
Citation: Aloraini, S.; Alum, A.;

Abbaszadegan, M. Impact of Pipe

Material and Temperature on

Drinking Water Microbiome and

Prevalence of Legionella,

Mycobacterium, and Pseudomonas

Species. Microorganisms 2023, 11, 352.

https://doi.org/10.3390/

microorganisms11020352

Academic Editors: Darija Vukić Lušić,
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Abstract: In drinking water distribution systems (DWDSs), pipe material and water temperature
are some of the critical factors affecting the microbial flora of water. Six model DWDSs consisting
of three pipe materials (galvanized steel, copper, and PEX) were constructed. The temperature in
three systems was maintained at 22 ◦C and the other 3 at 32 ◦C to study microbial and elemental
contaminants in a 6-week survey using 16S rRNA next-generation sequencing (NGS) and inductively
coupled plasma-optical emission spectrometry (ICP-OES). Pipe material and temperature were
preferentially linked with the composition of trace elements and the microbiome of the DWDSs,
respectively. Proteobacteria was the most dominant phylum across all water samples ranging from
60.9% to 91.1%. Species richness (alpha diversity) ranking was PEX < steel ≤ copper system and
elevated temperature resulted in decreased alpha diversity. Legionellaceae were omni-prevalent,
while Mycobacteriaceae were more prevalent at 32 ◦C (100% vs. 58.6%) and Pseudomonadaceae at 22 ◦C
(53.3% vs. 62.9%). Heterogeneity between communities was disproportionately driven by the pipe
material and water temperature. The elevated temperature resulted in well-defined microbial clusters
(high pseudo-F index) in all systems, with the highest impact in PEX (10.928) followed by copper
(9.696) and steel (5.448). Legionellaceae and Mycobacteriaceae are preferentially prevalent in warmer
waters. The results suggest that the water temperature has a higher magnitude of impact on the
microbiome than the pipe material.

Keywords: drinking water microbiome; pipe material; water temperature; Legionella; Pseudomonas;
Mycobacterium; differential abundance analysis

1. Introduction

Globally, drinking water distribution systems (DWDSs) represent one of the largest
manmade networks. In the U.S., it spans a collective distance of more than 2 million miles
delivering more than 39 million gallons per day (MGD) of drinking water to end users [1].
These systems are far from being sterile and several disinfectants (usually chlorine or
chloramine) are commonly used to suppress bacterial growth and to biologically stabilize
DWDSs. However, the bacterial counts in the nutrient-poor municipal treated water are
abundant ranging from 103 to 106 cells per mL [2].

These networks sustain bacterial ecology (both planktonic and sessile) character-
ized for diversity which is affected by many factors such as source water, temperature,
pipe material, water chemistry, and other factors. Multiple studies have shown that op-
portunistic pathogens (OPs) such as Legionella pneumophila, Mycobacterium avium, and
Pseudomonas aeruginosa can proliferate and enteric viruses and parasitic protozoa can sur-
vive in biofilms [3]. It is estimated that 95% of the total bacteria are in biofilms and
only 5% are planktonic, which are usually sampled while monitoring for water quality
assessment [3].
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Treated water travels long distances in main distribution systems and in-premise
plumbing to reach the end user. The DWDSs environment, with variations in water
temperature, chlorine concentration, and water residence time, creates niches favorable for
bacterial growth and survival [4,5].

It has also been suggested that the proliferation of commensal bacterial and oppor-
tunistic pathogens in premise plumbing may occur under conditions where water is warmer
and stagnant resulting in a faster decay of disinfection residuals [4,5]. These conditions are
usually observed within premise plumbing right before the delivery of water to taps [6,7].
Multiple studies have reported an association between the colonization of Legionella spp.
in DWDSs with the presence of trace metals such as Cu, Mn, and Zn [8,9]. Additionally,
Mycobacteria spp. abundance has been associated with the presence of assimilable organic
carbon (AOC) concentration [10]. Microbial water quality can be influenced by a variety
of factors, including the type of pipe material, the presence of nutrients, and disinfection
practices. The age and type of pipe material have been found to influence the rate of biofilm
formation where new copper pipe (<200 days old) showed slower biofilm formation com-
pared to polyethylene pipes, but that difference becomes less significant after 200 days [11].
The deterioration of water quality in the premise plumbing is simulated by the maturity of
biofilm formation, suspended cell counts, and relevant water parameters [11]. Hot water
systems at certain temperatures and flow rates tend to have higher microbial counts when
compared to cold water systems [12].

