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Abstract: Flaviviruses are a diverse group of enveloped RNA viruses that cause significant clinical
manifestations in the pregnancy and postpartum periods. This review highlights the epidemiology,
pathophysiology, clinical features, diagnosis, and prevention of the key arthropod-borne flaviviruses
of concern in pregnancy and the neonatal period—Zika, Dengue, Japanese encephalitis, West Nile, and
Yellow fever viruses. Increased disease severity during pregnancy, risk of congenital malformations,
and manifestations of postnatal infection vary widely amongst this virus family and may be quite
marked. Laboratory confirmation of infection is complex, especially due to the reliance on serology
for which flavivirus cross-reactivity challenges diagnostic specificity. As such, a thorough clinical
history including relevant geographic exposures and prior vaccinations is paramount for accurate
diagnosis. Novel vaccines are eagerly anticipated to ameliorate the impact of these flaviviruses,
particularly neuroinvasive disease manifestations and congenital infection, with consideration of
vaccine safety in pregnant women and children pivotal. Moving forward, the geographical spread of
flaviviruses, as for other zoonoses, will be heavily influenced by climate change due to the potential
expansion of vector and reservoir host habitats. Ongoing ‘One Health’ engagement across the human-
animal-environment interface is critical to detect and responding to emergent flavivirus epidemics.

Keywords: flavivirus; pregnancy; neonate; Zika virus; Dengue virus; West Nile virus; Japanese
encephalitis virus; Yellow fever virus

1. Introduction

Flaviviruses are important human pathogens that comprise a broad group of en-
veloped positive-stranded RNA viruses with over 75 defined species [1]. Flaviviruses
naturally circulate in enzootic interactions between their reservoir hosts and arthropod
vectors (primarily mosquitoes), and are responsible for sporadic epidemics as well as
established endemicity in certain geographic regions (Figure 1) [2]. The main flaviviruses
of concern during pregnancy are Dengue virus (DENV), Zika virus (ZIKV), Japanese en-
cephalitis virus (JEV), West Nile virus (WNV), and Yellow fever virus (YFV). Many of these
viruses are neurotropic and/or have marked impacts on the developing fetus. ZIKV in
particular is associated with a profound congenital infection syndrome which manifests
with neonatal microcephaly and severe long-term neurodevelopmental consequences.
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Figure 1. Global distribution of flaviviruses of importance in pregnancy including (A) Zika virus; 
(B) Yellow fever virus and dengue virus; and (C) Japanese encephalitis virus and West Nile virus 
[1,3,4]. Of note, the potential endemicity of JEV in Australia is currently under investigation in light 
of a recent outbreak in 2022 [5]. 

Between 50–80% of human flavivirus infections are asymptomatic [6,7]. Only a mi-
nority of symptomatic cases present with neuroinvasive disease, although mortality and 
long-term morbidity are significant following clinically apparent neuroinvasive illness [8]. 
There are no established risk factors or biomarkers that can reliably predict who will de-
velop neuroinvasive disease, however, host factors (such as age, prior infection, and im-
munodeficiency) are almost certainly as important as viral and environmental features 
[9]. 

Pregnancy represents a known risk for disease with certain flaviviruses [10]. In the 
antenatal and postnatal periods, flavivirus infection can have substantive impacts on the 
pregnant woman (due to increased risk of severe disease), the developing fetus (due to 
tissue-specific teratogenic effects at different developmental stages, placental insuffi-
ciency or hemorrhage, or indirectly due to severe maternal disease) or the neonate in the 
context of postnatal acquisition of infection (Figure 2) [10]. The spectrum of congenital 
disease varies depending on the particular flavivirus, due largely to their differential abil-
ity to cross the placenta and their particular tissue tropism. 

As a viral family, the flaviviruses confer clinical syndromes with a high degree of 
overlap with one another and also with other viral, bacterial, and parasitic infections 
which challenges diagnostic efforts. In an acute encephalitic or non-encephalitic illness, 
alternative pathogens to the flaviviruses such as alphaviruses (for example, 

Figure 1. Global distribution of flaviviruses of importance in pregnancy including (A) Zika virus;
(B) Yellow fever virus and dengue virus; and (C) Japanese encephalitis virus and West Nile
virus [1,3,4]. Of note, the potential endemicity of JEV in Australia is currently under investiga-
tion in light of a recent outbreak in 2022 [5].

Between 50–80% of human flavivirus infections are asymptomatic [6,7]. Only a mi-
nority of symptomatic cases present with neuroinvasive disease, although mortality and
long-term morbidity are significant following clinically apparent neuroinvasive illness [8].
There are no established risk factors or biomarkers that can reliably predict who will
develop neuroinvasive disease, however, host factors (such as age, prior infection, and im-
munodeficiency) are almost certainly as important as viral and environmental features [9].

Pregnancy represents a known risk for disease with certain flaviviruses [10]. In the
antenatal and postnatal periods, flavivirus infection can have substantive impacts on the
pregnant woman (due to increased risk of severe disease), the developing fetus (due to
tissue-specific teratogenic effects at different developmental stages, placental insufficiency
or hemorrhage, or indirectly due to severe maternal disease) or the neonate in the context
of postnatal acquisition of infection (Figure 2) [10]. The spectrum of congenital disease
varies depending on the particular flavivirus, due largely to their differential ability to cross
the placenta and their particular tissue tropism.

As a viral family, the flaviviruses confer clinical syndromes with a high degree of
overlap with one another and also with other viral, bacterial, and parasitic infections which
challenges diagnostic efforts. In an acute encephalitic or non-encephalitic illness, alternative
pathogens to the flaviviruses such as alphaviruses (for example, Chikungunya), parvovirus
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B19, rubella, other respiratory viruses (such as enterovirus or adenovirus), measles, lep-
tospirosis, rickettsial infection, Group A Streptococcus, and malaria must be considered.
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The diagnosis of flavivirus infections is nuanced. Critical to the accurate diagnosis is 
a thorough clinical history including symptoms, pregnancy status, immune function, 
travel history (including any recent sexual partners), vaccination history as well as any 
exposures to potential arthropod vectors. These details along with clinical examination 
findings must be integrated with knowledge of the virus’ geographic distribution (includ-
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arthropod activity and characterization to ascertain likely differential diagnoses to tailor 
investigations and empiric treatment. Laboratory diagnoses rely on both serology and 
molecular detection. Serological testing is prone to antibody cross-reactions amongst 
closely related viral epitopes, so specificity is improved by testing patients’ sera against a 
panel of relevant flaviviruses, with quantitation of virus-specific IgG and IgM titers. Mo-
lecular diagnosis using nucleic acid amplification testing (NAAT), although specific, is 
limited by a short window of viremia and hence a requirement for early targeted sam-
pling. As a result, serological assays often have higher utility than molecular testing in 
ascertaining the extent of an outbreak. Viral serotyping, genotyping, and isolation are use-
ful for further characterization.  

