gene sequence (accession
number OP020452). BLAST results revealed that the strain TNPM15 shares 98.92% identity
with Gayadomonas joobiniege strain G7 (accession number NR_133751.1) and 96.32% with
Catenovulum agarivorans YM01 (accession number NR_117273.1). The Neighbor-Joining
phylogenetic tree in the context of 16S rRNA gene sequence was constructed (Figure 2).
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Figure 2. Phylogenetic tree showing the relationships between Gayadomonas sp. TNPM15 and the
most closely related species.

3.2. Biosynthesis and Characterization of TeNPs

Biogenic TeNPs were produced by exploiting the tellurite-reduction capability of
Gayadomonas sp. strain TNPM15 cultured in TYS broth supplemented with potassium
tellurite. The produced intracellular TeNPs were recovered and resuspended in ultrapure
water after purification steps. Electron microscopy was employed to clarify the size and
shape of the purified nanoparticles. The TEM demonstrated that the purified TeNPs
appeared as nanorods with a diameter range from 15 to 23 nm and different lengths reaching
up to 243 nm (Figure 3). Moreover, SEM observation clearly confirmed the formation
of rod-shaped nanostructures (Figure 4). Based on the results of elemental analysis by
EDX, we evidenced that the black biogenic nanostructures were mainly composed of
tellurium (Figure 5). Furthermore, the XRD spectrum revealed the crystalline nature
of the produced TeNPs (Figure 6). Additionally, Raman spectra appeared in the whole
lower-frequency region, showing characteristic vibration peaks attributed to tellurium at
121.3 and 140.3 cm−1, affirming the formation of TeNPs (Figure 7). In addition, the FTIR
spectrum provided insights into the functional groups incorporated into the surface of the
as-prepared biogenic tellurium nanostructures (Figure 8).
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3.3. Germination Test

The antifungal activity of the biosynthesized TeNPs was assessed against the phy-
topathogenic fungi F. oxysporum and A. alternata. Our results proved the ability of the
biogenic TeNPs to inhibit fungal spore germination. The MIC values which completely
inhibited spore germination of F. oxysporum and A. alternata were statistically deduced from
the linear regression model fit (Figure 9). In the case of F. oxysporum, the deduced MIC were
48.1 and 38.0 µg/mL for TeNPs and mancozeb, respectively. On the other hand, TeNPs and
mancozeb had MIC values of 27.6 and 30.5 µg/mL against A. alternata, respectively.
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3.4. Spore Morphology and Ultrastructure Analysis

The ultrastructural analysis of F. oxysporum and A. alternata spores was investigated
by electron microscopy. Generally, spores in control experiments appeared intact with
well-defined ultrastructure and smooth cell walls, whereas those exposed to biogenic TeNP
exhibited prominent ultrastructure alternations (Figure 10). TEM observations indicated
that the treated fungal spores seem to be deformed with ruptured walls in both investigated
phytopathogenic fungi. Results indicated more deformation in the case of A. alternata than
in F. oxysporum.
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Figure 10. TEM micrographs showing the ultrastructure alternations in fungal spores upon exposure
to the biogenic TeNP produced by Gayadomonas sp. TNPM15. (A) Untreated F. oxysporum (Control),
(B) TeNPs-treated F. oxysporum, (C) Untreated A. alternata (Control), (D) TeNPs-treated A. alternata.

3.5. Leakage of Proteins and DNA

To gain further insight into the antifungal activity of TeNPs, we studied the probable
leakage of proteins and DNA in TeNPs-treated spores compared with untreated control.
The results revealed a significant increase in extracellular protein and DNA levels, indicat-
ing increased permeability of spore membrane and leakage of an intracellular substance
(Figure 11). Likewise, TeNPs were more effective against A. alternata than F. oxysporum in
the disruption of spore membranes.



Microorganisms 2023, 11, 558 12 of 18

Microorganisms 2023, 11, x FOR PEER REVIEW 12 of 19 
 

 

3.5. Leakage of Proteins and DNA 
To gain further insight into the antifungal activity of TeNPs, we studied the probable 

leakage of proteins and DNA in TeNPs-treated spores compared with untreated control. 
The results revealed a significant increase in extracellular protein and DNA levels, indi-
cating increased permeability of spore membrane and leakage of an intracellular sub-
stance (Figure 11). Likewise, TeNPs were more effective against A. alternata than F. ox-
ysporum in the disruption of spore membranes. 

 
Figure 11. Effect of the biogenic TeNPs produced by Gayadomonas sp. TNPM15. on the leakage of 
proteins (A) and DNA (B) from spore suspension of F. oxysporum and A. alternata. 

3.6. Impact of TeNPs on Plant Cell Wall-Degrading Enzymes 
Application of the TeNPs to the growth medium at half of their MIC values resulted 

in significant inhibition of cellulase, pectinase, and xylanase activities in both investigated 
phytopathogenic fungi (Table 1). The results demonstrated about 78.2 and 84.9% inhibi-
tion of cellulase activity in treated F. oxysporum AUMC 10313 and A. alternata AUMC 3882, 
respectively, whereas the biogenic TeNPs reduced their pectinase activity by 51.3 and 
59.3%, respectively. On the other hand, TeNPs exerted a relatively tenuous inhibitory ef-
fect against xylanase activity compared with that against cellulase and pectinase. 

