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Abstract: Analyzing microbial communities using metagenomes is a powerful approach to under-
stand compositional structures and functional connections in anaerobic digestion (AD) microbiomes.
Whereas short-read sequencing approaches based on the Illumina platform result in highly frag-
mented metagenomes, long-read sequencing leads to more contiguous assemblies. To evaluate the
performance of a hybrid approach of these two sequencing approaches we compared the metagenome-
assembled genomes (MAGs) resulting from five AD microbiome samples. The samples were taken
from reactors fed with short-chain fatty acids at different feeding regimes (continuous and discontin-
uous) and organic loading rates (OLR). Methanothrix showed a high relative abundance at all feeding
regimes but was strongly reduced in abundance at higher OLR, when Methanosarcina took over. The
bacterial community composition differed strongly between reactors of different feeding regimes
and OLRs. However, the functional potential was similar regardless of feeding regime and OLR.
The hybrid sequencing approach using Nanopore long-reads and Illumina MiSeq reads improved
assembly statistics, including an increase of the N50 value (on average from 32 to 1740 kbp) and an
increased length of the longest contig (on average from 94 to 1898 kbp). The hybrid approach also
led to a higher share of high-quality MAGs and generated five potentially circular genomes while
none were generated using MiSeq-based contigs only. Finally, 27 hybrid MAGs were reconstructed of
which 18 represent potentially new species—15 of them bacterial species. During pathway analysis,
selected MAGs revealed similar gene patterns of butyrate degradation and might represent new
butyrate-degrading bacteria. The demonstrated advantages of adding long reads to metagenomic
analyses make the hybrid approach the preferable option when dealing with complex microbiomes.

Keywords: anaerobic digestion; syntrophic acetate oxidation; syntrophic propionate oxidation;
syntrophic butyrate oxidation; methanogenic pathways; metagenome-assembled genomes;
hybrid assembly

1. Introduction

Biogas production by anaerobic digestion (AD) provides a sustainable option to
transform organic waste into a renewable energy carrier. Under anoxic conditions, organic
matter is converted to short-chain fatty acids (SCFAs) as intermediates, and finally to
methane and carbon dioxide, catalyzed by different microbes in four steps: hydrolysis,
acidogenesis, acetogenesis, and methanogenesis. The first three steps are facilitated by
bacteria, whereas the last step is performed by archaea. There are multiple types of
biogas reactors. The continuous stirred tank reactor (CSTR) is the most common type for
agricultural biogas plants in Germany. The organic loading rate (OLR) is a key parameter
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in continuous AD processes. At high OLRs, large substrate amounts are fed to an AD
reactor, and consequently high methane productivity can be expected. However, high
OLRs can also lead to process instabilities and even process failure [1]. The stability of
the AD process depends on the interaction of microbes of different functional groups [2].
An important prerequisite to control the process stability is to predict compositional and
functional changes of the microbial community as a function of operational parameters.
Community composition and complexity as well as operational parameters influence
community dynamics [2,3]. For instance, the feeding regime can affect the process stability
as well as the microbial community function [1,4–6]. The continuous feeding mode is
commonly applied in full-scale digesters to obtain stable biogas production [7]. However,
several studies showed positive effects of discontinuous feeding (e.g., one feeding per
day) compared to continuous feeding [1,8–10]. Bonk et al. observed that discontinuous
feeding leads to higher relative abundances of Methanosarcina [1]. This methanogen is more
adapted to higher acetic acid concentrations and more resistant to low pH values compared
to the common acetoclastic methanogen Methanothrix [5]. A higher share of Methanosarcina
increased the resilience against organic overloading [1].

Some products of the acidogenesis and acetogenesis steps, such as acetate, formate,
H2, and CO2 as well as methyl compounds, can be utilized by methanogenic archaea
directly. In contrast, propionate and butyrate are acidogenesis products that first need to be
converted into acetate, CO2, and H2 or formate [11]. In the whole AD process, syntrophic
butyrate and propionate oxidation during acetogenesis is a bottleneck because of the low
abundances of butyrate- and propionate-oxidizing bacteria and their sensitivity to envi-
ronmental changes [2,12,13]. Disturbances of the AD process can lead to the accumulation
of SCFA and consequently process instability [12,14–16]. Thus, the cooperation between
bacteria and methanogenic archaea is essential for stable process performance. Typical
propionate- and butyrate-oxidizing bacteria are Syntrophobacter, Pelotomaculum, Smithella,
and Syntrophomonas [12,17]. In AD processes, hydrogenotrophic methanogens depend
on hydrogen-producing bacteria, and inversely, syntrophic bacteria can only grow when
the hydrogen partial pressure is kept low by hydrogenotrophs. For instance, fatty acid-
degrading bacteria that use the β-oxidation pathway, such as Syntrophomonadaceae, grow in
syntrophy with hydrogen-consuming microbes [6,18]. Besides acetoclastic methanogenesis
catalyzed by Methanothrix or Methanosarcina, syntrophic acetate oxidation (SAO) is an
alternative acetate sink in AD. Under mesophilic conditions, Thermacetogenium phaeum,
Pseudothermotoga lettingae, Tepidanaerobacter acetatoxidans, Clostridium ultunense, and Syn-
trophaceticus schinkii [19] are key players of SAO whereby acetate is converted into H2
and CO2 [20,21]. In SAO, both the methyl and carboxyl groups of acetate are oxidized to
CO2, and H2 is formed, but the reaction is unfavorable in the absence of hydrogenotrophic
methanogens. Therefore, SAO is also an example of the interdependencies between bacteria
and archaea in AD [22].

Two metabolic pathways for anaerobic propionate degradation have been described:
the methylmalonyl-CoA pathway and the C6-dismutation pathway. Examples of syn-
trophic propionate-oxidizing bacteria (SPOB) that use the methylmalonyl-CoA pathway
are Syntrophobacter and Pelotomaculum [23]. These SPOB degrade propionate directly to
acetate and CO2. Propionate is first carboxylated to methylmalonyl-CoA, which is further
converted via succinate, fumarate, and malate to oxaloacetate, followed by two decarboxy-
lation steps to pyruvate and eventually to acetyl-CoA [24,25]. In contrast, Smithella uses the
C6-dismutation pathway converting propionate to acetate and n-butyrate as an intermedi-
ate [26]. Butyrate is then further degraded to acetate via the β-oxidation pathway [27].