In this study, the impact of pipe materials and temperature on six model DWDS
microbiomes was investigated. In addition, a probiotic approach to control bacterial
growth in three different DWDS pipe materials and two water temperatures on the relative
abundance of the OPs was investigated. This approach may provide relevant data in the
knowledge gap in the resilience and proliferation of bacterial pathogens in DWDSs.

2. Materials and Methods
2.1. System Design and Sample Collection Procedure

Six pilot-scale model drinking water distribution systems (DWDSs) were constructed
using three pipe materials including PEX, copper, and galvanized steel (Figure 1). The
overall length of the 3/4-inch inner diameter pipe from exit to reentry to the reservoir
was 144 inches, with 72 inches on the shelf. Each DWDS had a 10-gallon polyethylene
tank serving as a reservoir. Systems were operated at a volumetric flow rate of 15 L/min
(4 GPM) with a linear velocity of 0.77 m/s. For each pipe material, two identical systems
were used to simultaneously study the impact of pipe material and water temperature on
the drinking water microbiome over a 6-week period. The temperature in three systems
was maintained at 32 ◦C and the other three systems were operated as control at ambient
temperature, 22 ◦C. The 32 ◦C temperature was maintained using 100-watt aquarium heaters
(Aqueon, Franklin, WI, USA) that gradually increased the temperature without overheating
in 24 h. The water temperature was regularly monitored using a dual infrared thermometer
(cat# E650d ennoLogic, Eugene, OR, USA). The average temperature of the heated and non-
heated systems during the study was 32 ± 0.5 ◦C and 22 ± 0.5 ◦C, respectively. For microbial
analyses, 500 mL of water samples were collected twice a week (Wednesdays and Saturdays)
and after each sample collection, 33% of the total water in each system was replenished with
fresh tap water (City of Tempe, AZ, USA) to maintain reasonable hydraulic retention time in
the systems. For metal, 50 mL water samples were collected in glass vials and acid-preserved
with 2% by volume of 0.32 M of HNO3 to prevent metal precipitation.
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(Front view; tank reservoirs (1st tier, from bottom), pumps (2nd tier), galvanized steel (3rd tier), 
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2.2. Chemical Analysis of Water Samples 
For trace elements, 50 mL water samples were filtered using 0.22 µM disk membranes 
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and then the samples were analyzed using inductively coupled plasma optical emission 
spectrometry (ICP-OES) (Agilent 5900 Synchronous Vertical Dual View (SVDV), Santa 
Clara, CA, USA) following manufacturer protocols. The metal compositions of the water 
samples were determined according to the US EPA 200.7 method [13]. A total of 26 trace 
elements were measured and the 11 trace elements (Na, Li, As, Ca, Cu, Pb, Al, Ni, Mg, K, 
and Zn) that were either significantly or differently present, were further analyzed. Rela-
tionships between the concentrations of these trace elements and the type of DWDSs were 
determined by principal component analysis (PCA) correlation. PCA ordination biplot 
was generated using XLSTAT [14] (Figure 2).  
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Figure 1. Model drinking water distribution systems—from left to right, front, top and side views.
(Front view; tank reservoirs (1st tier, from bottom), pumps (2nd tier), galvanized steel (3rd tier),
copper (4th tier), PEX pipes (5th tier)).