This review focuses on the globally important arthropod-associated flaviviruses 
linked to significant impacts in the pregnancy and post-partum periods, including ZIKV, 
DENV, JEV, WNV and YFV. We discuss key features of epidemiology, pathophysiology, 
clinical features, diagnosis, and prevention of flaviviruses in pregnancy, and the common-
alities between the flaviviruses, as well as highlighting important areas for future re-
search. The trivalent lens on maternal, fetal, and neonatal disease (Figure 2) is critical since 
the manifestations of these viruses are at times quite disparate across these patient sub-
groups due to variable pathogenesis, trans-placental transmission rates and tissue tro-
pism. 

2. Overarching Pathophysiology 
Across the severity spectrum of flavivirus infections, significant sequelae are typi-
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Figure 2. Pathophysiological impacts of flavivirus infection on the pregnant mother, fetus, and neonate.

The diagnosis of flavivirus infections is nuanced. Critical to the accurate diagnosis
is a thorough clinical history including symptoms, pregnancy status, immune function,
travel history (including any recent sexual partners), vaccination history as well as any
exposures to potential arthropod vectors. These details along with clinical examination
findings must be integrated with knowledge of the virus’ geographic distribution (including
endemic regions, contemporaneous epidemics, and emergence in new locations), and
arthropod activity and characterization to ascertain likely differential diagnoses to tailor
investigations and empiric treatment. Laboratory diagnoses rely on both serology and
molecular detection. Serological testing is prone to antibody cross-reactions amongst closely
related viral epitopes, so specificity is improved by testing patients’ sera against a panel
of relevant flaviviruses, with quantitation of virus-specific IgG and IgM titers. Molecular
diagnosis using nucleic acid amplification testing (NAAT), although specific, is limited
by a short window of viremia and hence a requirement for early targeted sampling. As a
result, serological assays often have higher utility than molecular testing in ascertaining
the extent of an outbreak. Viral serotyping, genotyping, and isolation are useful for
further characterization.

This review focuses on the globally important arthropod-associated flaviviruses linked
to significant impacts in the pregnancy and post-partum periods, including ZIKV, DENV,
JEV, WNV and YFV. We discuss key features of epidemiology, pathophysiology, clinical
features, diagnosis, and prevention of flaviviruses in pregnancy, and the commonalities
between the flaviviruses, as well as highlighting important areas for future research. The
trivalent lens on maternal, fetal, and neonatal disease (Figure 2) is critical since the manifes-
tations of these viruses are at times quite disparate across these patient subgroups due to
variable pathogenesis, trans-placental transmission rates and tissue tropism.

2. Overarching Pathophysiology

Across the severity spectrum of flavivirus infections, significant sequelae are typically
associated with their neuroinvasive manifestations. The exact pathophysiology under-
pinning flavivirus neuroinvasion remains poorly characterized [11] and there is some
variability in tropism. JEV and WNV have a predilection for the central nervous system
(CNS), whilst ZIKV shows relative sparing of the mature CNS in adults and instead targets
the peripheral nervous system of adults causing Guillain-Barré syndrome (GBS).
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Apoptosis of neuronal cells and glial cell damage with scarring are seen in neuroinva-
sive diseases [11]. Reduced integrity of the blood-brain barrier through cytokine-mediated
inflammation or retrograde axonal transport have been proposed as mechanisms, but firm
evidence is still awaited [11]. DENV, WNV, and ZIKV have been demonstrated to use cell
membrane lipid rafts as a means of viral entry to the cell [12,13]. Once attached to the
cell, the virus is taken up by endocytic vesicles, with membrane fusion promoted in the
low pH environment of the endosome [1]. Replication of endoplasmic reticulum-derived
membranous structures is followed by viral maturation and release.

Despite the sparing of CNS invasion in adults, ZIKV in pregnancy causes marked de-
struction of the neural progenitor cells of the developing fetus and has a tropism for placental
cells, phenomena not commonly seen with other flaviviruses (such as WNV and JEV). Severe
congenital CNS abnormalities in the developing fetus are the clinical corollary. The tropism of
ZIKV for placental cells occurs via infection of placental stromal macrophages (Hofbauer cells)
as well as early trophoblasts [11], which likely underpins its mode of vertical transmission.
Interestingly, WNV has been shown to invade neural progenitor cells in murine fetuses and to
infect placental tissue ex vivo [14] but the clinical correlation in human pregnancies is rare.
The reason for the unique profile of ZIKV and its propensity to cause congenital infection is
unclear however may rest on the more limited trans-placental passage of the other flaviviruses,
or on differential targeting of cellular entry mechanisms [11].

3. Zika Virus
3.1. Epidemiology

ZIKV was first identified in monkeys in the Zika forest in Uganda in 1947, with the first
human case diagnosed in 1952. It is now endemic across South and Central America, South,
and South-East Asia, the Western Pacific, Africa, and France with many major outbreaks
reported [15] (Figure 1A). Occasional cases have been reported in the southern states and
territories of the United States of America including Florida, Texas and Puerto Rico.

3.2. Pathogenesis

The primary mode of ZIKV acquisition is through the bite of the Aedes aegypti mosquito [16],
or through vertical transmission from an infected mother. Although the virus has been detected
in breast milk of infected mothers, clinical data demonstrating transmission via breast milk
to the infant is lacking [17]. Sexual transmission [18] and acquisition via solid organ or blood
transfusions are well-described [19].

The neuroinvasion by ZIKV in the developing fetus leads to the well described clinical
sequelae of microcephaly and neurodevelopmental compromise. Placental insufficiency
also results in downstream effects on fetal growth and development independent of the
direct neurological insult [10].

3.3. Clinical Features

The incubation period for ZIKV is between two and 14 days, and the disease spectrum
is very broad (Table 1). Three-quarters of infected persons will remain asymptomatic. In
those with clinical disease, illness typically lasts two to seven days and manifests as fever
with a pruritic maculopapular rash (involving the palms and soles), arthralgia, headache,
myalgia, conjunctival hyperemia and lethargy [20]. Relapses are well described [21]. GBS
is a significant and well-described complication [22]; meningoencephalitis and transverse
myelitis are rare complications [23].

Table 1. Features of flavivirus infections in pregnancy.

Virus Zika Virus (ZIKV) Dengue (DENV)
Japanese
Encephalitis Virus
(JEV)

West Nile Virus
(WNV)

Yellow Fever Virus
(YFV)

Incubation time 2–14 days 5–7 days 5–15 days 2–14 days 3–6 days
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Table 1. Cont.