For the last AD step, methanogenesis, three important pathways have been described:
the acetoclastic, the hydrogenotrophic, and the methylotrophic pathway. In the acetoclastic
pathway, acetate is activated to acetyl-CoA and then cleaved into CO2 and a methyl group,
which is further reduced to CH4 [28,29]. Methanothrix and Methanosarcina are the only two
genera performing acetoclastic methanogenesis. Most of the other known methanogens
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utilize the hydrogenotrophic pathway, which accounts for the remaining portion of methane
production resulting from the reduction of carbon dioxide with hydrogen/formate [30,31].

In this study, Illumina-based shotgun metagenome sequencing was used to charac-
terize and compare compositional and overall functional profiles of reactor microbiomes
being subjected to different feeding regimes and OLRs. By restricting the substrate to SCFA,
we aimed to select microbiomes that are less diverse than common AD microbiomes and
facilitate the functional analysis of acetogenesis and methanogenesis as the last two AD
steps. To analyze the genetic profile of individual members of the microbial community
(particularly the bacterial community), Illumina-based short-read and Oxford Nanopore-
based long-read assemblies were compared with respect to the recovery of high-quality
metagenome-assembled genomes (MAGs). Read length is a limitation of the Illumina
platform but the high quality is an advantage. Oxford Nanopore reads are long, but the
quality is much lower with an error rate of up to 15%, compared to the Illumina error rate
of 0.473% (median) [32–35]. By applying a hybrid assembly approach, the disadvantages of
both techniques can be compensated [36–38], hence we expected that the completeness of
the MAGs increases compared to Illumina-based MAGs. Additionally, the identification
and analysis of MAGs can help predict important functional groups [39–41].

2. Materials and Methods
2.1. Samples

The biogas reactor experimental design was described by Bonk et al. [1]. In brief, five
reactor experiments were conducted (R-1 to R-5) using CSTRs with a working volume
of 8 L (R-1 to R-3) or 6 L (R-4 and R-5) (total volume 15 L), which were operated under
mesophilic conditions (37 ◦C), and with a hydraulic retention time of 8 days. Acetate,
propionate and butyrate were fed as sole carbon sources in a synthetic medium in a ratio
of 0.45:0.1:0.45, based on chemical oxygen demand (COD). This ratio reflects the product
spectrum of acidogenic fermentation, in which typically more acetate and butyrate is
formed than propionate (see e.g., [42]). Feeding was varied across two parameters: OLR
(high and low) and feeding regime (continuous and discontinuous). Reactors R-1 and R-4
were continuously fed, while reactors R-2, R-3, and R-5 received a single feeding pulse per
day (Table 1). All reactors were inoculated from a laboratory scale reactor that was fed with
the same substrates. The original inoculum was derived from a lab-scale reactor digesting
distillers grains.

Table 1. Experimental setup and process parameters according to [1]. For discontinuously fed
reactors, measurements were taken just prior to feeding; mean values and standard deviation are
reported for the stable operating phase (29 days for R-1, R-2, R-3, and 44 days for R-4, R-5) with
daily measurements of pH and methane production and weekly measurements of total SCFA and
microbial biomass (see Figure S1). COD: chemical oxygen demand; VS: volatile solids.

R-1 R-2 R-3 R-4 R-5

OLR (gCOD/L/d) 1.55 4.65

Feeding regime Continuous
feeding over 24 h 75% daily feed at once, 25% continuously Continuous

feeding over 24 h
100% daily feed

at once

Replicates – Biological Biological – –

pH 7.5 ± 0.1 7.5 ± 0.1 7.5 ± 0.1 7.2 ± 0.1 7.5 ± 0.2

Total SCFA
concentration (mg/L) 86.9 ± 28.7 338.8 ± 413.5 56.5 ± 45.2 195.6 ± 371.3 304.0 ± 455.6

Methane production
rate (L/d) 3.8 ± 0.5 4.1 ± 0.4 4.4 ± 0.3 11.8 ± 2.9 10.5 ± 1.9

Microbial biomass
(gVS/L) 0.37 ± 0.01 0.34 ± 0.07 0.34 ± 0.05 0.96 ± 0.15 0.79 ± 0.07
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All reactors had reached a stable production phase when sampling occurred (see
Supplementary File S1 for details on observed process performance of all reactors). The
following parameters were recorded: pH value, methane production rate, total SCFA
concentration, and microbial biomass. The experimental setup, process parameters, and
measured data in the stable production phase are summarized in Table 1.

For metagenome analysis using the Illumina MiSeq platform, 1.5 mL reactor effluents
were centrifuged for 2 min at −7 ◦C and 15,000× g, immediately upon sampling. The
supernatant was removed. The sample pellets for subsequent DNA extraction were stored
at −20 ◦C. The DNA extraction followed the instruction (buffer SL2, no enhancer solution)
of the NucleoSpin® Soil Kit (MACHEREY–NAGEL GmbH & Co. KG, Germany). DNA
purity was assessed with a NanoDrop One spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA), and for DNA quantification, the Qubit ™ dsDNA HS Assay Kit
(Thermo Fisher Scientific, Waltham, MA, USA) was used.

2.2. Metagenome Sequencing

Libraries for whole-genome shotgun sequencing were prepared using the Nextera®

XT DNA Library Preparation Kit (Illumina, San Diego, CA, USA) according to the manu-
facturer’s protocol. Based on the quantification results by Qubit™ dsDNA HS Assay Kit
(Thermo Fisher Scientific, Waltham, USA), the DNA samples were diluted to 0.2 ng/µL.

For indexing, the indexes i7 and i5 were used. Samples were purified using 30 µL
AMPureXP beads (AGENCOURT® AMPURE® XP Kit) according to the manufacturer’s
instructions. The purified library was eluted in 50 µL resuspension buffer. Finally, the
library was checked by the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA) applying the Agilent High Sensitivity DNA Kit and by Qubit™ dsDNA HS
Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA).

The library pool was generated using the concentration (based on Qubit™ quantifica-
tion) and the average size of DNA fragments (in bp) per sample (based on the Agilent 2100
Bioanalyzer quantification). An individual volume per library was pipetted to obtain a pool
library of 50 nM, which was finally controlled using the Agilent High Sensitivity DNA Kit
and Qubit dsDNA HS Assay Kit. Libraries including 5% PhiX DNA were sequenced on the
Illumina MiSeq platform. For the reactors R-1 to R-3, the MiSeq Reagent Kit v2 (Illumina)
with 500 cycles (2 × 250 bp reads) was used, and for the samples from reactors R-4 and R-5,
the MiSeq Reagent Kit v3 (Illumina) with 600 cycles (2 × 300 bp reads) was used.

