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Abstract: Valorization of lignocellulosic biomass, such as Spent Mushroom Substrate (SMS), as an
alternative substrate for biogas production could meet the increasing demand for energy. In view of
this, the present study aimed at the biotechnological valorization of SMS for biogas production. In the
first part of the study, two SMS chemical pretreatment processes were investigated and subsequently
combined with thermal treatment of the mentioned waste streams. The acidic chemical hydrolysate
derived from the hydrothermal treatment, which yielded in the highest concentration of free sugars
(≈36 g/100 g dry SMS, hydrolysis yield≈75% w/w of holocellulose), was used as a potential feedstock
for biomethane production in a laboratory bench-scale improvised digester, and 52 L biogas/kg of
volatile solids (VS) containing 65% methane were produced in a 15-day trial of anaerobic digestion.
As regards the alkaline hydrolysate, it was like a pulp due to the lignocellulosic matrix disruption,
without releasing additional sugars, and the biogas production was delayed for several days. The
biogas yield value was 37 L/kg VS, and the methane content was 62%. Based on these results, it can
be concluded that SMS can be valorized as an alternative medium employed for anaerobic digestion
when pretreated with both chemical and hydrothermal hydrolysis.

Keywords: spent mushroom substrate; chemical hydrolysis; hydrothermal process; anaerobic digestion;
biofuels; biomethane; agro-industrial waste valorization; waste-to-energy; circular economy

1. Introduction

The valorization of lignocellulosic biomass by obtaining high-value products, which
could be used as building blocks and for new metabolites or bioenergy production, acts as
an antidote to the environmental burden and thus is an object of high scientific interest [1–5].
Global production of lignocellulosic biomass, mainly derived from agro-industrial or
forestry residues, energy crops and cellulosic wastes, is ~180 billion metric tons annually [4].
The reduction of organic load through cultivation of edible fungi is gaining particular
attention [5–10]. The cultivation of edible and medicinal mushrooms, especially those
belonging to the phylum Basidiomycota, has experienced an increasing growth rate in
recent years [8,11–14]. Commercial mushrooms such as shiitake (Lentinula sp.), button
mushrooms (Agaricus sp.), oyster mushrooms (Pleurotus sp.) and wood ear mushrooms
(Auricularia sp.) are rich in protein, carbohydrates, fiber, vitamins and minerals, while
low in fat content [8,14–16]. Moreover, bioactive secondary metabolites of mushrooms
such as phenolic compounds, β-glucans, sterols, etc., possess health-promoting effects to
cure inflammation, hypertension, cancer, hyperlipidemia, hypercholesterolemia and other
diseases [14,17–19], rendering therefore the cultivation of mushrooms in both liquid and
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solid-state fermentation configurations one of the pillars of modern industrial, green and
red biotechnology [5,17,20].

According to data of the Food and Agriculture Organization of the United Nations
(FAOSTAT), global production of mushrooms and truffles in 2020 was approximately
43 million tons and has been steadily increasing especially since 1999. China was the
leading producing country with over 40 million tons of production, while the production
in Europe was ~1.3 million tons [21]. In Greece, barely 0.97 thousand tons of mushrooms
were harvested in 2020 [21], and those belonged mainly to the genera Pleurotus sp. and
Agaricus sp. [22]. Considering that for 1 kg of oyster mushrooms about 4–5 kg of residues,
called Spent Mushroom Substrate—SMS, are discarded [23–25], one realizes the huge
amount of biowaste generated by the mushroom agroindustry. The SMS as a composted
organic medium consists of fungal mycelial residues and renewable agricultural residues
such as wheat or rice straw, sawdust, sugarcane bagasse, etc., supplemented with manure
and gypsum, and is therefore rich in cellulose, hemicellulose and lignin [26,27].

The SMS has been reused for various purposes, such as bioremediation of air, water,
and soil contaminants, to manage plant diseases and reduce the effect of pesticides, as
mulch, for growing crops (greenhouse and nursery crops, even as a substrate for mush-
room reclamation), as feed for livestock, for enzymes’ recovery and also as an alternative
renewable carbon source for fermentation and bioenergy production [4,23,26–35]. In most
cases the use of SMS requires physical (grinding, hot water, microwave, wet oxidation,
ammonia fiber expansion, supercritical CO2 explosion, steam explosion, hydrothermal
process), chemical (acid or alkaline hydrolysis, ozonolysis, ionic liquid or organic solvent
pretreatment) or biological (microbial or enzymatic) treatment, or a combination of these
processes [4,36–48].