2.2. Chemical Analysis of Water Samples

For trace elements, 50 mL water samples were filtered using 0.22 µM disk membranes
(MilliporeSigma™ SLHVR33RS, Burlington, MA, USA) to remove their microbial content,
and then the samples were analyzed using inductively coupled plasma optical emission
spectrometry (ICP-OES) (Agilent 5900 Synchronous Vertical Dual View (SVDV), Santa
Clara, CA, USA) following manufacturer protocols. The metal compositions of the water
samples were determined according to the US EPA 200.7 method [13]. A total of 26 trace
elements were measured and the 11 trace elements (Na, Li, As, Ca, Cu, Pb, Al, Ni, Mg,
K, and Zn) that were either significantly or differently present, were further analyzed.
Relationships between the concentrations of these trace elements and the type of DWDSs
were determined by principal component analysis (PCA) correlation. PCA ordination
biplot was generated using XLSTAT [14]

2.3. Sample Processing and DNA Extraction

Throughout the study, a total of 500 samples were collected in sterile plastic bottles.
For each system, 500 mL of water was filtered using 47 mm mixed cellulose ester filters
with a pore size of 0.22 µM (GSWP047S0, EMD Millipore). Microbial DNA was extracted
using the DNeasy PowerSoil Kit (QIAGEN, Hilden, Germany). Briefly, the filters were
aseptically cut into small pieces and added to the PowerSoil bead tube and proceeded to
DNA extraction according to the manufacturer’s instruction.

2.4. 16S Illumina Sequencing

Libraries of 16S were generated using next-generation sequencing in the MiSeq Illu-
mina platform. Amplicon sequencing of the V4 region of the 16S rRNA gene was generated
with a barcoded primer set 515f/806r designed by Caporaso et al. [15] following the Earth
Microbiome Project protocol (EMP) (http://www.earthmicrobiome.org/emp-standard-
protocols/ (accessed on 19 September 2022) for the library preparation. PCR amplification
was performed in duplicate, pooled, and quantified using AccuBlue® dsDNA Quantitation
Kit. Negative control (no template sample in library preparation) was included in DNA
library preparation to confirm the absence of extraneous DNA contamination. A total
of 240 ng of DNA per sample was pooled in a 1.5 mL Eppendorf tube and then cleaned
using QIA quick PCR purification kit (QIAGEN). The DNA pool was quantified using

http://www.earthmicrobiome.org/emp-standard-protocols/
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Qubit Fluorometer and a qPCR was performed using the NEBNext Library Quant Kit for
Illumina (New England Biolabs) following the manufacturer’s instructions. The pooled
DNA was diluted to a final concentration of 4 nM then denatured and diluted to a final
concentration of 4 pM with a 25% PhiX. Finally, the DNA library was loaded in the MiSeq
Illumina and run using the version 2 module, 2 × 250 paired-end, following the directions
of the manufacturer.

2.5. Microbiome Statistical Analysis

Microbiome Analysis was performed using QIIME2 (2022.08 version). Briefly, the
paired-end sequences were imported and demultiplexed into QIIME 2 artifact [16]. The
paired-end demultiplexed sequence was then denoised, dereplicated, and filtered out from
chimers using the DADA2 pipeline with standard truncation and trimming of low-quality
ends [17]. For the 66 samples, a total of 1513 features with a total frequency of 1,566,315
were obtained. Samples with less than 18,760 reads, features that represent Mitochondria
and chloroplast, and features with very low abundance (less than 10 frequencies across all
samples) were removed using QIIME2. This resulted in an OTU table containing 61 samples
with 555 features and a total frequency of 1,466,314. The OTUs were then classified by
taxon using classify-sklearn trained with the GreenGenes ribosomal RNA gene database
(13_8 99% OTUs) [18]. After the classification, the detection frequency of the selected OPs
was calculated at the family taxon level (Table 1). For bacteria with most abundant class,
the mean relative abundance was calculated for each system (Figure 3).

Rooted and unrooted phylogenetic trees for alpha and beta diversity analysis were
created using Fasttree and Mafft alignment [19].The alpha diversity metrics (Shannon en-
tropy, Pielou’s evenness, and Faith’s phylogenetic diversity (Faith’s PD)) and beta diversity
metrics were performed using QIIME 2 pipeline with sample depth rarefaction of 18,670 fre-
quency (Figure 4). The change over time on the alpha diversity based on the number of
observed features was calculated using QIIME 2 lg in (q2-longitudinal) (Figure 5).Similarity
and dissimilarity of the microbiome samples were computed using phylogenetic and non-
phylogenetic-based beta diversity metrics. The phylogenetic-based beta diversity metrics
were weighted UniFrac and Unweighted UniFrac. While non-phylogenetic-based beta
diversity metrics were Bray–Curtis dissimilarity and Jaccard similarity index (Figure 6).
Additionally, using unweighted UniFrac distances, pairwise comparisons of significance in
differences within the microbial composition based on pipe material and temperature con-
dition were assessed using PERMANOVA (permutational multivariate analysis of variance)
with 999 permaturations per test (Table 2) as described in Anderson [20].