Extracted DNA was prepared for sequencing on the MinIon Mk1B platform (Oxford
Nanopore Technologies, Oxford, UK) using the SQK-LSK108 Ligation Sequencing Kit
(Oxford Nanopore Technologies, Oxford, UK) according to the manufacturer’s protocol.
Libraries were loaded on rec V R9.4 flow cells. The MinIon device was operated with
MinKNOW software v1.10.16.

Statistics for both sequencing approaches are provided in Supplementary File S2, B.1.

2.3. Bioinformatic Analysis
2.3.1. Basecalling, Quality Filtering, and Read Trimming

For technical reasons, DNA from sample R-1 was sequenced in two technical replicates
on the Illumina platform. Raw reads of both replicates from reactor R-1 were merged to
increase the coverage. Adapter sequences of all reads were trimmed automatically during
MiSeq sequencing.

First, the Illumina raw reads were quality-filtered by Trimmomatic v0.36 [43] to a
minimum read length of 35 bp and minimum average quality of 20. Quality control before
and after filtering was performed with FastQC [44] and compared using MultiQC [45].
Between 5 and 25 million high quality reads per sample were generated.

Basecalling of Nanopore raw reads was performed with Albacore v2.3.1 using default
settings. Adapters were removed with Porechop v0.2.3 (https://github.com/rrwick/
Porechop) using an identity threshold of 90% and splitting reads when adapters were

https://github.com/rrwick/Porechop
https://github.com/rrwick/Porechop
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found with 90% identity in the middle of a read. Quality control was performed with
FastQC and MultiQC as well.

2.3.2. Analysis of Community Composition and Functional Potential

Community composition was analyzed using a pipeline based on information of
expected species of the AD process, as previously described by Becker et al. [46]. Expected
species were chosen based on a literature search in the context of AD, gene prediction results
using Metaxa v2.1.3 [47,48], and amplicon sequencing results from Bonk et al. [1], and
combined in a reference database. The FASTA files including genomes of these expected
species were included in this reference database [46]. According to the database, the reads
were classified into expected species reads (aligned against the database) and unexpected
species reads (unaligned). Bowtie2 v2.3.3.1 [49] was applied to align the Illumina reads
against the database of expected species for the classification. Expected reads were directly
annotated using DIAMOND v0.9.8 [50] and MEGAN6 v6.12.0 [51] based on the NCBI-NR
database (accessed on 11 July 2018), whereas unexpected species reads were additionally
subjected to de novo assembly and binning steps.

The assembly of unexpected reads was performed with IDBA v1.1.1 using the IDBA-
UD command [52,53] and a k-mer range between 51 and 301, and binned with MaxBin
v2.2.4 [54,55] using the marker gene set 40 specific for bacterial and archaeal communities.
After binning, unexpected reads of each bin were reassembled using IDBA v.1.1.1 using
the IDBA-UD command and a k-mer range between 51 and 301. Assembly and binning
statistics were assessed with QUAST v4.5 [56] and CheckM [57]. Reassembled unexpected
species reads were annotated with DIAMOND v0.9.8 [50] and MEGAN6 v6.12.0 [51] using
the NCBI-NR database (accessed on 11 July 2018). Finally, the annotation results of expected
and unexpected species were combined as described by Becker et al. [46].

The EggNOG database [58] option of DIAMOND/MEGAN5 was used to annotate
the functional potential of expected reads and assembled unexpected reads by using the
protein accession mapping file from October 2016. Finally, the read counts of annotations
were combined to cover the whole functional potential (see Supplementary File S2, B.2.2).

To generate a functional catalog of all reads per sample, interleaved paired and
unpaired reads were annotated together, without differentiating between expected and
unexpected species reads as before. The databases used for the annotation with DIAMOND
and MEGAN5 were the protein accession mapping file of EggNOG [58] from October
2016 and the GI to NCBI taxonomy mapping files for the NCBI-NR protein database from
June 2018 (both available under http://ab.inf.uni-tuebingen.de/data/software/megan6
/download/welcome.html, last accessed: 16 July 2018). Additionally, the taxonomy (genus
level) and the functional potential (high-level nodes of EggNOG and Clusters of Ortholo-
gous Groups of proteins (COG) IDs) were combined to assess the functional potential per
genus (R scripts available at https://git.ufz.de/UMBSysBio/mpp).

Based on the study by Sikora et al. [31], selected enzymes (genes) responsible for the rele-
vant pathways of syntrophic butyrate, propionate, and acetate oxidation as well as methano-
genesis, based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, were
collected (see Supplementary File S1, Tables S1 and S2). This list of genes was used to compile
the functional catalog per pathway of interest (Supplementary File S2, B.5).

2.3.3. Reconstruction and Annotation of Metagenome-Assembled Genomes

For reconstructing MAGs, the Illumina reads per sample of the continuously fed
reactors (R-1 and R-4, without selection of expected/unexpected species reads) were assem-
bled with SPAdes genome assembler v3.11.1 [59] using the metaSPAdes mode applying
k-mers between 51 and 201, and binned with MaxBin v2.2.7 [54,55] using default settings
(marker gene set 40). Assembly and binning statistics were generated with QUAST and
CheckM, respectively. High quality MAGs (>90% completeness and <5% contamination)
and medium quality MAGs (50–89.99% completeness and <10% contamination) [60] were
refined with refineM v0.1.1 [61]. Thereby, potential contaminations were removed based

http://ab.inf.uni-tuebingen.de/data/software/megan6/download/welcome.html
http://ab.inf.uni-tuebingen.de/data/software/megan6/download/welcome.html
https://git.ufz.de/UMBSysBio/mpp
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on genomic properties, taxonomic assignments of contigs, and incongruent taxonomic
assignment of 16S rRNA genes.

Next to the Illumina-based MAGs, Nanopore reads were included in the reconstruction
of genomes. They were corrected and assembled with Canu v1.9 using the Nanopore preset
parameters and an estimated genome size of 5 Mb [62]. Resulting contigs were binned with
Concoct v1.1.0 [63], MetaBAT v2 [64], and MaxBin v2.2.7 [54]. Bins were refined using the
bin_refinement module of MetaWrap v1.2.1 [65]. Illumina reads were mapped to each bin
using Bowtie v2.3.4.1 [49], and Nanopore reads were mapped to each bin using Minimap
v2.17 [66]. Mapped Illumina and Nanopore reads for each bin were used for hybrid
assembly using Unicycler v0.4.8 [67]. Resulting MAGs were refined with refineM [61] as
described above and the incongruence of contig and 16S rRNA gene taxonomy was checked
manually. Refined Illumina-based and hybrid MAGs were characterized with CheckM
and QUAST. MAGs were annotated using Prokka v1.13 [68] and Prodigal v2.6.3 [69,70].
Taxonomy was assigned with GTDB-tk v1.0.2 using GTDB-Tk reference data version
r89 [71]. Additionally, the hybrid MAGs were analyzed using the type (strain) genome
server of DSMZ—German Collection of Microorganisms and Cell Cultures GmbH (https:
//tygs.dsmz.de/user_requests/new, accessed on 11 July 2018). dRep [72] was used to
identify representative MAGs after the refinement step. Lastly, refined and de-replicated
MAGs were obtained and analyzed.