The ever-increasing demand for energy is a major issue in modern society, and re-
search into alternative sustainable forms of bioenergy production is necessary due to the
depletion of fossil fuels, as well as the worsening climate change caused by greenhouse
gas emissions [49,50]. The “second generation” biofuels, obtained by using lignocellu-
losic feedstocks (such as the SMS) or generally organic-rich industrial, agricultural and
municipal wastewaters are a potential alternative for clean energy production such as
biogas (biohydrogen, biomethane), bioethanol, lipids as a platform for biodiesel production,
etc., compared to conventional fuels [35,51–64]. Anaerobic digestion (AD) of lignocel-
lulosic biomass to produce biomethane involves a chain of chemical reactions and the
presence of a microbial consortium. Practically, polymeric substances are biodegraded
through a sequence of metabolic steps consisting of hydrolysis, fermentation (acidogen-
esis), acetogenesis and methanogenesis [9,25,61,65,66]. The anaerobic digestion process
(viz. the biodegradation of organic matter by microbial consortia under the absence of
oxygen in order for the synthesis of methane to be performed), being comprised of the
four aforementioned stages, is influenced by a plethora of environmental and technological
parameters such as the initial C/N ratio of the medium, the pH, the incubation temperature,
the organic loading rate, the hydraulic loading rate (for the case of continuous cultures),
the presence of recalcitrant inhibitors (i.e., heavy metals, phenolic compounds, etc.), am-
monia and/or sulfide into the medium, the physiological state of the inoculum and the
potential “optimization” of the inoculum through various techniques (i.e., bioaugmenta-
tion, acclimation), etc. [67–70]. The choice and the utilization of the appropriate substrate
represents a very important factor affecting the AD process. Biogas production has been
studied for both mono-digestion and co-digestion of SMS, but scientific research mainly
focuses on co-digestion of SMS with manure and/or other organic wastes to optimize
production [25,58,71–76].

The AD process has been used for decades as a way to convert animal manure into
valuable chemicals such as methane, hydrogen sulfide, and carbon dioxide. Liao et al. [77]
and Wen et al. [78] developed improved hydrolysis methods for enhanced biomethane
production from animal manures using dilute acid treatments and other techniques, respec-
tively, while Yang et al. [79] utilized different chemical pretreatments on dairy manure to
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investigate their effects on biogas production potentials. These studies have demonstrated
that animal manure is a promising substrate for biogas production and has potential appli-
cations in various ways. The produced biogas is mainly used as a natural fuel for electricity
or thermal energy production, injected into the natural gas grid, etc., while the digestate is
used as fertilizer [9,80–83].

The aim of the current study was the optimization of SMS hydrolysis and anaerobic
digestion of the hydrolysates for biomethane production. The SMS was pretreated with
various types of techniques, and the hydrolysate of the most efficient combination of
treatments was used as a feedstock for anaerobic digestion. The SMS hydrolysate was co-
digested anaerobically with cattle manure to enhance biomethanation in lab-scale digesters,
and the results were discussed.

2. Materials and Methods
2.1. Determination of SMS Composition

The SMS was kindly provided by a Greek mushroom industry (Green Zin S.A., Sourpi,
Magnesia, Greece) after three flushes of Pleurotus ostreatus mushroom cultivated through
commercial cultivation method [84]. As for the pretreatment, the SMS was dried to constant
weight as described below, then ground using a high-speed grinder; the small particles
(<1 mm) were sieved and collected for further treatment.

The total solids content (TS) was determined by the oven-drying method. In brief, the
SMS was dried at 105 ◦C for 24 h to constant weight, and the TS content (in g/100 g wet
SMS—WS) was calculated based on the Equation (A1) (See Appendix A). Conversely, mois-
ture content (in g/100 g WS) corresponds to the amount of water and residual components
volatilized at the mentioned temperature [85]. Ash (g/100 g Dry SMS; DS), the so-called
inorganic residue remaining after incineration at 575 ◦C for 6 h was calculated according
to Equation (A2) (See Appendix A) [86]. Therefore, the volatile solids (VS, g/100 g DS)
were determined according to Equation (A3) (Appendix A). Total Kjeldahl Nitrogen (TKN,
g/100 g DS) was determined through the Kjeldahl method [87] in a KjeltekTM 8100 Distilla-
tion Unit (Foss A/S, Hillerød, Denmark) and protein content was then calculated according
to Equation (A4) (Appendix A); the multiplication factor results from the assumption that
proteins contain approximately 16% nitrogen in their molecule.