Differential abundance analysis, which aims to identify the significant differences
in the abundance of features between the 32 ◦C and 22 ◦C DWDSs was performed by
ALDEx2 [18] as QIIME2 plug-in. ALDEx2 was used to calculate the differential relative
abundances between the 32 ◦C and 22 ◦C systems. The tool also calculates the sampling
error using a Dirichlet-multinomial model to estimate abundances from counts. The
sampling and biological variation can then be inferred by taking a Monte Carlo approach
to calculate the expected false discovery rate (FDR) and the Benjamini–Hochberg corrected
p-value using Welch’s t-test. The proportions resulting from Monte Carlo instances are
transformed using the centered log-ratio (clr) transformation. The clr abundance values
of each feature represent its relative abundance to the mean of all abundant features in
the sample. Features with FDR of less than 0.05 are considered significantly differentially
abundant, and their different abundances are not due to random sampling error [21]. In
the present study, we assumed that features that have ±5 median per-feature difference in
(clr) between condition A (32 ◦C) and B (22 ◦C) are significantly differentially abundant.
A total of 20 taxa (classified at the family level) were identified which were significantly
differentially abundant with a maximum p-value of 0.0022. The evenness and richness were
calculated using 3 diversity metrics: Faith PD, Pielou’s evenness, and Shannon entropy.

To predict the metagenomic functional content of the model DWDSs with different
pipe material and temperature conditions, PICRUST (Phylogenetic Investigation of Com-
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munities by Reconstruction of Unobserved States) was used to predict the gene function
profile with quantifiable uncertainty of each pipe material system using only a marker gene
such as 16S rRNA gene [22]. Briefly, the feature (OTU) table was converted from QIIME2
artifact into a JSON version BIOM file to be compatible with downstream applications
outside QIIME2 environment and was then uploaded into Huttenhower’s Lab within
the Galaxy web application (https://huttenhower.sph.harvard.edu/galaxy/ accessed on
9 November 2022) [23]. First, the 16S copy number was normalized to better reflect the
true abundance of each OTU. Second, the virtual metagenome of KEGG orthologs of each
sample was predicted from the normalized 16S rRNA gene number. Finally, the predicted
virtual metagenome collapsed to the desired KEGG Pathway hierarchy level for PICRUSt
prediction. The metagenome functional profiles were statistically analyzed using STAMPS
Software [24]. The extended error bars with mean proportion and 95% confidence interval
were used to compare the differential abundance of gene functions in 32 ◦C and 22 ◦C
DWDSs of different pipe materials (galvanized steel, copper, and PEX).

The temporal trend in the alpha diversity heterogeneity of the model DWDSs was
evaluated by conducting a longitudinal analysis of our microbiome data. The QIIME2 plug-
in, the q2-longitudinal package (https://github.com/qiime2/q2-longitudinal accessed on
23 September 2022) [25], was used to perform linear mixed effects (LME) models for the
systems categorized by independent variables (fixed effects) such as the pipe material and the
temperature condition using alpha diversity as the longitudinal response. The analysis was
conducted to detect the change in alpha diversity of each system over time. The LME models
in the q2-longitudinal package are computed using statsmodels’ “mixedlm” function [26].