Finally, the HUMAnN 2.0 pipeline [73] was used to test for the presence of selected
pathways [74] in the Prodigal-annotated hybrid MAGs. Coding sequences were mapped
against the UniRef50 EC filtered database using DIAMOND. Default parameter settings
were used except for lowering the translated query coverage threshold from 90.0 to 50.0 to
account for coding sequences being longer than sequencing reads, which are the typical
input for HUMAnN 2.0. Identified gene families were mapped to EggNOG COGs using
the humann2_regroup_table script.

Metagenome data of MiSeq Illumina sequencing, Oxford Nanopore sequencing, and
representative MAGs are available at https://www.ebi.ac.uk/ena/browser/view/PRJEB42791.

3. Results
3.1. Impact of Feeding Regime and OLR on Microbial Community Composition

After quality-filtering, between 46% and 67% of all reads could be aligned to the
database of expected species. Assembly and binning of unaligned reads led to eleven bins
with a contamination below 5% and a completeness higher than 95%. After reassembly,
the average total assembly length (mean over the total number of contigs over all samples)
was around 26 Mb, the longest contig was around 347 kb, and the highest N50 value was
7.5 kb over all samples (see Supplementary File S2 for details).

The microbial communities in all reactors were dominated by archaea (around 70%
relative abundance, see Figure 1a). R-1, R-2, and R-3 revealed similar archaeal community
compositions with comparable relative abundances (see Figure 1c). Methanothrix had a
relative abundance of around 75% and Methanoculleus of at least 6%, whereas Methanosarcina
was less abundant (around 1%). R-4 showed differences in terms of a lower relative
abundance of Methanothrix (41%) and a higher relative abundance of Methanoculleus (20%)
compared to R-1, R-2, and R-3. Methanosarina increased in abundance up to around 3% in
R-4. More conspicuous was the higher relative abundance of Methanosarcina in R-5, with
around 32%.

R-4 and R-5 showed higher proportions of bacteria (around 33%) than R-1, R-2, and
R-3 (around 26%, Figure 1b). Nine bacterial phyla constituted the bacterial community,
with Firmicutes dominating in all reactors (between around 7% and 13%). Bacteroidetes were
more abundant in R-1, R-2, and R-3 compared to R-4 and R-5, with around 6.5% compared
to 3.8% relative abundance. Besides Spirochaetes, Cloacimonetes were more abundant in R-4
and R-5 than in R-1, R-2, and R-3. Comparing the bacterial communities on the genus
level (Figure 1c,d), Desulfovibrio only contributed significantly to the bacterial community
composition in discontinuously fed reactors with low OLR (R-2 and R-3). Mesotoga reached

https://tygs.dsmz.de/user_requests/new
https://tygs.dsmz.de/user_requests/new
https://www.ebi.ac.uk/ena/browser/view/PRJEB42791
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up to around 12% but only under continuous feeding at high OLR. At low OLR under
continuous feeding (R-1), Syntrophomonas was the dominant genus, while at discontinuous
feeding or higher OLR (R-2 to R-5), its relative abundance was lower. Under low OLR,
either one or two bacterial genera contributed more than 30% of the bacterial composi-
tion (Syntrophomonas under continuous feeding, and either unclassified Bacteroidetes or
Desulfovibrio with Endomicrobium under discontinuous feeding), while at high OLR, the
distribution was more even. For more information regarding other taxonomic levels, see
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Figure 1. Microbial community composition at domain (a), phylum (b), and genus level (c), and
composition of the bacterial communities only at genus level (d). Relative abundances were calcu-
lated using read counts per taxon. In all panels, not assigned refers to reads without hits on the
respective taxonomic level as well as unclassified reads. Other refers to reads assigned to other
domains (a), phyla, respectively, genera, with relative abundances below 1% (b,c), and bacterial
genera with relative abundances below 5% (d). Panels (c,d) share the same legend.

3.2. Combining Taxonomic and Functional Annotation

Compared to PCR-dependent analysis methods, metagenomes enable the analysis of
community composition without PCR bias, and additionally reveal the functional potential.
Even though the bacterial community composition was different in the five reactors, the
functional potential was very similar (see Supplementary File S2, B.2.2). Therefore, annotation
results were merged over all reactors to assess the functional potential of individual taxa by
combining functional and taxonomic annotation of metagenomic reads. For this analysis,
7000 genes and 3500 taxa were considered (see Supplementary File S2, B.4). As SCFAs were
supplied as the sole carbon source, the further analysis focused on syntrophic SCFA oxidation
and methanogenesis pathways (see Figure 2 and Supplementary File S2, B.5).



Microorganisms 2023, 11, 420 8 of 20

Microorganisms 2023, 10, x FOR PEER REVIEW  9  of  22 
 

 

 

Figure  2.  Taxonomic  and  functional  annotation  of metagenome  reads. Rows  contain  pathway‐

specific  genes  for  propionate,  butyrate,  and  acetate  degradation  as  well  as  methanogenesis 

pathways. The  color  gradient  represents  read  abundance  (read  counts per  genus  and potential 

function as absolute values). Genera with most matches for the selected pathways are shown. IDs 

in bold indicate alternatives to searched gene IDs, or were not available (see Supplementary File S1). 

Figure 2. Taxonomic and functional annotation of metagenome reads. Rows contain pathway-
specific genes for propionate, butyrate, and acetate degradation as well as methanogenesis pathways.
The color gradient represents read abundance (read counts per genus and potential function as
absolute values). Genera with most matches for the selected pathways are shown. IDs in bold
indicate alternatives to searched gene IDs, or were not available (see Supplementary File S1). Genera
indicated in blue were associated with SCFA oxidation pathways and genera indicated in red with
methanogenesis pathways. The “unknown” section represents all reads that were not assigned to
any known organism in the NCBI database.

Nine genes selected for the oxidative carbon monoxide dehydrogenase/acetyl-CoA
synthase (CODH/ACS) pathway (Supplementary File S1) of acetate oxidation were de-
tected and seven of nine genes were unique for the CODH/ACS pathway. Only Acetomi-
crobium covered the whole CODH/ACS pathway. A high coverage of this pathway was
shown for Clostridium and Desulfotomaculum. The acetate oxidation pathway coupled to
the reduction of fumarate (Supplementary File S1) was almost completely covered by
Burkholderia, Corynebacterium, and Geobacter.