Table 1. Impact of the biogenic TeNPs produced by Gayadomonas sp. TNPM15 on the plant cell wall-
degrading enzymes of F. oxysporum AUMC 10313 and A. alternata AUMC 3882. 

Phytopathogen 
Relative Enzyme Activity (%) 

Cellulase Pectinase Xylanase 
F. oxysporum AUMC 10313 21.8 ± 2.4 48.7 ± 1.6 72.1 ± 1.1 

A. alternata AUMC 3882 15.1 ± 2.7 40.7 ± 1.9 70.7 ± 1.3 

3.7. Cytotoxicity Assay 
In the present study, the cytotoxicity and biocompatibility of the bacterial-mediated 

biogenic TeNPs were tested, in vitro, against HSF cell lines. Indeed, the SRB assay indi-
cated that the biogenic TeNPs showed no significant cytotoxic effect towards HSF cells at 
concentrations up to 80 µg/mL. The results revealed that the half-maximal inhibitory con-
centration (IC50) value of the biofabricated TeNPs against HSF cells was 125 µg/mL. 

  

Figure 11. Effect of the biogenic TeNPs produced by Gayadomonas sp. TNPM15. on the leakage of
proteins (A) and DNA (B) from spore suspension of F. oxysporum and A. alternata.

3.6. Impact of TeNPs on Plant Cell Wall-Degrading Enzymes

Application of the TeNPs to the growth medium at half of their MIC values resulted
in significant inhibition of cellulase, pectinase, and xylanase activities in both investigated
phytopathogenic fungi (Table 1). The results demonstrated about 78.2 and 84.9% inhibition
of cellulase activity in treated F. oxysporum AUMC 10313 and A. alternata AUMC 3882,
respectively, whereas the biogenic TeNPs reduced their pectinase activity by 51.3 and 59.3%,
respectively. On the other hand, TeNPs exerted a relatively tenuous inhibitory effect against
xylanase activity compared with that against cellulase and pectinase.

Table 1. Impact of the biogenic TeNPs produced by Gayadomonas sp. TNPM15 on the plant cell
wall-degrading enzymes of F. oxysporum AUMC 10313 and A. alternata AUMC 3882.

Phytopathogen
Relative Enzyme Activity (%)

Cellulase Pectinase Xylanase

F. oxysporum AUMC 10313 21.8 ± 2.4 48.7 ± 1.6 72.1 ± 1.1
A. alternata AUMC 3882 15.1 ± 2.7 40.7 ± 1.9 70.7 ± 1.3

3.7. Cytotoxicity Assay

In the present study, the cytotoxicity and biocompatibility of the bacterial-mediated
biogenic TeNPs were tested, in vitro, against HSF cell lines. Indeed, the SRB assay indi-
cated that the biogenic TeNPs showed no significant cytotoxic effect towards HSF cells
at concentrations up to 80 µg/mL. The results revealed that the half-maximal inhibitory
concentration (IC50) value of the biofabricated TeNPs against HSF cells was 125 µg/mL.
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4. Discussion

The exploitation of the biomineralization potential of some tellurite-resistant bacteria
in the bioconversion of chalcogen oxyanions is considered a valuable route to develop green
strategies to fabricate unique nanoscale materials. In this investigation, the tellurite-resistant
marine bacterium, Gayadomonas sp. TNPM15, was isolated from mangrove sediments on
a tellurite-containing culture media. The appearance of the black color was the initial
indication of the mineralization of tellurite to elemental tellurium, and TEM observations
confirmed the formation of intracellular TeNPs. Mangrove has been reported as a highly
productive ecosystem with noteworthy microbial diversity [62,63]. Likewise, the tellurite-
resistant Raoultella sp. strain WAY isolated from wastewater reduced the Te(IV) forming
elemental tellurium as black colonies exhibited the potentiality for the green synthesis of
tellurium nanorods [64]. Previous studies have reported the isolation of tellurite-reducing
bacteria that produce TeNPs from various natural habitats [65–68].