3. Results
3.1. Characterization of Chemical Variables in the Model Distribution Systems

Only 11 out of the 26 trace elements analyzed were found to have concentrations
above the limit of detection (LoD). These elements are Na, Li, As, Ca, Cu, Pb, Al, Ni, Mg, K,
and Zn, and the concentration of five elements (Na, Li, Ca, K, and Mg) was found to be
neither affected by pipe materials nor by temperature. Copper pipe systems had higher
concentrations of Cu and Pb, while in PEX and galvanized steel systems Ni and Zn were
detected in elevated concentrations. Using PCA ordination biplot of elemental analysis,
water samples were better separated based on pipe material than temperature (Figure 2).
This is believed to be directly linked to the chemical composition of the pipe material used
in each system. (Figure 2).
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3.2. Bacterial Diversity of the Water Samples in the Model Water Distribution Systems

Bacterial diversity analyses were performed after the removal of Mitochondria, Chloroplast,
and all the reads with a frequency of less than 10 across all samples. Thereafter, rarefaction
was performed to a sequence depth of 18,670 to all samples resulting in the retention of
most of the features across the samples (72.71%) while minimizing the impact of uneven
sample depth on downstream analysis. The total OTUs remaining after applying filtration
and rarefaction were 555 features (61 out of 66 samples) with a frequency that ranged from
10 to 245,079 counts with a median frequency of 111 counts. The taxonomy assignment of
the clustered OTUs resulted in a total of 20 phyla containing 44 different classes of bacteria
(Figure 3). The taxonomy analysis revealed Proteobacteria as the most abundant phylum
across all samples with a relative frequency that ranges from 60.9% to 91.1% (average of
80.4%) followed by Cyanobacteria (6.7%) and Bacteroidetes (4.9%) and Planctomycetes (3.4%).
In-depth class level analysis identified multiple cases where a specific class of bacteria
was prevalent in one of the two temperature conditions in the same pipe material systems.
Nitrospira (Nitrospirales) and Gemmatimonadetes are prevalent in the 32 ◦C PEX system with
an average relative frequency of 4.2% and 4.0% compared to 0.4% and 0.06% in the 22 ◦C
PEX system, respectively. Alphaproteobacteria (Caulobacterales) were one of the most abundant
bacteria in the 22 ◦C PEX system with an average relative frequency of 24.6% compared to
5.9% in the 32 ◦C PEX system. Alphaproteobacteria (Caulobacterales) and Cyanobacteria (4C0d-2)
have a higher average relative abundance in all the systems operated at 22 ◦C compared to
the 32 ◦C systems. Taxa containing opportunistic pathogens (OPs), Legionella pneumophila,
Mycobacterium avium, Pseudomonas aeruginosa taxa were widely detected across all the model
DWDSs with a frequency of detection between 100 to 27% (Table 1). Legionellaceae were
detected in all 66 samples across all the model DWDSs. Mycobacteriaceae were detected in
100% of the systems operated at 32 ◦C and had a lower prevalence frequency in the systems
operated at 22 ◦C. On average, Pseudomonadaceae were detected more frequently in the 22 ◦C
compared to the 32 ◦C systems. Pseudomonadaceae detection frequency was the lowest in
copper systems and the highest in galvanized steel systems.
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Table 1. Frequency of detection of OPs on family taxon level across the 6 model DWDSs.

Temperature Condition Warm Cold

Material Type Copper PEX Steel Copper PEX Steel

Legionellaceae 100% 100% 100% 100% 100% 100%
Pseudomonadaceae 20% 50% 90% 36.4% 63.6% 88.9%
Mycobacteriaceae 100% 100% 100% 81.8% 27.3% 66.7%

3.3. Species Richness and Evenness for Different Distribution Systems—Alpha Diversity

Alpha diversity was calculated to evaluate the impact of pipe material and temperature
on the richness and evenness of bacterial communities. Alpha diversity metrics were
computed using three methods: Faith’s PD, Pielou’s evenness, and Shannon entropy
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methods (Figure 4). The Kruskal–Walli test was used to determine the p-values of each
metric calculated to be 0.0008, 0.0069, and 0.0011 for Faith’s PD, Pielou’s evenness, and
Shannon entropy, respectively. Based on p-values, the difference in the bacterial diversity of
the six systems constructed with different pipe materials and operated at two temperatures
is considered statistically significant (p < 0.05). The Faith’s PD of a sample is calculated
using the sum of the minimum branch lengths connecting the phylogenetic tree of the
microbial community. Alpha diversity measures using Faith’s PD show that copper and
PEX systems at 22 ◦C have slightly higher median phylogenetic diversity values compared
to the systems at 32 ◦C. In contrast, the median Faith’s PD for the galvanized steel system at
32 ◦C is higher than the 22 ◦C system. The alpha diversity based on Pielou’s evenness and
Shannon entropy showed a slight increase in species richness and evenness for all three
32 ◦C systems compared to the 22 ◦C systems.
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In addition, the LME model was used to track the temporal trends in alpha diversity
(number of species) for each variable in the model DWDSs (Figure 5A). The impact of pipe
material and temperature conditions on the number of bacterial species in each system
indicate a steady decline between 57.5% to 23.5% from their highest numbers with a higher
rate of decline in 32 ◦C systems during a 6-week operation. Based on the projected residual
(observation errors) scatterplot (Figure 5B) where most of the residuals are dispersed and
centered around the 0 line, we can assume that the LMEs model indicates proper modeling
of the microbiome data