Except for the missing COG2057 gene (acetate CoA-transferase beta subunit), Syn-
trophomonas and Clostridium covered all selected genes for butyrate oxidation (Supplemen-
tary File S1). However, many other genera covered almost the whole butyrate oxidation
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pathway as well, for example, Bacillus, Desulfotomaculum, Corynebacterium, and Faecalibac-
terium, among others.

None of the bacterial taxa covered the whole propionate oxidation pathway (Sup-
plementary File S1). The bacterial genera Bacillus, Clostridium, Desulfotomaculum, and
Pelotomaculum covered a great part of the propionate oxidation pathway to a lesser extent
(around eight of ten selected genes). Accordingly, expected SPOB like Smithella and Syntro-
phobacter were rare as reflected by their low relative abundance in the whole community.

Syntrophy-specific functional domains of butyrate or propionate oxidation, such as
the extra-cytoplasmic formate dehydrogenase (FDH), FDH accessory protein, membrane-
integrated proteins, and ribonuclease (Supplementary File S1) were completely encoded in
Syntrophobacter, Syntrophomonas, and Syntrophus as well as in Bacillus and Desulfotomaculum.

In our analysis, Clostridium showed a high functional potential and gene coverage in
all pathways of acetogenesis (Figure 2). This is in line with Clostridium species having been
reported as versatile contributors in the processes of AD [75,76].

The hydrogenotrophic methanogenesis pathway was completely covered by Methanosarcina,
Methanoculleus, Methanothrix, Methanolobus, Methanohalophilus, and Methanospirillum (Figure 2).
The acetotrophic methanogenesis pathway was almost completely covered by Methanosarcina
and partially by Methanothrix, Methanohalophilus, and Methanoculleus. The acetate-CoA ligase
(COG0365) was encoded in all archaeal genera. Additionally, Methanosarcina also covered the
methylotrophic methanogenesis pathway. Therefore, the functional potential of Methanosarcina
for all pathways of methanogenesis was detected.

3.3. Metagenome-Assembled Genomes
3.3.1. MAGs Reconstructed from Illumina Reads Only

MAGs were reconstructed and analyzed to elucidate the functional role of the detected
species in more detail. In total, 94 MAGs were obtained. After refinement, 27 high-quality
and 29 medium-quality MAGs were generated (see Table 2), from which 45 bacterial MAGs
and 11 archaeal MAGs were allocated (see Supplementary File S2, B.6.1 for details). The
archaeal MAGs were mainly assigned to the genera Methanothrix, Methanoculleus, and
Methanospirillum. The identified bacterial MAGs were taxonomically more diverse and
assigned to several already described MAGs (listed in the GTDB). All results of MAG
reconstruction from Illumina MiSeq reads are listed in detail in Supplementary File S2,
B.6.1. The mean N50 value was 32.24 kb, the total assembly length around 2.29 Mb, and the
largest contig was 93.70 kb.

Table 2. Summary of Illumina-based MAGs after refinement.

Quality ID Completeness [%] Contamination [%] Length [Mb] Taxonomic Classification
According to GTDB

HQ UFZ-5_008 100 1.69 2 g__58-81 (f_Thermovirgaceae)
HQ UFZ-1_001 99.35 0.65 2.8 s__Methanothrix soehngenii
HQ UFZ-2_001 99.35 0.65 2.8 s__Methanothrix soehngenii
HQ UFZ-3_001 99.35 0.65 2.8 s__Methanothrix soehngenii
HQ UFZ-4_002 99.35 0.65 2.7 s__Methanothrix soehngenii
HQ UFZ-5_003 99.35 1.31 2.7 s__Methanothrix soehngenii
HQ UFZ-4_007 99.15 3.54 2 g__58-81 (f_Thermovirgaceae)
MQ UFZ-5_013 97.9 6.37 4.1 f__Syntrophobacteraceae
HQ UFZ-1_009 97.8 0 2.2 g__UBA3900

HQ UFZ-5_005 97.8 0 2.1 g__UBA3900
(f_Cloacimonadaceae)

HQ UFZ-1_013 97.75 1.56 1.7 f__Endomicrobiaceae
HQ UFZ-2_003 97.19 0.37 1.7 f__Endomicrobiaceae

HQ UFZ-3_003 96.68 4.39 3.7 s__UBA5314 sp002410325
(f_Syntrophomonadaceae)
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Table 2. Cont.

Quality ID Completeness [%] Contamination [%] Length [Mb] Taxonomic Classification
According to GTDB

HQ UFZ-5_009 96.07 0.44 1.6 f__Endomicrobiaceae

MQ UFZ-4_004 95.82 5.82 3.4 s__UBA5314 sp002410325
(f_Syntrophomonadaceae)

HQ UFZ-5_004 95.42 0.65 3.8 s__Methanosarcina mazei

MQ UFZ-2_004 95.15 6.13 3.8 s__UBA5314 sp002410325
(f_Syntrophomonadaceae)

HQ UFZ-3_007 94.76 1.85 1.7 g__58-81 (f_Thermovirgaceae)
HQ UFZ-2_002 94.56 1.72 2.7 g__Methanoculleus
HQ UFZ-4_001 94.44 2.75 2.7 g__Methanoculleus

HQ UFZ-4_008 94.25 1.79 2.4 s__UBA2256 sp001603165
(o_Treponematales)

HQ UFZ-5_007 94.25 3.58 2.5 s__UBA2256 sp001603165
(o_Treponematales)

HQ UFZ-5_010 93.47 3.14 2.5 f__4484-276 (o_Bacteroidales)
HQ UFZ-1_010 93.37 1.09 2.6 f__Syntrophomonadaceae

HQ UFZ-1_014 93.1 2.98 2.4 s__UBA2256 sp001603165
(o_Treponematales)

HQ UFZ-1_018 93.04 4.25 4 f__Syntrophobacteraceae
HQ UFZ-4_011 92.42 2.32 4 f__Syntrophobacteraceae
HQ UFZ-5_002 92.19 3.16 2.4 g__Methanoculleus
HQ UFZ-3_004 92.17 4.4 2.5 f__4484-276 (o_Bacteroidales)
HQ UFZ-1_004 91.73 0.21 2.5 s__Syntrophomonas wolfei
MQ UFZ-3_002 89.58 5.28 2.7 g__Methanoculleus
MQ UFZ-1_019 87.85 2.59 2.7 s__Mesotoga sp002305955
MQ UFZ-1_003 86.8 2.69 2.1 g__Methanoculleus