To determine the concentration of free sugars, the dried and ground SMS was sus-
pended in water for 3 h. Then the concentration of total reducing sugars was determined
and expressed as glucose equivalents (g/100 g DS) through the 3,5-dinitrosalicylic acid
(DNS) assay as described by Sumner [88]. The lipophilic substances extraction procedure
was performed as described by Sluiter et al. [89]. Briefly, a weighed sample of the dried and
ground SMS was placed in a cotton thimble, 190 mL of hexane (as the appropriate solvent
for the current process) were added to a pre-weighed spherical flask, and both were placed
in the Soxhlet apparatus to start the extraction process. The temperature of the heating
mantle was adjusted to achieve 4–5 siphons per hour and the extraction was carried out
for 24 h. Subsequently, the extract was evaporated (Flash Evaporator/Rotavapor R-114,
BÜCHI Labortechnik AG, St. Gallen, Switzerland) and the residue was weighed. The
content of lipophilic substances (g/100 g DS) was calculated according to Equation (A5)
(Appendix A).

The determinations of structural carbohydrates, as well as total lignin content, were
performed according to Sluiter et al. [90]. The method requires an extract-free sample;
therefore, two Soxhlet extractions were performed using water and ethanol as solvents
prior to the determination. The dried samples were then subjected to a ‘two-stage’ acid
hydrolysis. Specifically, the samples were placed in anaerobic flasks, into which 3 mL of
H2S04 72% (v/v) were added and stirred on a magnetic stirrer at 30 ◦C for 1 h. Then, the
H2SO4 solution was diluted to a final concentration of 4% (v/v) by adding high-purity
H2O to each sample. In the second stage of hydrolysis, the sealed anaerobic vials were
placed in the autoclave for 60 min at 121 ◦C. Along with the samples, the entire process was
also performed for a solution with known sugars concentration (Calibration Verification
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Standard-CVS) to calculate the percentage of sugar loss during acid hydrolysis (Sugar
Recovery Standards-SRS). After completion of the process, the samples were vacuum-
filtered using pre-weighed glass fiber filters. The filters were placed in pre-weighed ceramic
capsules along with the total amount of solid samples and dried to constant weight (80 ◦C,
24 h). Finally, the samples were placed in the oven at 560 ◦C for 4 h. The acid-insoluble
lignin content (AIL, g/100 g DS) was calculated as the difference of the two weights
resulting from drying (80 ◦C) and incineration (560 ◦C). The liquid fraction isolated by
vacuum filtration was volumetrically measured and the acid soluble lignin’s content (ASL,
g/100 g DS) was determined photometrically by UV-Vis spectroscopy (Jasco V-530) at
320 nm. Total lignin (g/100 g DS) was calculated as the sum of the two subfractions.

High-performance liquid chromatography (HPLC) was used to determine quantita-
tively and qualitatively the structural carbohydrates of the sample, using a Shodex SP0810
column at 60 ◦C and a flow rate of 0.6 mL/min, with ultrapure water as mobile phase.
The pH of each sample was adjusted to a range of 5.0–5.5 by adding CaCO3. The samples
were centrifuged (9000 rpm, 10 min, 4 ◦C), the supernatant was filtered (0.02 µm) and the
sugars were analyzed by HPLC. The calculation for the correct values of sugar concentra-
tions requires the determination of the sugar recovery rate (SRR) as the quotient of the
standard sugar solution concentration (SSSC) before and after autoclave treatment deter-
mined by HPLC (see Equation (A6); Appendix A). SRR was used to correct the observed
concentration of each sugar in the sample as Sugars Correct Conc. (g/L) (Equation (A7);
Appendix A).

To calculate the initial concentration (before hydrolysis) of the carbohydrate polymers
(cellulose and hemicellulose), a correction factor was required to include the loss of a water
molecule due to the formation of the glycosidic bond. According to the molecular weights
(MW), this coefficient was equal to 0.88 (Equation (A8); Appendix A) for pentoses (xylose,
arabinose) and 0.90 (Equation (A9); Appendix A) for hexoses (glucose, galactose, mannose).
Based on these correction coefficients, the concentration of each polymer (expressed in
g/100 g DS) was determined as the result of the corresponding monomer concentration
multiplied by the correction factor. The content of cellulose (in g/100 g DS), expressed
as glucan equivalents, was determined based on the glucose content, while the sum of
the other saccharides (in g/100 g DS) expressed in this case as xylan equivalents, since
xylose was the only pentose detected that corresponded to the content of hemicellulose.
The composition was determined in two independent SMS samples and each sample was
analyzed in duplicate.