Virus Zika Virus (ZIKV) Dengue (DENV)
Japanese
Encephalitis Virus
(JEV)

West Nile Virus
(WNV)

Yellow Fever Virus
(YFV)

Maternal clinical
features

Asymptomatic
(majority)
Fever, pruritic rash
(palms and soles
involved), arthralgia,
headache
GBS or (rarely)
meningoencephalitis

Significant increase
in severe disease and
maternal mortality in
pregnancy

Asymptomatic or
mild disease
(majority)
Meningoencephalitis
in <1%

Asymptomatic
(majority)
Fever, headache,
malaise, nausea
Meningitis,
encephalitis, acute
flaccid paralysis (rare)

Asymptomatic
(majority)
Nonspecific febrile
illness
Severe (15%
patients)—jaundice,
multi-organ failure,
coagulopathy

Features of
congenital and
neonatal infection

Severe congenital
anomalies (26–65%)
including
ventriculomegaly,
microcephaly,
intracranial
calcifications,
ophthalmological
anomalies, and
neuro-developmental
abnormalities
Fetal loss (7–14%)

Significant
association with
prematurity, low
birth weight,
miscarriage or foetal
deathCongenital
malformations and
neonatal
transmission
described, but
uncommon

Miscarriage described
up to 22 weeks of
pregnancy; minimal
data on
neonatal disease

Rare congenital
abnormalities (~4%):
lissencephaly,
meningoencephalitis,
cerebral atrophy,
chorioretinitis,
coarctation of the aorta

Minimal data

Primary vector(s) Mosquito
(Aedes aegypti)

Mosquitos, primarily
Aedes spp.

Mosquitos, primarily
Culex spp.

Wide range of
mosquitos including
Culex spp. and Aedes
spp. Ticks implicated
in vitro but no
in vivo transmission
determined

Mosquito (Aedes spp.,
Haemogogus spp.)

Pathophysiology
(unique features)

Tropism for nervous
tissue (especially
neural progenitor
cells) and
placental cells

Severe infection with
dengue hemorrhagic
fever or dengue
shock syndrome,
more common in
secondary infections

Perivascular transport
across the blood-brain
barrier into CNS;
transplacental
infection well
described in
animal models

Neuronal apoptosis
with parenchymal
inflammation
predominantly
affecting subcortical
structures; glial
cell damage

Apoptosis of
mid-zone
hepatocytes

Diagnostic tools
Antibody detection
NAAT
Viral culture

Antibody detection
NS1 antigen
NAAT
Viral culture

Antibody detection
NAAT, LAMP
Viral culture

Antibody detection
NAAT
Viral culture

Antibody detection
NAAT
Viral culture

Treatment options Supportive care

Supportive care
Avoid non-steroidal
anti-inflammatory
medications
Blood products and
vitamin K may
be required

Supportive care Supportive care Supportive care

Vaccination/prevention

Vector con-
trol/reducing
mosquito exposure
Avoid unprotected sex
following exposure or
acute infection

Vector con-
trol/reducing
mosquito exposure
Vaccine available,
however significant
concern in
DENV-naïve patients
due to the risk of
precipitating severe
secondary infection;
live vaccine
contraindicated in
pregnancy

Vector con-
trol/reducing
mosquito exposure
Multiple vaccines
available;
IXIARO/JESPECT
can be used in
pregnancy

Vector con-
trol/reducing
mosquito exposure

Vector con-
trol/reducing
mosquito exposure
Live attenuated vac-
cine contraindicated
in pregnancy (unless
high-risk/severe
epidemic) and
contraindicated in
breastfeeding and
infants <6 months

Key: CNS, central nervous system; DENV, Dengue Virus; GBS, Guillain-Barré syndrome; JEV, Japanese encephalitis
virus; LAMP, loop-mediated isothermal amplification; NAAT, nucleic acid amplification test; NS1, non-structural
antigen 1; WNV, West Nile virus; YFV, Yellow fever virus.
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3.3.1. Pregnant Women

The clinical manifestations of ZIKV in pregnant women are similar to non-pregnant
adults, with 20–25% showing symptomatic disease [24]. A single case of GBS in preg-
nancy has been reported [25]; meningoencephalitis and transverse myelitis have not been
described in the pregnant population thus far.

3.3.2. Fetus

ZIKV is one of the most devastating congenital infections with a vertical transmission
rate reported between 26–65% with severe fetal sequelae [26,27]. ZIKV infection is asso-
ciated with a high rate of fetal loss (7–14%) encompassing mothers with asymptomatic
as well as symptomatic infection [25,27]. Ventriculomegaly (33%), microcephaly (24%),
intracranial calcifications (27%), ophthalmological anomalies and neurodevelopmental
abnormalities are the most commonly described sequelae [28–30]. Adverse outcomes are
more common with maternal infection in the first (55%) and second (52%) trimester but are
also seen in the third trimester (29%) [25].

3.3.3. Neonate

Congenital Zika syndrome (CZS) is well described and comprises often-severe micro-
cephaly, hypertonia or hyperreflexia, seizures, irritability, arthrogryposis, ocular abnormali-
ties (macular scarring or focal retinal mottling), and sensorineural hearing loss [31]. CZS is
significantly associated with a risk of long-term neurodevelopmental consequences out to
at least three years of age [32,33]. Suspected or confirmed maternal ZIKV infection during
pregnancy or signs of possible CZS should prompt neonatal testing with guidance from
microbiologists, infectious diseases, and neonatal specialists, and/or expert guidelines [34].
Neonatal whole blood (or serum) and urine should be tested for ZIKV RNA using NAAT
and serum for ZIKV-specific IgM. Placental histopathology (ideally with NAAT for ZIKV
RNA and immunohistochemical staining) should also be performed if available.

Postnatal acquisition of ZIKV in children gives a similar clinical spectrum to adults,
though neonate-specific data is lacking. Data from non-human primates suggest that
maternally derived antibodies may persist for 3–5 months [35], consistent with known
postnatal patterns of maternal antibodies [36,37]. Long-term developmental complications
have been observed in 45% of children with postnatal ZIKV meningoencephalitis [38], but
outcomes of infection in the neonatal period specifically have not been described.

4. Dengue Virus
4.1. Epidemiology

DENV is one of the most common vector-borne diseases worldwide with an estimated
390 million infections annually, primarily reported in tropical and subtropical regions
(Figure 1A) [39]. With ongoing climate change, international travel, urban population
growth, and evolving interactions between mosquitos and humans, the geographic distri-
bution and incidence of dengue fever has increased dramatically over the past century [40].
There are four DENV serotypes, each of which is further subdivided into multiple geno-
types [41–43].

4.2. Pathogenesis

Humans and primates are the primary hosts of DENV, and transmission is predom-
inantly via Aedes spp. mosquitos [44]. The incubation period after a mosquito bite is
3–7 days [43]. DENV replicates in local tissues, and then disseminates into the blood-
stream [45]. Viremia typically lasts 3–7 days and is sufficiently high that an uninfected
mosquito can acquire DENV from a human host during this period.

DENV infection typically confers life-long immunity to re-infection with the same
serotype. However, immunity to the other serotypes is transient, and a severe ‘secondary
infection’ syndrome is well described following infection with a different DENV serotype.
This phenomenon is thought to occur due to antibody-dependent enhancement, formation
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of immune complexes, and/or accelerated T-lymphocyte inflammatory responses [46–49].
Tertiary or quaternary infections are less common [50].