MQ UFZ-1_020 86.69 3.12 2.7 s__UBA5314 sp002410325
(f_Syntrophomonadaceae)

MQ UFZ-3_005 86.67 1.11 2.8 f__BBW3 (o_Bacteroidales)
MQ UFZ-1_006 86.27 0.54 2.6 f__4484-276 (o_Bacteroidales)
MQ UFZ-3_009 86.13 9.59 3.7 f__Syntrophobacteraceae
MQ UFZ-5_018 83.06 2.72 1.9 g__Syntrophomonas_B
MQ UFZ-4_003 80.88 0.47 2.3 s__Mesotoga infera_B
MQ UFZ-2_008 72.42 1.61 2.2 f__BBW3 (o_Bacteroidales)
MQ UFZ-5_012 71.28 1.19 2 g__Corynebacterium
MQ UFZ-5_014 68.95 2.01 1.3 g__Methanospirillum

MQ UFZ-5_017 68.02 3.11 1.8 g__SR-FBR-E99
(o_Bacteroidales)

MQ UFZ-4_010 67.63 0.86 1.7 f__4484-276 (o_Bacteroidales)

MQ UFZ-4_006 67.58 4.4 1.3 s__Cloacimonas
acidaminovorans

MQ UFZ-5_015 67.1 3.22 1.2 f__DTU023
(o_Saccharofermentanales)

MQ UFZ-2_006 63.94 1.34 1.7 f__4484-276 (o_Bacteroidales)

MQ UFZ-2_005 62.8 1.12 0.4 s__UBA2558 sp002340425
(o_Paceibacterales)

MQ UFZ-4_012 62.67 1.21 1.4 p__Firmicutes_A
MQ UFZ-3_008 60.22 2.88 0.9 f__Endomicrobiaceae
MQ UFZ-5_019 56.14 5.65 1.4 f__Salinivirgaceae
MQ UFZ-2_007 55.22 1.66 1.3 g__Methanoculleus
MQ UFZ-1_029 55.05 2 0.9 g__58-81 (f_Thermovirgaceae)
MQ UFZ-5_006 53.45 0 1.6 -

MQ UFZ-2_010 50.76 2.01 1 g__UBA3900
(f_Cloacimonadaceae)

MQ UFZ-2_009 50.08 0.22 2.1 f__Syntrophobacteraceae

HQ: high quality MAGs with >90% completeness and <5% contamination, MQ: medium quality MAGs with
>50% completeness and <10% contamination; p: phylum; o: order; f: family; g: genus; and s: species.
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3.3.2. MAGs Based on the Hybrid Assembly Approach

The Illumina MAG analysis was extended by including Oxford Nanopore reads for
the samples from the continuously fed reactors (R-1 and R-4, see Supplementary File S2,
B.6.2). In total, 27 MAGs based on the hybrid approach were obtained for both reactors,
including 13 high-quality and four medium-quality MAGs. Thirteen of these MAGs could
be matched to known species (Table 3). Three high-quality archaeal MAGs were obtained
with a completeness between 97.22% and 99.35%, and 0.65% contamination (Table 3). Two
of them represented Methanothrix soehngenii and the third one Methanoculleus. Additionally,
ten high-quality bacterial MAGs were reconstructed, see Supplementary File S2, B.6.2. A
Cloacimonas acidaminovorans MAG had the highest quality and was circular. Six of the 13
dereplicated MAGs showed a close relationship to Syntrophobacteraceae or Syntrophomonas.
Four MAGs represented circular genomes of Methanothrix soehngenii, Syntrophomonas wolfei,
Cloacimonas acidaminovorans, and Mesotoga infera B. The mean N50 value was 1.7 Mb, the
total assembly length around 3 Mb, and the largest contig was 1.9 Mb.

Table 3. Summary of results of hybrid assembly-based MAGs after refinement.

Quality ID Completeness [%] Contamination [%] Length [Mb] GTDB Classification TYGS Classification *

HQ UFZ-4H1 100 1.1 2.2 s__Cloacimonas
acidaminovorans Potential new species

HQ UFZ-4H6 99.84 0.47 3.0 s__Mesotoga infera_B Mesotoga infera
HQ UFZ-4H12 99.35 0.65 2.9 s__Methanothrix soehngenii Methanothrix soehngenii

HQ UFZ-1H11 98.98 1.86 3.2 g__DTU019
(f_Syntrophomonadaceae) Potential new species

HQ UFZ-4H3 98.87 2.1 4.4 f__Syntrophobacteraceae Potential new species

HQ UFZ-4H4 98.09 4.67 4.4 s__UBA5314 sp002410325
(f_Syntrophobacteraceae) Desulfovibrio paquesii

HQ UFZ-1H7 97.86 1.23 3.0 s__Syntrophomonas wolfei Syntrophomonas wolfei
HQ UFZ-1H3 97.22 0.65 2.9 g__Methanoculleus Potential new species

HQ UFZ-4H14 96.55 0 2.7 s__UBA2256 sp001603165
(o_Treponematales) Potential new species

HQ UFZ-4H10 95.84 1.69 2.2 g__58-81
(f_Thermovirgaceae) Potential new species

MQ UFZ-4H11 91.99 7.01 3.4 s__Syntrophomonas wolfei Potential new species

HQ UFZ-1H10 90.59 0.54 2.7 f__4484-476
(o_Bacteroidales) Potential new species

MQ UFZ-1H9 78.19 0.58 1.8 g__Syntrophomonas_B Potential new species

* https://tygs.dsmz.de/user_requests/new, accessed on 11 July 2018. HQ: high quality MAGs with >90% com-
pleteness and <5% contamination, MQ: medium quality MAGs with >50% completeness and <10% contamination;
o: order; f: family; g: genus; and s: species.