In our study, the biogenic TeNPs were produced as intracellular nanorods. These
intracellular nanostructures were recovered following the lysis of bacterial cells by sonica-
tion. The size and shape of the purified bioinspired nanostructures were determined by
TEM and SEM, which confirmed the production of nanorods. Furthermore, EDX analysis
revealed that the prepared nanorods were composed mainly of tellurium, in which organic
compounds were incorporated due to the biosynthesis process. The presence of organic
matter, including proteins in the biogenic TeNPs, was evidenced by FTIR analysis. Bands at
1656 cm−1 and 1539 cm−1 are mainly associated with a C-O stretching peptide bonds from
amide I and N-H bending and C-N stretching vibration from amide II, respectively [69–71].
The band at 2933 cm−1 donates the C-H asymmetric stretching of alkanes [72]. In addition,
the peak at 1053 cm−1 could correspond to the C–N stretching vibration of the amine,
while the band at 1410 cm−1 corresponds to the N–H bending of primary amides due to
carbonyl stretch in proteins [73]. It has been suggested that proteins may be involved in the
biosynthesis of various metal nanoparticles as reducing and capping agents that stabilize
the biogenic nanoparticles. In agreement with our study, the FTIR spectrum of silver
nanoparticles by Penicillium sp. revealed bands at 1644, 1538, and 3290 cm−1 correspond to
the binding vibrations of amide I and amide II band of protein, respectively [74]. These
results are in harmony with previous investigations reporting the presence of organics
such as proteins on the surface of various biogenic nanoparticles as capping and stabilizing
agents [19,54,75,76]. Furthermore, the nanoparticles were characterized by XRD, and their
pattern confirmed that Gayadomonas sp. TNPM15 produced crystalline nanoparticles of ele-
mental tellurium nanoscale hexagonal crystal structure [77,78]. In addition, Raman spectra
revealed the appearance of the specific peaks attributed to the A1 and E phonon modes
of vibration for tellurium [79,80]. The biosynthesis of tellurium nanorods by Gayadomonas
sp. TNPM15 supports the findings of previous works that demonstrated the biosynthesis
of rod-shaped TeNPs by various microorganisms [2,81–83]. Our findings agree with most
previous literature reporting the intracellular biosynthesis of TeNPs [25,26,75,84]. On the
other hand, the extracellular biosynthesis of TeNPs is infrequently reported using certain
bacterial species such as Rhodobacter capsulatus and Shewanella oneidensis [22,85].

The findings of the current study illustrate the potent antifungal effect of the biogenic
TeNPs-produced Gayadomonas sp. TNPM15 against two important fungal phytopathogens.
Practically, the biogenic tellurium nanorods inhibited the spore germination of both inves-
tigated fungi and were evidenced to cause significant malformation and ultrastructural
alternation on fungal spores by electron microscopy. Due to the rupture of cell walls and
disintegration of membranes, the spores lost their intracellular content. This disintegration
of the membrane was affirmed by increasing in the leakage of DNA and proteins. These
findings concord with previous reports, suggesting that the antimicrobial effect of various
nanoparticles may be attributed to the disintegration of membranes and leakage of the
intracellular content, as well as the rupture of cell walls [2,86–91]. Interestingly, the biogenic
TeNPs produced by Gayadomonas sp. TNPM15 were more effective than mancozeb against
A. alternata, and their antifungal activity is more or less comparable to the mancozeb (posi-
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tive control) against F. oxysporum. Mancozeb is a broad-spectrum fungicide that is used
worldwide for fungal disease control. For decades, it has been an invaluable tool to farmers
all over the world faced with the challenge of controlling fungal pests in their crops [92].
Likewise, several previous studies used mancozeb as a standard positive control for evalu-
ating the antifungal efficacy of various biological and chemical antifungal agents [69,93,94].
In addition to their direct antifungal effects, TeNPs caused a remarkable inhibition of the
plant cell wall-degrading enzymes. This inhibitory potential against cellulase, pectinase,
and xylanase could result in the attenuation of the virulence of the exposed phytopathogens.
Cellulose, hemicellulose, lignin, and pectin are the most common polysaccharides in plant
cell walls. Thus phytopathogens secrete several extracellular enzymes responsible for
cell wall degradation such as cellulase, pectinase, and xylanase to facilitate their invasion,
resulting in adverse effects on the infected plants [95]. Accordingly, attempts to inhibit the
cell wall, degrading enzymes secreted by phytopathogens, may restrict and attenuate their
invasion, colonization, and expansion. Regarding the potential cytotoxicity, the cytotoxic
effects of the biogenic TeNPs produced by Gayadomonas sp. TNPM15 were assessed in vitro
against HSF cells. It is worth mentioning that TeNPs exhibited excellent biocompatibility
towards HSF cells with no apparent toxicity at concentrations up to 80 µg/mL. By compar-
ing the effective antifungal concentrations of TeNPs produced by Gayadomonas sp. TNPM15
with the IC50 value (125 µg/mL) against HSF cells, it can be concluded that the biogenic
TeNPs produced by Gayadomonas sp. TNPM15 could be used as a safe non-toxic antifungal
agent against phytopathogenic fungi.

5. Conclusions

The antifungal potential of the biogenic rod-shaped TeNPs produced by Gayadomonas
sp. TNPM15 provides a promising solution to combat fungal infections such as root rot and
black spot diseases caused by Fusarium and Alternaria spp., respectively. The biosynthesized
TeNPs induce prominent ultrastructure alternations such as deformation and damage in the
cell wall. Furthermore, the antifungal potential of the biogenic TeNPs is attributed to their
inhibitory effect of fungal spore germination and disruption of membrane permeability and
integrity, as evidenced by TEM and increased leakage of the intracellular components, in
addition to their inhibitory effects on plant cell wall-degrading enzymes. The cytotoxicity
assessments revealed their good biocompatibility and low toxicity toward HSF cells. We
concluded that the biogenic tellurium nanorods produced by Gayadomonas sp. TNPM15 are
a potential candidate as a robust antifungal with non-toxic doses.
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