2.2. Hydrolytic Processes of SMS

The suspensions for the hydrolyses contained 7.5% SMS (w/v) in dH2O (75 g/L),
specifically 15 g SMS in 200 mL total volume (in borosilicate glass bottles), hereafter
referred to as SMS suspension (SMS-S). The various hydrolysis procedures included an
initial pretreatment with or without stirring and/or heating (85 ◦C or 100 ◦C), and the
most effective procedure was then additionally combined with chemical treatment (H2SO4
2% v/v for acidic or NaOH 2% w/v for alkaline hydrolysis). The cases are summarized
and described in Table 1. The processes lasted for 3 h and samples were taken every
hour to monitor the hydrolysis process by determining the concentration of free reducing
sugars. The concentration of reducing sugars (g/L) in the hydrolysate was quantitatively
determined by the DNS assay. The hydrolysis yield coefficient (HY, %) was calculated as the
result of the reducing sugars released (total reducing sugars—free sugars, in g/100 g DS)
divided by the sum of the contents of cellulose and hemicellulose (i.e., holocellulose) (as far
as only these two polymers consist of sugars) according to the Equation (A10) (Appendix A).
The assays were carried out in triplicate.
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Table 1. Description of the applied pretreatment methods.

Treatment Description

SMS-S + Heating (85 ◦C) 15 g SMS and dH2O in 200 mL total volume,
plus heating at 85 ◦C in waterbath

SMS-S + Stirring + H2SO4 (2%, v/v) 15 g SMS, 4 mL H2SO4 and dH2O in 200 mL
total volume, plus stirring

SMS-S + Heating (85 ◦C) + H2SO4 (2%, v/v)
15 g SMS, 4 mL H2SO4 and dH2O in 200 mL

total volume, plus heating at 85 ◦C in
waterbath

SMS-S + Heating (100 ◦C) + H2SO4 (2%, v/v)
15 g SMS, 4 mL H2SO4 and dH2O in 200 mL

total volume, plus heating at 100 ◦C in
waterbath

SMS-S + Stirring + NaOH (2%, w/v) 15 g SMS, 4 g NaOH and dH2O in 200 mL total
volume, plus stirring

SMS-S + Heating (85 ◦C) + NaOH (2%, w/v) 15 g SMS, 4 g NaOH and dH2O in 200 mL total
volume, plus heating at 85 ◦C in waterbath

2.3. Optimization of Chemical Hydrolysis through Hydrothermal Process

Hydrothermal treatment (HT) refers to a thermochemical process which results in
the decomposition of carbonaceous materials such as lignocellulosic biomass using water
under high pressure and temperature conditions [91,92]. The process in this study involves
heat treatment of the sample for 1 h at high temperature (140 ◦C or 150 ◦C) and high
pressure (316.3 or 475.8 kPa, respectively) in autoclave. The current hydrolytic process
involved the application of intense thermal treatment, alone or in combination with chemi-
cal treatment, to achieve greater polymer disintegration and subsequent increase in free
sugar concentration. The effect of various concentrations of chemical reagents was also
evaluated. The cases of hydrothermal treatment are summarized and described in Table 2.
The concentration of released reducing sugars was assayed through the DNS analysis
and the coefficient of hydrolysis yield (%) was calculated. The assays were carried out
in triplicate.

Table 2. Description of the applied pretreatment methods during optimization of the hydrolytic pro-
cesses.

Treatment Description

SMS-S + HT (140 or 150 ◦C)
15 g SMS and dH2O in 200 mL total volume,

plus hydrothermal treatment at 140 or 150 ◦C
for 1 h in autoclave

SMS-S + HT (140 or 150 ◦C) + H2SO4 (0.1, 0.2,
0.3, 0.4, 0.5, 1 or 2%, v/v)

15 g SMS, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0 or 4.0 mL
H2SO4 and dH2O in 200 mL total volume, plus
hydrothermal treatment at 140 or 150 ◦C for 1 h

in autoclave

SMS-S + HT (140 or 150 ◦C) + NaOH (1.0 or
2.0%, w/v)

15 g SMS, 2.0 or 4.0 g NaOH and dH2O in
200 mL total volume, plus hydrothermal

treatment at 140 or 150 ◦C for 1 h in autoclave

2.4. Anaerobic Digestion of SMS Hydrolysate

The acidic hydrolysate resulting from the most efficient combination of hydrolytic
treatment (0.4% H2SO4 + heating at 150 ◦C) and the alkaline one (2% NaOH + heating at
150 ◦C) were studied as potential substrates for AD in bench-scale improvised digesters
(borosilicate glass bottles). The working volume was set at 90% of the total volume since
the inoculum occupied 50% v/v (i.e., 450 mL) and the rest was filled with the hydrolysate.
The VS content of the mixture was set at 2.5% and the pH at 7.6 value. Furthermore, the
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VS originating from the substrate was set at twice the inoculum’s VS (VSsubstrate:VSinoculum
2:1). The batch anaerobic digesters remained in chambers at a constant temperature of
37 ± 1 ◦C (mesophilic conditions) for 15 days.