3.3.3. Pathways of Interest Encoded by MAGs

To elucidate the functional role of organisms represented by the reconstructed MAGs
within the community, individual MAGs were tested for the presence of genes encoding
syntrophic SCFA degradation and methanogenesis pathways (Figure 3). Four clusters of
similar enzyme repertoires were identified. Both members of the first cluster (UFZ-4H3
and UFZ-1H5) were assigned to the family Syntrophobacteraceae. They contained genes
of all SCFA oxidation pathways including the almost complete pathways for syntrophic
butyrate and propionate oxidation. Two MAGs (UFZ-1H1 and UFZ-4H12), both iden-
tified as Methanothrix soehngenii, formed the second cluster and covered a great part of
the hydrogenotrophic methanogenesis pathway (eight out of nine genes). Both MAGs
contained six of the seven unique genes for hydrogenotrophic methanogenesis (encod-
ing formylmethanofuran dehydrogenase, formylmethanofuran-H4MPT formyltransferase,
methenyl-H4MPT cyclohydrolase, H2-forming methylene-H4MPT dehydrogenase, and
F420-dependent methylene-H4MPT reductase). Hydrogenotrophic methanogenesis was
fully covered in the third cluster (UFZ-1H3 and UFZ-4H8) with both MAGs being assigned
to Methanoculleus. The last cluster contained five MAGs (UFZ-4H4, UFZ-1H9, UFZ-1H11,
UFZ-4H11, and UFZ-1H7) that were all assigned to the family Syntrophomonadaceae. All

https://tygs.dsmz.de/user_requests/new
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enzymes belonging to butyrate degradation were found to be encoded in these MAGs
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Figure 3. Pathway analysis of hybrid assembly MAGs. “Hits” refers to the number of genes per
MAG and pathway. Rows contain selected genes of pathways of interest. For detailed information,
the COG/EggNOG-IDs are listed in Supplementary File S1. IDs in bold indicate alternatives to
searched gene IDs, or were not available (see Supplementary File S1). MAGs indicated in blue show
similar patterns in syntrophic SCFA oxidation. MAGs indicated in red show similar patterns in
methanogenesis.

4. Discussion

By using metagenome approaches, we analyzed composition and functional potential
of microbial communities in anaerobic digesters under two different feeding regimes at high
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and low OLRs, with a focus on the conversion of SCFAs to methane. We focused the analysis
on selected pathways of particular interest (SCFA oxidation and methanogenesis) and
detected associated genes in reads and MAGs. MAGs were reconstructed and annotated to
shed light on uncharacterized taxa. The goal was to characterize the full community and
identify the putative functional role of not yet described species.

Previous analysis of the methanogenic reactor communities by mcrA-gene based termi-
nal restriction fragment length polymorphism (T-RFLP) analysis had identified Methanothrix
and Methanomicrobiaceae as the main constituents, and an increased share of Methanosarcina
under discontinuous feeding [1]. These findings were confirmed with metagenome-based
analysis in which Methanothrix and Methanoculleus were the main archaeal genera, and the
share of Methanosarcina was increased under discontinuous feeding (R-2, R-3, R-5, Figure 1c),
a shift that was more pronounced under high OLRs (R-5, [1]), where Methansarcina partially
replaced Methanothrix. It is known that Methanothrix is more sensitive to changing envi-
ronmental conditions and stress conditions (feeding regime or OLR) than Methanosarcina
and Methanoculleus [5,77–80]. Hence, stress tolerance of AD systems can be promoted if
Methanosarcina can be enriched in the reactor at the expense of the more sensitive species,
increasing the functional resilience of the methane production process [1]. Discontinuous
feeding was shown to increase the relative abundance of Methanosarcina, and Bonk et al. [1]
hypothesized that the dynamic environment established by discontinuous feeding provides
temporal niches that enable the observed shift in the archaeal community.

The bacterial communities were unique for all reactors, even for reactors R-2 and R-3,
which were biological replicates, and no clear trends could be observed regarding OLR
and feeding regime (Figure 1d). This has been reported before, including similar values for
diversity and evenness of the bacterial communities based on 16S rRNA gene amplicon
sequencing data [1].

Using metagenomic data to assess community composition circumvents any PCR
biases and, by targeting bacteria and archaea simultaneously, enables the assessment of
the ratio between both domains. The observed dominance of archaea was expected as the
direct supply of SCFAs as substrate led to the establishment of only the last two steps of
AD (i.e., syntrophic SCFA oxidation and methanogenesis), excluding the hydrolysis and
acidogenesis steps driven by bacteria. Comparable ratios of bacteria to archaea were also
found in other anaerobic digesters supplied with SCFAs [81]. Propionate and butyrate are
degraded by bacteria in syntrophy with hydrogenotrophic methanogens, while acetate
can either be directly utilized by acetoclastic methanogens or by acetate-oxidizing bacteria,
again requiring a hydrogenotrophic methanogen as a syntrophic partner.

Despite the observed variability in bacterial community composition, the overall
reactor productivity was not affected, indicating the presence of functional redundancy in
the bacterial communities. In low OLR reactors, the bacterial community was dominated
by one or two bacterial genera, while high OLR reactors showed a more even distribution
of the different genera, indicating that competition played a bigger role under nutrient-
limiting conditions. An adaptation of the bacterial community due to an increase in OLR
was also observed by Maus et al. [82].

Although being dominated by archaeal genera, the reactors in this study harboured
diverse bacterial genera, many with relative abundances below 1%. Given that SCFAs
were provided as the sole carbon sources, one could expect that most of these genera are
involved in syntrophic SCFA oxidation. Syntrophobacter and Pelotomaculum were identified
as known syntrophic oxidizers for propionate. Synthrophomonas was the only butyrate-
oxidizing genus detected. Genera such as Cloacimonetes [83–85], Cryptanaerobacter [86],
and Desulfovibrio [87] have been associated with the oxidation of propionic or butyric acid.
Candidatus Cloacamonas acidaminovorans, for example, contains all the genes for propionic
acid oxidation via methylmalonyl-CoA, but has not yet been isolated [83].

Besides these known and putative SCFA-oxidizers, our MAGs analysis uncovered
many bacteria that were apparently not involved in SCFA oxidation. Similar observations
have been made in AD reactors being fed with a single SCFA (acetate or propionate) [88].
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Yeast extract was present in the medium in the latter study, potentially supporting the
growth of other bacteria than SCFA oxidizers. However, this supplement was absent
in our study, and hence cannot explain the observed bacterial diversity. Bacteria not
directly utilizing the primary carbon source could either be involved in biomass turnover
as scavengers or thrive on proteins, amino acids, polysaccharides, and lipids produced
by primary consumers and associated syntrophic partners. Autotrophic methanogens can
actively excrete amino acids into the medium [75,76], and amino acid exchange has been
postulated in a synthetic coculture [89]. Furthermore, metabolite cross-feeding, especially
between phylogenetically distant species, might be an important factor driving microbial
community dynamics [90], and explain the observed diversity of bacterial taxa, including
proteolytic fermenters and amino acid oxidizers not involved in SCFA oxidation. The
primary consumers together with their syntrophic partners may hence be the source of
excreted nutrients, which sustain a low abundance shadow microbial community of taxa
not involved in the primary process.