3.4. Comparison of the Microbial Community Composition-Beta Diversity

Principal coordinates plot (PCoA) was used to visualize the beta diversity dissimilarity
matrices based on Bray–Curtis dissimilarity, Jaccard similarity index, weighted UniFrac, and
unweighted UniFrac using an ordination approach adopted from Lozupone, et al. [27]. Pipe
materials and temperature conditions both seem to have a major impact on the microbiome
composition, however, the temperature condition seems to have a higher magnitude of
impact on the bacterial composition. While we noticed a decrease in alpha diversity over
time for all the model DWDSs, the beta diversity became more consistent and stable after
the first few weeks (Figure 6). A 10 ◦C increase in water temperature had a significant
impact on microbiomes in these systems. Among the three pipe materials, the elevated
water temperature had the greatest dissimilarity distance in the PEX system. PERMANOVA
analysis showed that each system has significantly different microbiome compositions with
a p-value ≤ 0.002 and a pseudo-F ≥ 4.45 (Table 2). The most pronounced group separation
calculated is between 32 ◦C and 22 ◦C PEX systems with a pseudo-F ratio of 10.928.
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weighted UniFrac (D) NOTE: red: 22 ◦C copper, blue: 32 ◦C copper, orange: 22 ◦C PEX, green: 32 ◦C
PEX, purple: 22 ◦C steel, yellow: 32 ◦C steel.
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Table 2. Pairwise PERMANOVA comparison of microbial composition (beta diversity) based on pipe
material and temperature condition.

Group 1 Group 2 Sample Size Permutations Pseudo-F p-Value q-Value

Copper 22 ◦C

Copper 32 ◦C 19 999 9.696 0.001 0.0012
PEX 22 ◦C 20 999 4.458 0.001 0.0012
PEX 32 ◦C 19 999 8.536 0.001 0.0012
Steel 22 ◦C 20 999 5.699 0.001 0.0012
Steel 32 ◦C 18 999 5.362 0.001 0.0012

Copper 32 ◦C

PEX 22 ◦C 21 999 7.065 0.001 0.0012
PEX 32 ◦C 20 999 8.201 0.001 0.0012
Steel 22 ◦C 21 999 10.648 0.001 0.0012
Steel 32 ◦C 19 999 10.865 0.001 0.0012

PEX 22 ◦C
PEX 32 ◦C 21 999 10.928 0.001 0.0012
Steel 22 ◦C 22 999 6.716 0.001 0.0012
Steel 32 ◦C 20 999 7.977 0.001 0.0012

PEX 32 ◦C
Steel 22 ◦C 21 999 10.651 0.001 0.0012
Steel 32 ◦C 19 999 7.191 0.002 0.0020

Steel 22 ◦C Steel 32 ◦C 20 999 5.448 0.002 0.0020

After revelation of some distinct dissimilarity between different model DWDSs in beta
diversity metrics and the PERMANOVA analysis, DEICODE was used to predict which
taxa are driving the sample clustering [28]. The use of Robust Aitchison PCA via DEICODE
revealed clustering in the galvanized steel systems operated at 32 ◦C and 22 ◦C (Figure 7).
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3.5. Prediction of Metagenome Functional Profiles