4.3. Clinical Features

Most DENV infections are asymptomatic or cause a mild non-specific febrile illness
(Table 1). However, dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS) can
be life-threatening manifestations, and occur in about 1% of DENV infections [51], with the
risk significantly higher in secondary infections. The pathogenesis of DHF/DSS involves
blood dyscrasias due to the effect of DENV on bone marrow, and capillary leak due to
endothelial cell dysfunction [52,53].

4.3.1. Pregnant Women

DENV infection is associated with more severe disease and higher mortality in preg-
nant women compared to the broader population (odds ratio for maternal mortality (OR)
4.14, 95% CI 1.17-14.73) [54,55]. As early features of dengue can mimic physiological
changes observed in normal pregnancy or laboratory abnormalities of the hemolysis,
elevated liver enzymes, and low platelets (HELLP syndrome of pregnancy), delayed recog-
nition and treatment of severe dengue can contribute to poor maternal outcomes. Severe
thrombocytopenia or DHF can result in post-partum hemorrhage following either vaginal
delivery or lower segment Caesarean section [56,57].

4.3.2. Fetus

DENV infection during pregnancy is associated with higher risk of prematurity (OR
1.71, 95% CI 1.06–2.76), low birth weight (OR 1.41, 95% CI 0.90–2.21), miscarriage (OR
3.5, 95% CI 1.15–10.77), stillbirth (OR 2.71, 95% CI 1.44–5.10) and neonatal death (OR 3.03,
95% CI 1.17–7.83) [55,58]. More severe maternal disease has been associated with worse
fetal outcomes. Compromised vascular permeability can facilitate viral entry into the
placenta while the increased production of pro-inflammatory cytokines could stimulate
uterine activation proteins, leading to pre-term delivery [59,60]. Placental insufficiency can
also lead indirectly to fetal hypoxia and developmental issues. Congenital neurological
malformations have been described but are thought to be less common than for some other
flaviviruses [61,62].

4.3.3. Neonate

Although not well characterized, neonatal dengue fever can present with fever, throm-
bocytopenia, and petechiae [56,63,64]. Breastfeeding is also a potential mode of DENV
transmission [65]. Infants born with maternal anti-DENV antibodies who are subsequently
infected with a different DENV serotype may experience a severe disease course, akin to
secondary dengue in adult populations [66–68].

5. Japanese Encephalitis Virus
5.1. Epidemiology

JEV is an important cause of viral encephalitis in South-East Asia and the Western
Pacific Region, where it is estimated to cause approximately 70,000 clinical cases and
20,000 deaths annually [69]. In 2022, cases of Japanese encephalitis (JE) were described in
South-Eastern Australia, suggesting increased distribution due to ongoing climate change
and the evolving human-animal-environment interface [70–72]. JEV exists as five genotypes
based on phylogenetic analysis of the viral envelope gene [73–75].

5.2. Pathogenesis

JEV is transmitted between birds and swine within enzootic cycles via mosquito
vectors, predominantly Culex spp. [76,77]. The incubation period after a mosquito bite is
5–15 days. The virus replicates in local Langerhans cells and keratinocytes, and regional
lymph nodes, after which it is carried by the lymphatic systemic into the thoracic duct and



Microorganisms 2023, 11, 433 8 of 25

bloodstream [5,78]. JEV is neurotropic resulting in meningoencephalitis in approximately
1% of cases [79]. The mechanism of CNS penetration is unclear, however this is thought
to involve transport via perivascular cells [80,81]. JEV can potentially cause persistent
infection in the human vaginal and endometrial epithelium, as well as the trophoblast [82].

5.3. Clinical Features

Asymptomatic infection or a self-limiting mild febrile illness are the most common
manifestations of the disease (Table 1) [8]. In neuroinvasive disease, the reported mortality
rate is 18% [83]. In survivors, up to half experience long-term neurological sequelae
including seizures, impaired cognition, and motor impairment [84,85]. In endemic regions,
encephalitis due to JEV primarily affects children or adolescents, as infection usually confers
neutralizing immunity and seroprevalence increases with age.

5.3.1. Pregnant Women

Most women living in JEV-endemic areas have already been exposed or vaccinated
by the time they reach childbearing age. Pregnant seronegative travelers to JEV-endemic
areas thus bear the highest risk. There are limited data on the severity of JEV infection
in the pregnant population, with one case described to date of eclamptic encephalopathy
associated with JEV [86].

5.3.2. Fetus

Sequelae of congenital infections have been well documented in swine and mice [82,87,88],
but limited data are available in humans [89,90]. In two human case studies (encompassing
eight JEV-affected pregnancies in total), maternal infections with JEV up to 22 weeks gestation
were associated with miscarriage, while infections after this point did not cause apparent
disease in the fetus or neonate [91,92]. JEV was isolated in the brain, liver, and placenta of one
stillborn fetus [91].

5.3.3. Neonate

Postnatal JEV infection is not well described. In endemic areas with high seropreva-
lence to JEV, many neonates will be protected by maternally derived antibodies for the
first few months of life, as is well established for transplacental transmission of other
virus-specific antibodies [36,37]. A four-month-old infant was the youngest patient diag-
nosed with JEV encephalitis in Australia in 2022 in the context of a nascent JEV outbreak
(and hence likely JEV-seronegative mother) [93]. This case highlights the vulnerability of
neonates and infants to JEV when outbreaks occur in largely seronegative populations or
indeed in infants traveling from non-endemic areas to regions with JEV circulation.

6. West Nile Virus
6.1. Epidemiology

First isolated in 1937 in the West Nile province of Uganda, WNV is one of the most
widely distributed flaviviruses (Figure 1B). Endemic throughout Africa, the Middle East,
Europe, South Asia, and Australia [94], its emergence in the Americas was first documented
in 1999 after which it established endemicity [95], with seasonal peaks in summer to
autumn [96]. Intermittent outbreaks involving thousands of acute infections are well
documented globally [94]. Particular WNV subvariants are known to circulate in restricted
geographic areas and may confer a distinct clinical phenotype, such as the Kunjin variant
present in Australia which is thought to be associated with a milder disease course [97].

6.2. Pathogenesis

Birds have been established as a key reservoir and amplifying host of the virus [98],
with transmission predominantly via mosquitoes. Direct human-to-human transmission
has not been reported but transmission through infected blood and solid organ donation
has been described [94].
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WNV can cause neuroinvasive disease, affecting both neurons and glial cells [99].
Neuronal loss occurs via apoptosis, particularly affecting the cerebral cortex, hippocampus,
cerebellum, brainstem, and spinal cord.

6.3. Clinical Features

Most WNV cases are asymptomatic (80%) or manifest with a mild febrile illness
associated with headache, malaise, and/or nausea (Table 1) [100]. CNS involvement,
largely comprising meningoencephalitis or acute flaccid paralysis, can take a severe or
sometimes fulminant course [100]. The population mortality rate from WNV is reported as
5%, rising to 9% in those with neuroinvasive disease [96]. WNV-associated flaccid paralysis
in particular carries high mortality and long-term morbidity [96].

6.3.1. Pregnant Women

In pregnancy, disease manifestations of WNV appear no more severe than in the
general population. Cases of meningoencephalitis have been described [101,102].