In the case of acid hydrolysis, the suspension containing both the solid SMS residues
of hydrolysis and the reducing sugars (concentration ≈ 26.9 g/L, derived from hydrolysis
of 18.75 g dry, ground SMS in 250 mL dH2O, TS = 7.5%, VS = 6%) was appropriately diluted
(from 6% initial VS concentration to 3.33% final concentration, by addition of 200 mL dH2O)
and was used as digestion feedstock after neutralizing the pH with sodium hydroxide. As
for the alkaline hydrolysate, the pulp-like suspension (containing 18.75 g dry, milled SMS
in 250 mL dH2O, TS = 7.5%, VS = 6%) was also diluted in a similar way as the previous
one and was used as digestion feedstock after neutralizing the pH value with hydrochloric
acid. Slurry, kindly provided by a local cow dung biogas plant, was used as inoculum. The
properties of the inoculum were pH = 8.0, TS = 3.15% w/v, and VS = 2.1% w/v; therefore, it
was diluted (from an initial concentration of 2.1% VS to a final concentration of 1.67%), so
that the content of VS met the experimental specifications, as previously defined.

The biogas digester was equipped with three outlets; one for digestate sampling, one
for gas sampling and one for collection and quantification of total biogas, as depicted
in Figure 1. Each bottle was flushed with nitrogen gas (2–3 min) to achieve anaerobic
conditions. The digestate and biogas samplings were carried out daily. The digestate was
analyzed for volatile solids content and pH (pH/mV meter HI 8014-Hanna Instruments).
The biogas samples containing CH4, CO2 and other trace gases, such as H2, H2S, N2,
CO [trace content 1–5% [93]; approximately 3% is assumed in the equation below] were
analyzed using the slightly modified potassium hydroxide assay [94] to indirectly calculate
the methane content (MC, %). Briefly, a specific volume of biogas (Volume A) was injected
into an airtight borosilicate glass bottle containing saturated KOH solution through a
syringe inserted into the inlet tube of the bottle’s cap. The CO2 contained in the biogas
reacted with the potassium hydroxide to form soluble potassium carbonate (K2CO3), while
the remaining gas consisting mainly of methane was directed into the outlet tube, in which
a glass syringe was fitted. The displacement of the piston, which is due to the pressure
of the exiting gas, indicates the remaining biogas volume (Volume B). Therefore, the CO2
and CH4 contents are calculated according to Equations (A11) and (A12) (Appendix A),
respectively [94].
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Figure 1. Representation of the bench-scale improvised digesters, which were used for anaerobic
digestion of SMS hydrolysate.

The released gas was collected in a gasholder (borosilicate glass gasometer) containing
acidified saturated saline solution as the most suitable barrier solution to limit CO2 dissolu-
tion and total biogas loss according to Walker et al. [95]. Biogas quantification (in mL) was
based on the liquid displacement method [96]; in specific, the pressure in the gasholder
headspace was gradually increasing, due to the progressive digestion and biogas accumu-
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lation. As a result, the gas displaced the acidified liquid from the sealed bottle into an open
communicating volumetric measuring cylinder through a tube immersed in the liquid. The
volume of the liquid displaced was measured once per day and was considered equal to the
total volume of released biogas. According to that, the cumulative biogas production (CBP,
expressed in mL) and the biogas productivity (BP, expressed in mL/d) were determined.
Cumulative biogas yield (CBY, in L/kg VS) was determined as the cumulative amount of
biogas produced per kilogram of volatile solids consumed. The digestions were carried out
in duplicate, and each sample was analyzed in duplicate.

3. Results—Discussion
3.1. SMS Composition

Total solids of the SMS as supplied by the mushroom production plant were 54.7 g per
100 g wet SMS. Volatile solids were 80.15 g per 100 g of dry SMS, and the contents of all
constituents are performed in Table 3. The contents of cellulose and hemi-cellulose, which
are of particular interest, because hydrolysis of these polymers releases monosaccharides
that are assimilated by microorganisms during AD, were 32.18 and 10.45 g/100 g DS,
respectively. Comparing the data of SMS and holocellulose contents in the literature with
those obtained in this study, we find that the value of cellulose is almost the same, while
the hemicellulose content of SMS is slightly lower [24,28,39,66,97].

Table 3. Composition of dry SMS (spent mushroom substrate) of P. ostreatus cultivation. The presented
results are the mean of two independent SMS samples.