PICRUSt2 was used to predict the metagenomic functional content of each model
DWDS for determining the differentially abundant metabolic pathways between the 32 ◦C
and 22 ◦C for each pipe material system. PICRUSt2 predicted a total of 328 KEGG path-
ways in all six model DWDSs. The predicted metabolic pathways that were differentially
abundant between 32 ◦C and 22 ◦C systems with a statistical significance (p < 0.05) are 49,
129 and 35 for copper, PEX and galvanized steel systems, respectively. Only metabolic path-
ways that have a mean proportion difference of 0.1 or higher and Welch’s test confidence
interval (CI) of 0.95 or higher are further investigated (Figure 8).
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3.6. Differential Abundance of 32 ◦C and 22 ◦C Systems Using ALDEx2

ALDEx2 analysis was applied to identify taxa that significantly differed between the
32 ◦C and 22 ◦C systems (Figure 9A). Out of the 555 taxa, analysis of the impact of the
temperature condition on the taxa differential abundance revealed 20 taxa that were either
differentially abundant on the 32 ◦C or the 22 ◦C systems (Figure 9B). The relative abundance
and the difference in (clr) of the total 555 taxa are calculated using ALDEx2. From the 20 most
significantly differentially abundant taxa (relative abundance, >0.01%), 10 taxa were prefer-
entially found in the 32 ◦C systems with a significant difference of (>+5 in clr), while the other
10 taxa were more prevalent in the 22 ◦C systems with a significant difference of (<−5 in clr).
Taxa (classified in the Family level) that were differentially abundant in the 32 ◦C sys-
tems are Comamonadaceae, Mycobacteriaceae, C__Gemmatimonadetes, C__Betaproteobacteria,
Caulobacteraceae, C__Alphaproteobacteria, Procabacteriaceae, Hyphomonadaceae, Rhodospirillaceae,
and Sinobacteraceae, while the prevalent taxa in the 22 ◦C systems are C__Betaproteobacteria,
Gemmataceae, Hyphomicrobiaceae, Caulobacteraceae, MLE1-12(Cyanobacteria((4C0d-2), Rhodospir-
illaceae, C__Betaproteobacteria, Comamonadaceae, and Rhodospirillaceae. Differentially abundant
taxa with unidentified family level were coincidentally not identified on the order level in
the GreenGenes ribosomal RNA gene database, therefore, were reported on the class level
with (C__). Three similar taxa (Caulobacteraceae, Rhodospirillaceae and Comamonadaceae) were
identified in both the 32 ◦C and 22 ◦C systems as differentially abundant. Abon further
examination of their sequences, the percent identity value is slightly less than 97% which
was the threshold used for taxonomy assignments. It is possible that different strains of
these taxa (Caulobacteraceae, Rhodospirillaceae, and Comamonadaceae) are favored in different
temperature conditions.
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4. Discussion

The uniquely designed and operated six-pilot scale model DWDSs used in this study
enabled a controlled comparison between the two most important variables, pipe material
and water temperature. The study represents a 6-week molecular survey using 16rRNA
on different pipe materials and water temperatures. The results indicate that the chemical
composition of water was mainly impacted by the type of pipe material, while an increase in
water temperature by 10 ◦C had no impact on the chemistry of water in the model DWDSs.
The bacterial composition, on the other hand, was disproportionately impacted by the pipe
material and water temperature. Notably, alpha diversity in galvanized steel and copper
systems was slightly higher compared to PEX systems, apparently due to their chemical
reactivity. The decline in alpha diversity could be due to the relatively rapid proliferation of
some bacterial strains in a poor nutrient medium similar to the drinking water environment,
however, the total number of species and the rate of decline in each bacterial community
seems to be significantly impacted by both pipe material and temperature conditions. Even
though fewer strains are dominating PEX systems, the 32 ◦C and 22 ◦C PEX systems had the
highest dissimilarity distance in beta diversity pairwise comparison. Copper and galvanized
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steel have greater chemical reactivity compared to PEX, which might explain the higher
impact on the microbiome in copper and galvanized steel.