6.3.2. Fetus

Vertical transmission of WNV with associated subsequent congenital anomalies is
well documented although it occurs less commonly than for other flaviviruses such as
ZIKV [103]. In one case series of 72 neonates born to mothers with maternal WNV infections,
three (4%) were infected with WNV with associated congenital defects: lissencephaly and
encephalitis (one case), coarctation of the aorta (one case) and postnatal meningitis (one
case) [104]. One further case report of congenital WNV infection involved cerebral atrophy
and chorioretinitis [105].

6.3.3. Neonate

In pediatric populations generally, the spectrum of disease due to WNV is similar to
that seen in adults, although neuroinvasive disease is more likely to manifest as meningitis
than encephalitis [106]. Postnatally acquired WNV infection in neonates is poorly described,
with a single case report of transmission of WNV from breast milk with the infant remaining
well [107].

7. Yellow Fever Virus
7.1. Epidemiology

YFV is endemic to over forty countries in tropical and subtropical Africa and South
America (Figure 1A). Current modeling suggests an incidence of 200,000 cases annually
with sporadic epidemics occurring most recently in Angola, the Democratic Republic of
Congo and Brazil [108–111].

7.2. Pathogenesis

The natural reservoir for YFV are human and non-human primates, and there are
two main transmission cycles: the sylvatic cycle and the urban cycle [112]. Transmission
occurs via the bite of an infected mosquito (typically Aedes spp.) [113]. YFV is transported
to regional lymph nodes where multiplication occurs followed by a primary viremia.
The virus then spreads to the visceral organs where further replication occurs, with a
particular tropism for hepatocytes [114]. Subsequent cytokine release causes apoptosis of
the hepatocytes together with activation and consumption of clotting factors [114,115]. YFV
is classified as a viral hemorrhagic fever due to the severe clinical manifestations associated
with these latter stages.

7.3. Clinical Features

The incubation period for YFV is 3–6 days (Table 1) [116]. Most infected individu-
als are asymptomatic or experience a mild self-limiting disease. Symptomatic patients
initially present with nonspecific symptoms including fever, headache, lethargy, myalgia,
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arthralgia, and vomiting which last for approximately one week. Viremia occurs within
the first three days of symptom onset and may persist in severe cases [117]. In 15–20% of
patients, a brief remission of up to 48 h is followed by the onset of severe symptoms, charac-
terized by high fevers, jaundice, coagulopathy, shock, and multiorgan failure; hemorrhagic
manifestations are well described [110,115]. Mortality in this group is 20–50% [110,118].

7.3.1. Pregnant Women

There are little data on particular risk factors for YFV infection in pregnancy. It is
not clear if pregnancy confers an altered spectrum of disease or clinical outcomes for the
mother compared to the non-pregnant population [119].

7.3.2. Fetus

There are minimal data on fetal outcomes following YFV infection during pregnancy.
There are only two case reports of vertical transmission of YFV: both cases were asymp-
tomatic at birth, then developed severe infection with fever, multiorgan failure, and coagu-
lopathy, and subsequently died [120,121].

7.3.3. Neonate

Postnatal acquisition of YFV in the neonatal period is poorly characterized with no
case reports published to date. For infants born in endemic areas, maternally derived
antibodies may be protective, however, definitive data are awaited. Travelers to endemic
areas without prior YFV exposure should be aware of the potential risk of YFV infection
in neonates.

8. Other Flaviviruses in Pregnancy

There is a range of other human flaviviruses that have not been covered in this review
due to limited published data pertaining to their impact on pregnancy and the neonatal
period. Pregnancy-specific data on St Louis encephalitis virus and Murray Valley encephali-
tis virus are lacking as well as other less common mosquito-borne flaviviruses such as
Spondweni, Usutu, Ilheus and Rocio viruses. The similarity of this latter group of viruses
to ZIKV, WNV and JEV raises concerns regarding their epidemic capability and potential
for pregnancy-associated morbidity, and this warrants ongoing vigilance [1]. Similarly,
data are awaited on pregnancy-specific impacts of the tick-borne flaviviruses including
Tick-borne encephalitis virus, Kyasanur Forest disease virus, Alkhurma hemorrhagic fever
virus, louping-ill virus, Omsk hemorrhagic fever virus, and Powassan virus. If infection
with one of these flaviviruses is diagnosed during pregnancy or the neonatal period, or if
a concerning contact history is elicited, expert opinion should be sought to consider the
potential impact on the pregnant woman, fetus, and neonate.

9. Laboratory Diagnosis

Flavivirus diagnosis relies on a multimodal framework with serology forming the
mainstay; molecular techniques and viral culture are additional and important diagnostic
tools (Table 2). DENV antigen testing is a first-line investigation for acute dengue virus
infection [122]—assessing for the presence of the non-structural protein 1 (NS1) antigen—
but antigen detection does not have a routine diagnostic role for the other flaviviruses.
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Table 2. Characteristics of available assays for the diagnosis of flavivirus infection.

Virus Assay Sample Types Advantages Disadvantages Comments

Zika virus (ZKV)

ZKV IgM
ZKV IgG Serum

IgM detectable within
the first few days of
illness onset, persists
for several weeks to
months

Cross-reaction with
other flaviviruses
requires careful
interpretation.

Acute and
convalescent titers (at
2–4 weeks from
illness onset) should
be compared.

NAAT

Urine, blood,
placental tissue, fetal
tissue, amniotic fluid,
semen, genital tract
secretions, saliva

Highly sensitive Requires fresh tissue
(not formalin-fixed).

Not currently used as
a first-line assay.
Reserved for acutely
unwell patients, for
confirmatory testing,
or in the diagnosis of
congenital Zika
syndrome (CZS).

Dengue virus
(DENV)

NS1 antigen Serum

Highly sensitive in the
early phase of illness
(primary and secondary
infections).
Highly specific
for DENV.

Does not differentiate
between dengue
serotypes.

NS1 antigenemia is
shorter in secondary
than in primary
infection

DENV IgM
DENV IgG Serum

IgM detectable within
the first few days of
primary infection, and
persists for 2–3 months.
Rapid rise in DENV
IgG in secondary
infection

Cross-reaction with
other flaviviruses
requires careful
interpretation.
Vaccine-induced IgM
can persist for years.

Acute and
convalescent titers (at
2–4 weeks from illness
onset) should be
compared.
IgM/IgG ratio may be
used to differentiate
primary (high ratio)
from secondary (low
ratio) infections.

DENV IgG avidity Serum
Can help differentiate
primary from secondary
disease

Only available in
specialist centres.

High avidity
suggests secondary
infection.

NAAT Blood, urine Highly specific

Low sensitivity
outside the first week
of illness.
Expensive, not
routinely available.

Not currently used as
a first-line assay.
Reserved for acutely
unwell patients or
confirmatory testing.

Japanese
encephalitis virus
(JEV)

JEV IgM
JEV IgG

Serum, CSF (IgM)
Serum (IgG)

IgM detectable within
the first few days of
illness onset

Cross-reaction with
other flaviviruses
requires careful
interpretation.
Vaccine-induced IgM
can persist for years.