Component Content (g/100 g DS)

Free sugars 4.09 ± 0.21

Total protein 5.21 ± 0.34

Lipophilic substances 14.46 ± 0.62

Total lignin 13.77 ± 1.54

Cellulose 32.18 ± 2.81

Hemi-cellulose 10.45 ± 0.95

Ash 19.85 ± 0.86

3.2. SMS Hydrolysates

For the hydrolysis of the structural biopolymer carbohydrates (cellulose, hemicellu-
lose) and the release of the monosaccharides, the application of acid or alkaline chemical
treatment combined with thermal process was investigated. The results are summarized
in Table 4 and the progression of the increase in sugar due to the hydrolytic processes is
performed in Figure 2. As far as the samples subjected to alkaline treatment (combined
or not with thermal treatment) are concerned, the rheological properties of the suspen-
sion changed, as it became more viscous, like a pulp. This result is consistent with the
literature, as mild alkaline treatment selectively removes lignin by degrading of ester
and glycosidic side chains, without cellulose degradation, whilst increasing porosity and
surface area, thereby improving accessibility to microorganisms [45,98]. Alkali-mediated
removal of acetyl and uronic acids leads to total hemicellulose depletion, as described
by Loow et al. [99] and confirmed by the results of Shetty et al. [42]. On the other hand,
alkaline hydrolysis with sodium hydroxide did not increase the concentration of soluble
reducing sugars, as also observed by Wu et al. [39] with either sodium or calcium hydroxide
solutions. The increase in released sugars, when treated with alkaline chemical agents,
could only be achieved by subsequent enzymatic hydrolysis (enzymes such as cellulases
and xylanases) [40].
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Table 4. Quantitative data originated from various combinations of thermal and/or chemical hydrol-
ysis of SMS. The presented results are the mean of two independent analyses.

Treatment Total Reducing Sugars
(g/100 g DS)

Released Reducing
Sugars (g/100 g DS) Hydrolysis Yield (%)

SMS-S + Heating (85 ◦C) 4.24 ± 0.12 0.15 ± 0.02 0.40 ± 0.02

SMS-S + Stirring + H2SO4 (2%, v/v) 2.49 ± 0.09 −1.60 ± 0.14 −3.80 ± 0.28

SMS-S + Heating (85 ◦C) + H2SO4 (2%, v/v) 10.53 ± 0.35 6.44 ± 0.55 15.10 ± 1.31

SMS-S + Heating (100 ◦C) + H2SO4 (2%, v/v) 22.67 ± 1.02 18.58 ± 1.10 43.60 ± 2.15

SMS-S + Stirring + NaOH (2%, w/v) 3.66 ± 0.09 −0.43 ± 0.02 −1.05 ± 0.07

SMS-S + Heating (85 ◦C) + NaOH (2%, w/v) 2.49 ± 0.31 −1.60 ± 0.08 −3.81 ± 0.27
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ing sugars in 3-h long processes. The presented results are the mean of two independent analyses.

According to the results, the combination of thermal (100 ◦C) and acidic (H2SO4, 2%)
chemical treatment resulted in the most efficient hydrolysis of SMS (HY = 43.6 %) and the
highest concentration of total reducing sugars (22.67 g/100 g DS) in a 3-h long process. On
the contrary, no additional free sugars were released, when SMS were treated by heating
only, while a decrease was observed in acid hydrolysis without thermal process, which
could be attributed to a possible conversion of free sugars to furfurals and hydroxy-methyl
furfurals (HMF), the derivatives of pentose and hexose dehydration, respectively [92,100].
According to Wu et al. [39] the combination of acidic treatment and thermal process was
the most efficient hydrolytic process, especially when sulfuric acid (2%) was used and
temperature was 121 ◦C; 31.5 g of reducing sugars per 100 g raw SMS were determined,
indicating that a higher temperature could increase the hydrolysis efficiency, which is also
confirmed by the results of Qiao et al. [28].

The increase in the yield of SMS chemical hydrolysis derived from increasing the
temperature (from 85 to 100 ◦C) led to further investigation of hydrolysis optimization
by combining chemical treatment and hydrothermal process at even higher temperatures,
especially 140 or 150 ◦C. The concentration of total reducing sugars resulting from acid
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chemical hydrothermal treatment for both temperatures tested are presented in Figure 3a.
The hydrothermal treatment at higher temperature and pressure increased the concentration
of released reducing sugars, compared to the values derived from acid chemical thermal
treatment at 100 ◦C. The highest concentration = 35.8 ± 1.9 g/100 g DS was obtained
by the combination of 0.4% H2SO4 and heating at 150 ◦C, while the hydrolysis yield
of cellulose and hemicellulose was maximum = 74.5 ± 2.1%, according to Figure 3b.
The intensive hydrothermal treatment (at 140 or 150 ◦C) combined with the activity of
acidic chemical reagent at concentrations higher than 0.5% resulted in a reduction of
the determined released reducing sugars, due to the formation of undesirable furfurals
and related compounds, that additionally have an inhibitory effect on the growth of
microorganisms during cultivation [92,100–102]. The hydrothermal process at 140 or 150 ◦C
combined with alkaline treatment (NaOH 1 or 2%, w/v) did not release any reducing sugars,
but only affected the rheological properties of the sample, as described above.
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Figure 3. (a) Graphical presentation of Total Reducing Sugars (g/L) resulting from the hydrolytic
combination of acidic chemical treatment (using various concentrations of acidic), and hydrothermal
treatment at 140 or 150 ◦C. (b) Graphical presentation of hydrolysis yield (%) of acidic chemical
treatment (using various concentrations of acidic), combined with hydrothermal treatment at 140 or
150 ◦C. The presented results are the mean of three independent analyses.