Proteobacteria was the most prominent phyla across all systems ranging from 60.9%
to 91.1% which has been reported in previous studies [29–31]. The frequency of detection
of OPs varies depending on the variables such as pipe material and water temperature.
Increasing the temperature by 10 ◦C resulted in a higher prevalence of Mycobacteriaceae
(100% vs. 58.6%), however, Pseudomonadaceae frequency of detection was lower on elevated
temperature (53.3% vs. 62.9%). Legionellaceae was detected in all the samples of the
32 ◦C and 22 ◦C systems. Analysis shows that the beta diversity stabilizes over time
despite the consistent decline in alpha diversity. The reduction in alpha diversity over
time across all systems despite replenishment with sufficient fresh tap water illustrates the
importance of the system’s operational conditions in shaping the DW microbiome. The
use of probiotic approaches, as opposed to disinfection, has been suggested to control
opportunistic pathogens in the premise plumbing, however, this is one of the areas that
require further investigation [32].

The most notable pathways with increased differential abundance in 22 ◦C com-
pared to 32 ◦C in copper systems, are the ATP-binding cassette (ABC) transporters, bac-
terial chemotaxis, bacterial motility proteins, transporters, and two-component system
proteins. All these pathways (ABC transporters, bacterial chemotaxis, bacterial motility
proteins, and two-component system proteins) have higher abundances in the 22 ◦C copper
system and are known to support bacterial survival and are collectively important for
pathogenesis and bacterial responses to the environment [33]. For PEX systems, several
metabolic and degradation pathways differed significantly between the 32 ◦C and 22 ◦C
systems, including beta-alanine metabolism, fatty acid metabolism, lysine degradation,
methane metabolism, porphyrin-chlorophyll metabolism, propanoate metabolism, trypto-
phan metabolism, and valine, leucine, and isoleucine degradation. Methane metabolism
and porphyrin-chlorophyll metabolism are the only pathways that have increased differen-
tial abundances in the PEX system with elevated temperatures. The reason for the increase
in the differential abundance of these two pathways in the 32 ◦C PEX system could be
because of the higher abundances of Nitrospirales, known to perform anaerobic methane
oxidation coupled with denitrification (DAMO process) [34], and Gemmatimonadetes, found
to have the ability to perform chlorophyll-based phototrophy [35] and have a strong re-
lationship with methane flux in soil [36]. The galvanized steel systems have the least
degree of dissimilarity between the 32 ◦C and 22 ◦C with no notable differentially abundant
pathways elicited at the two conditions.

The mechanism of interference of pipe material and water temperature on DW micro-
biome has not been well understood, however, according to Aitchison PCA plot (Figure 7),
the galvanized steel systems compositions have very low dissimilarities which suggests
that galvanized steel has a significant influence on the DW microbiome. Previous studies
have also concluded that galvanized steel pipes tend to have a higher bacterial diversity
than any other pipe materials [29,37]. On the other hand, 22 ◦C copper and PEX systems
have comparable diversities which also suggests that water temperature has the potential
to alter the bacterial compositions of the DW microbiome. The differential abundance of
analysis between the 32 ◦C and 22 ◦C systems identified multiple taxa that were present
yet differentially abundant between the two systems. Interestingly, Mycobacteriaceae was
found to be significantly abundant in elevated temperatures, which suggests that there is a
correlation between the increase in water temperature and Mycobacteriaceae. Cyanobacteria
was preferentially found in the 22 ◦C systems.

5. Conclusions

The study of the DWDSs microbiome has enhanced our understanding of how sea-
sonality, disinfection process and treatment operations impact the microbial community
composition [1]. Free-of-microbes DWDSs have been proven an unrealistic approach [32].
Dealing with the drinking water microbiome dynamics is essential in order to develop a



Microorganisms 2023, 11, 352 13 of 15

probiotic approach for pathogen control in DWDSs in the future. The experimental plan of
this work was designed to study the dynamics of the microbiome in six model drinking
water distribution systems using three different pipe materials operated at two different
temperatures to increase our ability to better predict bacterial species prevalence in drinking
water. The results obtained can potentially improve and provide insight into bacterial
species detected during municipality monitoring programs. Detailed characterization of
microbial data is an essential tool on how to modify operational conditions for minimizing
the proliferation of microbial pathogens and improving drinking water quality.
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