Acute and
convalescent titers (at
2–4 weeks
from illness
onset) should
be compared.

NAAT CSF, blood, urine,
brain tissue Highly specific for JEV

Low sensitivity
outside first few days
of illness.
Invasive sampling for
cerebral tissue.

Early tissue sampling
enhances diagnostic
yield.

West Nile virus
(WNV)

WNV IgM
WNV IgG

Serum, CSF (IgM)
Serum (IgG)

IgM detectable within
the first few days of
illness onset

Cross-reaction with
other flaviviruses
requires careful
interpretation.

Acute and
convalescent titers (at
2–4 weeks from
illness onset) should
be compared.

NAAT Blood, urine, CSF Highly specific

Low sensitivity
outside the first week
of illness.
Expensive, not
routinely available.

Not currently used as
a first-line assay.
Reserved for acutely
unwell patients or for
confirmatory testing.
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Table 2. Cont.

Virus Assay Sample Types Advantages Disadvantages Comments

Yellow fever virus
(YFV)

YFV IgM
YFV IgG Serum

IgM detectable within
the first few days of
illness onset

Cross-reaction with
other flaviviruses
requires careful
interpretation.
Vaccine-induced IgM
can persist for years.

Acute and
convalescent titers (at
2–4 weeks from illness
onset) should be
compared.

NAAT Blood, urine Highly specific

Low sensitivity
outside the first week
of illness.
Expensive, not
routinely available.

Not currently used as
a first-line assay.
Reserved for acutely
unwell patients or for
confirmatory testing.

All

Pan-flavivirus IgM
Pan-flavivirus IgG Serum Can be used as a

screening assay
Does not differentiate
between flaviviruses.

A positive result
should be further
delineated with
specific IgM and IgG
for each Flavivirus of
interest to enable
accurate diagnosis.
Acute and
convalescent titers (at
2–4 weeks from illness
onset) should be
compared.

Viral culture

CSF, tissue, blood,
urine, placental
tissue (ZKV), fetal
tissues (ZKV)

High specificity;
provides viral isolate
for further sequencing

Lower sensitivity
than NAAT or
serology.
Requires specialist
laboratory with PC3
facilities.

Staff handling viral
cultures should be
vaccinated when
possible.

Histopathology, im-
munohistochemistry Tissue

Provides detailed
structural information.
Immunohistochemistry
provides specificity for
select viral antigens

Histopathological
changes are largely
non-specific
between flaviviruses.

Requires specialist
histopathologist
expertise.

Next-generation
metagenomic
sequencing

Brain tissue, CSF
High specificity
Pathogen-agnostic
testing

High level of
technical expertise is
required.
High cost.
Available in specialist
centres only.

Not appropriate for
testing samples from
non-sterile sites (for
example respiratory
secretions) or with
anticipated low viral
loads (for example,
serum or urine).

Key: CSF, cerebrospinal fluid; CZS, congenital Zika syndrome; DENV, Dengue virus; JEV, Japanese encephalitis
virus; NAAT, nucleic acid amplification test; NS1, non-structural antigen 1; PC3, physical containment level 3;
WNV, West Nile virus; YFV, Yellow fever virus.

9.1. Serology

Serological testing in pregnant women follows the same algorithms used in the broader
population. Gestational age at the time of acute and convalescent sera sampling informs
risk stratification for the mother, fetus, and newborn if a seroconversion is demonstrated,
as previously discussed for each of the flaviviruses.

Various platforms are available for flavivirus serological testing, including enzyme-
linked immunosorbent assays (ELISA), immunofluorescent techniques, hemagglutination
inhibition methodologies, and neutralization assays. Flavivirus serology is highly sensitive
with IgM detectable within a few days of illness onset in most cases [110,117]. However,
similar antigens and hence overlapping epitopes between the flaviviruses results commonly
in cross-reacting antibodies, limiting assay specificity [123]. Where vaccines have been
administered, vaccine-induced IgM can persist for years following vaccination [124]. Where
flavivirus infection is suspected, a detailed clinical, travel, exposure, and vaccination history
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must be sought to determine the possible viruses causing the patient’s clinical syndrome
and to assist in the interpretation of serological results.

A pan-flavivirus serological assay may be used as an initial screen but this must be
followed by more specific assays to achieve an accurate diagnosis [125]. Virus-specific
IgM and IgG titers should be obtained for each of the flaviviruses of concern and tested
in parallel on serum taken in the acute and convalescent period, 2–4 weeks later. Where
available, plaque reduction neutralization assays may provide additional specificity and
obviate some of the concerns of cross-reactivity [126]. Antibody avidity testing is available
for DENV, and dengue-specific IgG avidity can assist in differentiating primary from sec-
ondary disease. DENV-specific IgM/IgG ratios may also be used for this purpose [127–129].
For some flaviviruses, such as JEV and WNV, serological testing of cerebrospinal fluid (CSF)
for virus-specific IgM and IgG may also be performed in parallel to testing of sera [123,130].

Interpretation of flavivirus serology is very complex requiring integration of detailed
clinical information including vaccination status, comparative assessment of virus-specific
antibody titers across the different flaviviruses under consideration, serial sampling with
parallel testing, and a thorough understanding of the strengths and constraints of the assays
in use. A single positive antibody titer alone is not diagnostic, rather can be suggestive of a
particular flavivirus infection providing other potential flaviviruses have been assessed.

9.2. Molecular Testing

Neutralizing antibodies are rapidly produced following most flavivirus infections,
resulting in a short-lived and low-level viremia [131]. A sampling of blood, CSF, and
urine for NAAT in the first week of illness is recommended, as is early targeted tissue
sampling in cases of the organ-specific disease, such as meningoencephalitis [125]. NAAT
testing of placental tissue can be highly informative in suspected congenital infections.
Viral shedding can be prolonged: for example, ZIKV RNA may be detectable for long
periods in urine (median 24 days) and semen (median 25 days, but up to 370 days) [132].
Targeted NAAT assays carry higher diagnostic specificity but lower sensitivity due to short-
lived viremia in many of these infections [5,125]. Loop-mediated isothermal amplification
(LAMP)-based methodologies have been used for the detection of some flaviviruses such
as JEV in resource-limited settings [133].

Non-targeted methods such as metagenomic sequencing carry promise in unveiling
occult flavivirus infection if targeted sampling with expert guidance is performed, such as
in cases of unexplained meningoencephalitis [5,134].

9.3. Other Modalities

Viral culture has a role to play in flavivirus diagnosis, though it is only performed in
specialized laboratories due to technical expertise and biosafety concerns. CSF, blood, urine,
and tissue are appropriate specimen types. Samples are typically incubated in mosquito
cell lines such as C6/36 at 28 ◦C for 3–4 days [135]. Cytopathic effect is often absent in
mosquito cell lines, hence NAAT or serological methods are used to assess viral growth. In
tissue-invasive disease such as encephalitis or suspected congenital infections such as CZS,
histopathology may also be useful with immunohistochemistry to assess for the presence
of viral antigens and can provide helpful information on the cellular localization of viral
moieties [110,117].