3.3. Biogas Production

The hydrolysate derived from the acid chemical treatment with 0.4% H2SO4 com-
bined with hydrothermal process at 150 ◦C, a combination that resulted in the highest
hydrolysis yield, was used as AD feedstock. The feedstock containing both the sugars
and the solid residues of SMS hydrolysis was mixed with the inoculum (1:1 ratio) after
both suspensions were appropriately diluted, as described previously (see: Materials and
Methods—Anaerobic digestion of SMS hydrolysate). The graphical demonstration for the
15-day AD of the acidic hydrolysate is presented in Figure 4a,b. Biogas release started
after 2 days of microorganisms’ adaptation to the new anaerobic culture conditions. The
pH value remained in the range of 6.5–8.0, which is an ideal range for AD. The daily
productivity stabilized (33.0 ± 1.7 mL/d) after 10 days. The volatile solids content in the
mixture decreased by 1.40 ± 0.08 units to a final value of 1.1%. The conversion of volatile
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solids to biogas (CBY) peaked at 52.0 ± 2.1 L/kg VS at the end of AD. The total biogas
production of this 15-day AD was 653 ± 11 mL, containing 65.0 ± 1.4% biomethane.
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The alkaline hydrolysate derived from 2% NaOH treatment and hydrothermal process
at 150 ◦C was diluted as well and mixed with the inoculum (1:1 ratio). The graphical
demonstration for the 15-day AD of the alkaline hydrolysate is presented in Figure 5a,b.
In this case, biogas production started 5 days after inoculation. The pH value remained
also in the range of 6.5–8.0 during AD. The daily productivity stabilized (29.0 ± 1.8 mL/d)
after 12 days and the total biogas production of the 15-day AD was 338 ± 8.6 mL. The
volatile solids content in the mixture decreased by 0.9 units to a final value of 1.63 ± 0.11%
resulting in a biogas yield of 37.0 ± 2.9 L/kg VS and methane content of 62.1 ± 2.6% at the
end of AD.

The utilization of the ideal substrate or blend of substrates represents a very important
factor affecting the AD process. The valorization of pretreated SMS blended with manure
showed interesting results demonstrating the potential of the implicated agro-industrial
residues upon the efficiency of this process and indicating the potential of the mixing
of feedstocks, that can positively affect the efficacy of the digestion process [67,103,104].
In most cases, not every single type of feedstock meets all the specifications required
for AD processes. Anaerobic co-digestion of spent mushroom substrate with various
livestock manure increases biogas production in contrast to AD of SMS or manure as
mono-substrate [71,72,74–76], while co-digestion of cattle manure and SMS supplemented
with other feedstocks such as corn stover or sugar mill effluent has also been studied [24,73].
In our study, co-digestion of chemically and thermally pretreated SMS with dairy manure
(DM) was investigated (VS ratio SMS:DM = 2:1) and the results were slightly higher than
those presented by Gao et al. [76] (CBY ≈ 29 L/kg VS, MC ≈ 35%), when they used
the same ratio of SMS to DM, which is probably due to the fact that there was no prior
hydrolysis of SMS in their experiments. In the current study, monosaccharides (glucose
and xylose) derived from acid chemical hydrolysis of holocellulose were assimilated by
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the microorganisms during AD and biogas production was not delayed, as delayed when
alkaline hydrolysate was digested. However, substances produced during acid hydrolysis
such as furfurals and HMFs act as intermediates in the production of AD inhibitors such as
levulinate, formate, acetate, and various uronic acids, which prevent biogas production,
when accumulate at high concentrations [46]. Alkaline hydrolysis may not have led
to an increase in the concentration of free sugars, but enhanced the disruption of the
lignocellulosic matrix, by lignin dissolution [45]. In the AD of the alkaline hydrolysate, the
biogas release was delayed by several days mainly due to the lack of free sugars in the
substrate, in contrast to the acidic hydrolysate, so that the microorganisms needed more
time to adapt and degrade the carbon sources. Comparing the results of the current study
with the international literature, it is found that the biogas yield of alkaline hydrolysate AD
is lower, in contrast to the results of Ikeda et al. [44], in which AD of alkaline pretreated
SMS (2% NaOH or KOH and heating at 80 ◦C for 30 min) resulted in higher biomethane
yield. An even higher concentration of sodium hydroxide (10% NaOH at 40 ◦C for 24 h)
was able to increase biogas yield, according to Sambusiti et al. [105].
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Figure 5. (a) Graphical representation of biogas productivity (mL/d) and biogas yield (L/kg VS)
resulted from the anaerobic digestion of SMS alkaline hydrolysate; (b) Graphical representation of cu-
mulative biogas production (mL) and CH4 content of the biogas resulted from the anaerobic digestion
of SMS alkaline hydrolysate. The presented results are the mean of two independent digestions.