Overall, the microbial community composition at the genus level was more similar for
reactors only differing in feeding regime, whereas those with different OLR harboured more
distinct communities, indicating the importance of substrate quantity for shaping commu-
nity composition. For example, the ratio of bacteria to archaea was mostly determined by
the OLR but not by the feeding regime.

The functional potential was similar between reactors despite different community
composition. Hence, functional redundancy in SCFA degradation by known or unknown
bacterial species could play an important role. By applying a higher OLR (reactors R-4
and R-5), the relative abundance of bacteria increased compared to the low OLR reactors
R-1 to R-3. However, the genus Syntrophomonas, comprising typical butyrate-oxidizing
bacteria [20,91], showed the highest abundance in the low OLR reactor R-1. Syntrophomonas
was also described as the major syntrophic butyrate-oxidizing bacterium in a butyrate-fed
system [92]. Its lower abundance in the other reactors indicates that other species took over
its function there. Other species only appeared under high OLR conditions or increased
their abundance. For instance, Corynebacterium was not found in R-2 and R-3 but had an
abundance in the bacterial community of around 13% in R-5, and Mesotoga was present with
a relative abundance of less than 1% in R-2 and R-3 but reached around 3% in R-5. Genera
like unclassified Bacteroidetes, Candidatus Cloacimonas, Mesotoga, Desulfovibrio, or Endomi-
crobium were detected with higher abundance, but none of these taxa covered the complete
butyrate degradation pathway. Pathway analysis showed that Desulfosporosinus, Clostrid-
ium, or Bacillus showed the same pathway coverage of selected genes as Syntrophomonas.
However, the relative abundance of these genera was below 1% of the whole community.
Thus, potential functional redundancy between yet undescribed taxa and known taxa might
be present in our reactors. Candidatus Cloacimonas was detected mainly in the R-4 commu-
nity with around 5%. Being frequently detected in AD processes [83,93], the reconstruction
of a high quality MAG classified as Candidatus Cloacimonas and with 100% completeness
(UFZ-4H1) provides the opportunity to identify its role in the process. However, regarding
the main pathways analyzed in this study, there was no clear indication for its participation
in syntrophic SCFA oxidation. For example, only three genes out of ten for propionate
oxidation via the methonylmalonyl-CoA pathway were found (Figure 3), although the
complete pathway was reported for the genome of Candidatus C. aminoacidivorans [83].

Regarding typical propionate-degrading bacteria like Desulfotomaculum, Pelotomaculum,
Smithella, and Syntrophobacter [20], only Syntrophobacter was detected with more than 5% in
the bacterial community and only around 1.5% in the whole community of R-4 and R-5. The
pathway analysis of selected genes of propionate oxidation showed a low coverage of these
genes by Syntrophobacter. In contrast, Clostridium and Desulfotomaculum displayed a higher
share of the typical propionate oxidation genes. A closer examination of Desulfotomaculum
suggested that this genus is metabolically versatile, because it encodes many selected genes
for acetate, butyrate and propionate oxidation. A single species of Desulfotomaculum has
been described as syntrophic propionate oxidizer yet [94].
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The results of Illumina reads as well as the analysis of MAGs showed that Methanothrix
(UFZ-4H12) encoded all selected genes of the hydrogenotrophic methanogenesis pathway,
besides the acetoclastic methanogenesis pathway. This finding was described already by
Smith & Ingram-Smith [95]. As hydrogenotrophic methanogenesis activity of Methanothrix
has not been described, it has been speculated that this genus can produce methane based
on direct interspecies electron transfer [96]. However, as acetic acid was available in our
reactors, Methanothrix most likely utilized the acetoclastic methanogenesis pathway.

Read length is a limitation of the Illumina platform but the high quality is an advantage.
Oxford Nanopore reads are long but the quality with an error rate up to 15% is much higher
compared to the Illumina read quality [32–34]. By applying a hybrid assembly approach,
the disadvantages of both techniques can be compensated. Even though Nanopore reads
get more accurate due to improvements in technology, Illumina, for polishing of especially
low-coverage MAGs, is advantageous [97].

We were expecting that the completeness of the genomes would increase compared to
Illumina short read-based MAGs. Furthermore, as expected and as described in the litera-
ture e.g., [38,97] the contiguity of the MAGs was considerably increased by incorporating
long reads.

By the reconstruction of MAGs, several potentially new species could be identified.
Focusing on high quality MAGs, a Syntrophobacteraceae species potentially involved in
syntrophic SCFA oxidation (UFZ-4H3), three Syntrophomonadaceae species potentially in-
volved in butyrate oxidation (UFZ-4H4, UFZ-1H11, and UFZ-1H7), and one Methanoculleus
species potentially involved in hydrogenotrophic methanogenesis (UFZ-1H3) were identi-
fied (Figure 3). The metabolic pathway analysis focused on the two key processes in the
reactor: syntrophic SCFA oxidation as the utilization step of the provided carbon sources
and methanogenesis as the syntrophically coupled process, providing the required electron
sink. However, some of the high-quality MAGs could not be clearly assigned to these key
processes (UFZ-4H14, UFZ-1H10, UFZ-4H10, UFZ-4H1, and UFZ-4H6; Figure 3). This
indicates that the core community catalyzing the key processes is able to support a wider
food web, explaining the observed high diversity. The discovered MAGs provide a first
glimpse into this food web, potentially comprising metabolite cross-feeding and scavengers
involved in biomass turnover.

The high relative abundance of the archaeal populations limited the read numbers for
bacterial populations, limiting the opportunity to reconstruct complete bacterial genomes of
rare species. A higher number of bacterial reads would allow to reconstruct more complete
genomes of potential new functional groups or species. Nevertheless, 13 medium- and
high-quality MAGs could be obtained. The GTDBbk database classification leads to the
assumption that some bacterial MAGs belong to the families Syntrophobacteraceae (UFZ-4H3,
UFZ-4H4) and Cloacimonadaceae (UFZ-4H1) or the order Bacteroidales (UFZ-1H10).

Concluding, the hybrid assembly revealed to be the optimal approach for genome
reconstruction, because the advantage of quality (Illumina approach) and read length
(Nanopore) and disadvantages of short reads (Illumina) and lower quality (Nanopore)
complement each other. Illumina-based sequencing approaches usually lead to highly
fragmented MAGs. This means that complex genomes can only rarely be reconstructed.
The functional understanding of microbiomes from AD systems could be expanded and
more information could be retrieved from metagenomic samples. After all, an approach
that uses a dereplicated set of recovered MAGs from hybrid assemblies is likely to improve
our ability to reconstruct genomes and can even enable the strain-specific reconstruction of
genomes from metagenomic data.
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