9.4. Integration of Diagnostic Results

For most flaviviruses, seroconversion or a four-fold rise in virus-specific IgG titers
in serum is diagnostic of infection, as is the detection of virus by culture or molecular
methods or (for diagnosis of DENV in particular) the presence of NS1 antigen in serum or
plasma [135,136]. The presence of a flavivirus-specific IgM in serum or CSF in the absence
of IgM for alternative flaviviruses is highly suggestive of flavivirus infection [135,136].

It is the combination of results from multiple testing modalities and across a range
of flavivirus targets and timepoints that enables an accurate diagnosis of infection in
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most cases. For example, NS1 antigen detection is sensitive for the diagnosis of primary
dengue infection, while DENV-specific IgG tends to increase slowly [137]. In secondary
dengue infections, NS1 antigen is less frequently detected or detected at lower levels, while
DENV-specific IgG titers increase rapidly [129,138]. DENV-specific IgM/IgG ratios and IgG
avidity testing may also differentiate between primary and secondary diseases [127–129].
An understanding of the relative merits and constraints of each of the diagnostic modalities
as well as a thorough knowledge of epidemiology related to the patient’s travel or region
of residence is critical to achieving a robust diagnosis.

10. Treatment of Flavivirus Infections

Supportive care, comprising symptomatic treatment and intravenous fluid optimiza-
tion are the principles of management. In CNS involvement, such as in Japanese en-
cephalitis, seizure control, optimization of cerebral perfusion, and prevention of secondary
complications are important in supportive management [139].

There are no specific antiviral therapies with demonstrated efficacy against flavivirus
infections [139–142]. Novel small molecules are under investigation for YFV; however,
none are yet available clinically [110,143]. Studies of corticosteroids and intravenous
immunoglobulin use for neuroinvasive WNV disease have been conducted but have
not shown benefit [144,145]. Monoclonal antibodies are also under investigation for the
treatment of many of the flaviviruses, including DENV, ZIKV, JEV, WNV and YFV, with
promising in vitro data [146–150].

Where neurological involvement has been demonstrated, targeted neurological reha-
bilitation programs may be key to optimizing functional outcomes for patients [151].

Specific Considerations in Dengue Virus Infection

In DENV infection, where progression to shock or hemorrhagic manifestations are of
concern, pregnant patients should be considered for closer inpatient monitoring with serial
clinical assessments and full blood counts since early recognition of progression to severe
disease is vital. While paracetamol can be used to manage fever and myalgias, aspirin or
other non-steroidal anti-inflammatory drugs should be avoided in DENV due to the risk of
bleeding complications. Intravenous fluids may be required in severe dengue, but excessive
fluid can lead to hypervolemia as vascular permeability recovers. Blood transfusion and
correction of bleeding diathesis with platelet transfusion or vitamin K may also be required
in cases with active hemorrhage, especially around the time of delivery [152]. Elective
delivery should be deferred if possible and there may be a role for tocolytic agents in
postponing labor [153]. Intravenous oxytocin analogues can reduce the risk of postpartum
hemorrhage [154].

11. Prevention of and Vaccination for Flavivirus Infections
11.1. Behavioural, Environmental, and Infection Control Strategies

Avoidance of mosquito bites through behavioral measures is critical to preventative
efforts. Measures include wearing long sleeves and trousers, use of insect repellent, staying
indoors when feasible, particularly at dawn and dusk, and use of mosquito nets [155–159].
For ZIKV-infected persons in particular, mosquito bite avoidance during the viremic period
has been demonstrated to reduce further transmission to other persons particularly in
the first week of illness in endemic areas (or for a three-week period after return to a
non-endemic area) [136,160,161].

Environmental controls to reduce mosquito breeding sites should also be implemented,
including the removal of stagnant water bodies [158]. Such measures have been demon-
strated to limit the spread of viruses such as DENV at the population level [162]. For WNV,
blood donor screening has been implemented in some endemic areas such as the United
States [95]. While expensive, this practice has vastly reduced the risk of transmission via
blood products.
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Prevention of sexual transmission is important to limit the spread of ZIKV. Men should
avoid unprotected sex for 3–6 months and women for 2–6 months following symptom
onset of an acute ZIKV infection [136,160,161], or since last exposure for persons potentially
exposed to ZIKV (through travel to an endemic area or sexual contact with an infected
case). Unprotected sex with a pregnant partner should be avoided for the duration of the
pregnancy if a male or female partner has been infected or exposed to ZIKV (including
via travel to or residence in areas of endemicity or a contemporaneous outbreak). Blood
or organ donation should be avoided for four weeks following return from an endemic
area [136,160,161].

11.2. Vaccination for Flaviviruses

Vaccine development is an area of great potential although successful candidates
have been developed only for a small number of flaviviruses to date, specifically YFV, JEV
and DENV.

An effective live attenuated (17D strain) vaccine is available for YFV and elicits a
durable, life-long adaptive immune response [159]. The vaccine has historically been con-
traindicated in pregnancy, breastfeeding mothers, and infants under six months of age, as
YFV RNA has been detected in breastmilk following vaccination [163] and there have been
several cases of vaccine-associated encephalitis in newborns of recently vaccinated moth-
ers [110,164,165]. However, recent studies of pregnant women receiving YFV vaccination
have demonstrated no increased risk of fetal adverse events, and thus vaccination should
be considered in the setting of severe epidemics or unavoidable travel to high-risk areas
given the risk of severe disease in unvaccinated populations [166–171].

There are several second-generation JEV vaccines in use that are safe, well-tolerated,
and effective [80,172–174]. These include live attenuated vaccines—SA 14–14-2 (Chengdu
Institute of Biological Products, Chengdu, China) [175] and JE-CV (IMOJEV®, Sanofi-
Aventis, Paris, France) [176,177] and inactivated vaccines—IXIARO® (Valneva, Saint-
Herblain, France) or JESPECT® (Seqirus, Maidenhead, UK) [178,179]. As live vaccines,
SA 14–14-2 and JE-CV are contraindicated in pregnancy, whereas IXIARO® or JESPECT®

can be safely used [178,179]. One retrospective review of JEV vaccination in 513 pregnant
military women in the United States (using either a first-generation inactivated mouse
brain-derived vaccine or IXIARO®) demonstrated an increased risk of low birth weight in
neonates [180].

There are currently no approved ZIKV vaccines, although various candidate vaccines
are under development including mRNA, DNA-based, inactivated, and viral vector vac-
cines [181,182]. One mRNA-based ZIKV vaccine (mRNA-1893, Moderna), has recently
entered phase 2 clinical trials after demonstrating good tolerability and robust neutralizing
antibody responses in phase 1 studies [181]. Similarly, high seroconversion rates (100%)
were demonstrated in phase 1 trials of a two-course regimen of a viral vector vaccine
(Ad26.ZIKV.001, Janssen), while DNA-based vaccines (GLS-5700, Inovio Pharmaceuti-
cals; VRC5288, NIAID; and VRC5283, NIAID) showed moderate to high seroconversion
rates (60–100%) with high antibody titers. A wider range of seroconversion responses
(10–100%) was demonstrated for the Zika-purified inactivated virus (ZPIV) vaccine with
lower antibody titers [182].