Anaerobic co-digestion of cattle manure and SMS, in contrast to co-digestion of cattle
manure and untreated wheat straw, increased biogas production, showing the importance
of prior cultivation of fungi in wheat straw [71]. In their study, Gao et al. [76] observed that
VS ratios SMS:DM = 1:1 or = 1:2 resulted in significantly higher biomethane production,
while the literature confirms that increasing the ratio of feedstock to manure leads to
failure of the digestion process in AD of lignocellulosic substances [72,74]. Among the
different livestock manures (DM, Chicken Manure—CM, Pig Manure—PM) tested, the VS
of SMS:CM = 1:2 ratio gave the most remarkable results (CBY ≈ 185 L/kg VS, MC ≈ 65%),
in a 30-day AD [76]. Increasing the total solids content of AD and the VS of SMS to manure
ratio equal to 1:9 led to an increase in CBY [58,74]; therefore, a corresponding ratio could
increase biogas production in our case as well. Nevertheless, an increasing TS content led
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to a decrease in biogas yield [58,74]. AD under thermophilic conditions (≈55 ◦C) slightly
increased the methane production during anaerobic co-digestion of SMS and deer manure,
showing that AD at higher temperatures enhance biogas productivity [66,75].

4. Conclusions

Cultivation of edible mushrooms is an ever-emerging agro-food industry worldwide,
with valuable widely accepted products, but also a significant volume of lignocellulosic
bioresidues. These biowastes could be biotechnologically valorized in various ways. In
the current study, the pretreatment of SMS and its successive anaerobic digestion were
investigated. The co-digestion of the pretreated SMS with cattle manure enhanced the
methane production for both acidic and alkaline hydrolysates. The chemical hydrolysis of
SMS helps the assimilation of its components (mainly referred to holocellulose) during AD.
The release of monosaccharides, due to acidic hydrolysis, combined with hydrothermal
treatment, favors the rapid growth of microorganisms because of the immediate availability
of a carbon source, in contrast to the low concentration of free sugars in alkaline hydrolysate
and the subsequent delay in biogas production. Nevertheless, the disruption of the lig-
nocellulosic matrix through alkaline treatment could yield a higher biogas production in
a longer AD. Based on the results, SMS can be a substrate for anaerobic digestion, when
pretreated with both chemical and alkaline hydrothermal hydrolysis.
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Appendix A

Equations for the determination of SMS and biogas composition.

Equation Number Description Equation

A1 TS (g/100 g WS) (post−dryingsample(g))
(pre−dryingsample(g)) × 100

A2 Ash (g/100 g DS) (post−incinerationsample(g))
(post−dryingsample(g)) ×100

A3 VS (g/100 g DS) [post−dryingsample]−[post−incinerationsample](g)
post−dryingsample(g) × 100

A4 Total Protein (g/100 g DS) TKN (g/100 g) × 6.25
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A5
Lipophilic substances

(g/100 g DS)
Residue′ smass(g)
Sample’smass(g) × 100

A6 Sugar Recovery Rate (SRR) Post−treatmentSSSC( g
L )

Pre−treatmentSSSC( g
L )

A7 Sugars Correct Concentration (g/L) SugarsObservedConc.( g
L )

SRR

A8 Correction factor for pentoses MWofpentose−MWofH2O
MWofpentose = 132

150 = 0.88

A9 Correction factor for hexoses MWofhexose−MWofH2O
MWofhexose = 162

180 = 0.90

A10 Hydrolysis Yield (HY, %) ReleasedReducingSugars
(

g
100gDS

)
Holocellulose

(
g

100gDS

) × 100

A11 CO2 (%) VolumeA(mL)−VolumeB(mL)
VolumeA(mL) × 100

A12 MC (%) 100%—(%CO2 + 3% Other gases)
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