There has been much interest in developing WNV vaccines. Among six vaccine candi-
dates to date, the largest body of safety and immunogenicity data have been obtained for
two live attenuated chimeric candidates, ChimeriVax-WN02 (Sanofi Pasteur, Lyon, French)
and WN/DEN4D30 (NIAID) [183]. None have progressed yet beyond phase 2 trials.

The development of a DENV vaccine has been difficult due to the requirement to
cover all four serotypes given the severe nature of secondary infections [184]. The live
attenuated tetravalent chimeric vaccine, CYD-TDV (Dengvaxia®, Sanofi Pasteur, Lyon,
French) [185], has thus only been approved to prevent secondary infections in patients
previously exposed to DENV. Vaccine recipients without previous dengue infection have
been shown to experience an increased risk of dengue hospitalization or severe dengue
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fever compared to the unvaccinated group in trials investigating its role in primary pre-
vention [186]. These findings, and subsequent public messaging, have led to variable
outcomes across different regions, with a severe and detrimental effect on public vaccine
confidence in countries such as the Philippines in 2017–2018 [187]. Preliminary data on a
newer recombinant live attenuated chimeric vaccine, TAK-003 (QDENGA®, Takeda, Chuo,
Japan), also incorporating all four DENV serotypes [188], suggests efficacy in preventing
symptomatic dengue, without the same safety concerns in DENV-naïve patients [74]. Other
live attenuated tetravalent DENV vaccines are in clinical development [73]. Although live
vaccines are contra-indicated in pregnancy, no evidence of increased adverse pregnancy
outcomes was noted after the inadvertent administration of CYD-TDV to a small number
of women in early pregnancy (58 exposed pregnancies in the CYD-TDV group compared
to 30 in the placebo group) [77].

Further research is urgently needed to afford safe and effective vaccines against a
broader range of flaviviruses given their marked impact on the population, including
pregnant women, neonates, and children. Current difficulties associated with phase 3 trial
execution due to short, seasonal flavivirus outbreaks that are geographically restricted and
variable from year to year [183] may be overcome through international cooperation and
dedicated funding streams. Pregnant women and children must be specifically considered
in future vaccine trials to ensure robust data are accumulated to guide preventative efforts
in these vulnerable subpopulations.

12. Arthropod Vectors Responsible for Flavivirus Transmission

Flaviviruses are zoonoses transmitted to humans by the bite of arthropods, primarily
mosquitoes. The endemic regions for the different flaviviruses (Figure 1) are in large
part determined by the distribution of the relevant competent vector(s) and vector viral
competence, as well as endemic habitats of the reservoir host(s).

The primary mosquito vector for both ZIKV and DENV is Aedes aegypti, endemic
to South and Central America, South, and South-East Asia, the Western Pacific, Africa,
and France [15,44]. This species of mosquito is also resident in a range of other countries
including Australia, East Asia, and parts of the Middle East where ZIKV has yet to establish
endemicity. Aedes albopictus, which lives across a range of temperate climates, is not the
primary vector but is capable of DENV and ZIKV transmission [16,189].

Aedes spp. (particularly Ae. aegypti) are also the typical vectors for YFV transmis-
sion [113], although outbreaks due to Haemagogus spp. mosquitoes (Hg. leucocelaenus and
Hg. janthinomys) have been well described, particularly in Brazil [190].

A wide range of mosquito species are competent vectors for JEV, although Culex spp.
are predominantly responsible for transmission [76,77]. The relative contribution of differ-
ent species of the Culex genus varies by geography, and other genera may also transmit the
virus, including Aedes spp., Armigeres spp., Anopheles spp., and Mansonia spp. [191].

Similarly, WNV is transmitted by a wide range of mosquito species with Culex spp.
the most important vector [94]. Aedes mosquitoes are also competent vectors for WNV.
While in vitro transmission via ticks has been shown, their role in natural transmission
is uncertain.

The distribution of arboviral vectors is heavily influenced by climatic and epidemio-
logical factors [189]. Climate change, both gradual and episodic events, migration patterns
of reservoir species (such as migratory water birds), human population movements and
changes in agricultural practices can also drive expansion and shifts in flavivirus distri-
bution [192]. Active surveillance for emergent flavivirus outbreaks in new geographical
regions is critical, particularly in the context of unseasonal rainfall and flooding, extreme
weather events and the broader context of global warming.

13. Conclusions

Flaviviruses form a diverse group of zoonotic arboviruses with variable but poten-
tially severe impacts in pregnancy and the neonatal period. As each of the flaviviruses
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has its associated tissue tropism and pathophysiological pathways, their impacts on the
pregnant woman, fetus and newborn are not generalizable across this genus of viruses.
Some flaviviruses, such as DENV, may cause severe disease in the pregnant woman, with
significant implications for maternal and fetal health. Increased fetal loss is observed in
infections due to ZIKV, DENV and WNV viruses. For ZIKV, infection may lead to severe
congenital infection with long-term anatomical defects and neurodevelopmental conse-
quences. Susceptibility of the neonate to postnatal exposure and infection must also be
considered, particularly when the baby is born premature and/or to a seronegative mother.
Close collaboration between infectious diseases, virology, obstetric and neonatal colleagues
is necessary to diagnose and manage acute infection, and long-term pediatric follow-up
may be required for affected infants.

Public health responses must incorporate preventative measures with efforts to identify
effective vaccine candidates. Vaccination strategies must specifically consider pregnant
women and children as two high-risk groups, and breastfeeding recommendations must
also account for possible transmission to the infant.

An understanding of flavivirus epidemiology, vector characteristics, clinical syn-
dromes, and prevention and management strategies in the pregnancy and neonatal period
is critical. Furthermore, although historical patterns of endemicity are well established for
most flaviviruses, their geographical reach is heavily dependent on the overlap in habitats
of their vector arthropods and reservoir hosts. Hence, the current and future impacts of
climate change must be considered in the expansion of potential habitats as well as the
potential for sporadic outbreak events [192].
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Abbreviations

CI confidence interval
CNS central nervous system
CSF cerebrospinal fluid
CZS congenital Zika syndrome
DENV Dengue virus
DHF dengue hemorrhagic fever
DNA deoxyribonucleic acid
DSS dengue shock syndrome
GBS Guillain-Barré syndrome
JE Japanese encephalitis
JEV Japanese encephalitis virus
LAMP loop-mediated isothermal amplification
NAAT nucleic acid amplification test
NS1 non-structural antigen 1
OR odds ratio
PC3 physical containment level 3
RNA ribonucleic acid
WNV West Nile virus
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YFV Yellow fever virus
ZIKV Zika virus
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