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Abstract: Minor genera actinomycetes are considered a promising source of new secondary metabo-
lites. The strain Kribbella sp. CA-293567 produces sandramycin and kribbellichelins A & B In this
work, we describe the complete genome sequencing of this strain and the in silico identification of
biosynthetic gene clusters (BGCs), focusing on the pathways encoding sandramycin and kribbelliche-
lins A–B. We also present a comparative analysis of the biosynthetic potential of 38 publicly available
genomes from Kribbella strains.

Keywords: Kribbella; sandramycin; kribbellichelin; genome mining; biosynthetic gene cluster; minor
genera of actinomycetes

1. Introduction

The increasing number of antibiotic resistant strains has boosted the search of new
antibiotics that are urgently needed against pathogenic bacteria [1–4]. Natural products
represent the most important source of novel antibiotics, being the actinomycetes the most
prolific producers of natural bioactive compounds [5–8]. Actinomycetes are Gram-positive
filamentous bacteria with a high G+C DNA content [9,10]. More than 50% of the bioac-
tive compounds produced by actinomycetes have been isolated from the predominant
genus Streptomyces [9,11]. However, in recent decades, minor genera of actinomycetes,
also known as rare actinomycetes, have received considerable research attention [8,12].
Minor genera of actinomycetes have been found in a wide variety of underexplored ter-
restrial and aquatic ecosystems [13–15], including soil, sediments, stones, mangroves,
plants, lichens and animals from a broad range of environments [16]. From the 220 minor
genera of actinomycetes described so far, some of them can be more frequently isolated
from different sources and have been shown to produce a high diversity of secondary
metabolites: Actinocorallia, Actinomadura, Actinoplanes, Amycolatopsis, Kibdelosporangium,
Kribbella, Micromonospora, Nocardia, Nocardiopsis, Nonomuraea, Pseudonocardia, Rhodococcus,
Saccharopolyspora or Streptosporangium [14,16]. Some of these genera are well known as
producers of relevant antibiotics with clinical applications, including rifamycins from
Amycolatopsis mediterranei, vancomycin from Amycolatopsis orientalis, erythromycin from
Saccharopolyspora erythraea, teicoplanin from Actinoplanes teichomyceticus, and gentamicin
from Micromonospora purpurea [17]. The importance of minor genera of actinomycetes has
been corroborated by the discovery of several novel compounds in the last years [14–23],
such as kongjuemycins [23], catellatolactams [24], and persicamidines [25], so these genera
represent an untapped resource of potential new bioactive natural products [17,26].

The significant advances in bacterial genome sequencing and the development of
bioinformatic genome mining tools, has resulted in the identification of an extraordinary
high number of silent or cryptic secondary metabolite BGCs encoding potentially novel
compounds that have yet to be identified and are not expressed under standard laboratory
culture conditions [27–33]. The growing number of reports on the discovery of cryptic gene
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clusters from sequenced minor genera of actinomycetes highlights increasing opportunities
to discover new bioactive natural products from this broad diversity of lineages [34].

The genus Kribbella belongs to the family Kribbellaceae (order Propionibacteriales) and cur-
rently consists of 33 species [35,36]. Some active secondary metabolites have been described
from Kribbella strains: the kribellosides A–D, RNA 5′-triphosphatase inhibitors from Kribbella sp.
MI481-42F6 [37]; the cyclic decadepsipeptide antitumor antibiotic sandramycin (Figure 1) from
K. sandramycini ATCC 39419T [38,39] and the antibiotics kribbellichelins A-B from the recently
described Kribbella sp. CA-293567 (Figure 1) [40]. The strain Kribbella sp. CA-293567 has also
been shown to produce sandramycin, which additionally exhibits antifungal activity [40].
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Figure 1. Structures of sandramycin and kribbellichelins A and B.

There are currently 38 sequenced genomes of Kribbella strains in NCBI, including
the genome of the sandramycin producer K. sandramycini ATCC 39419T. Sandramycin
was described nearly 30 years ago, but its BGC was only mentioned in a recent publica-
tion describing the biosynthetic gene cluster of luzopeptins and korkomicins [41]. How-
ever, a detailed analysis of the genes involved in sandramycin biosynthesis has not been
reported yet.

In this work, we present the complete genome sequence analysis of the strain Kribbella sp.
CA-293567 and the identification of the putative BGCs present in the genome, focusing on the
BGCs encoding kribbellichelins and sandramycin. The comparative genome analysis of all
publicly available sequenced Kribbella strains has permitted us to perform a detailed analysis
of the biosynthetic potential among the species of the genus.

2. Materials and Methods
2.1. Strains

The strain Kribbella sp. CA-293567 was isolated from the endemic plant Limonium
majus, collected in El Saladar del Margen, in Cúllar-Baza depression, Granada (Spain).
The strain showed a 99.41% sequence similarity to the strain Kribbella koreensis LM 161T

(GenBank Accession No. Y09159), according to the 16S rRNA gene sequence analysis [40].

2.2. DNA Extraction

High molecular weight genomic DNA was isolated following the protocol described
in [42] from 10 mL bacterial culture grown on ATCC-2 liquid medium (soluble starch
20 g/L, glucose 10 g/L, NZ Amine Type E 5 g/L, meat extract 3 g/L, peptone 5 g/L, yeast
extract 5 g/L, calcium carbonate 1 g/L, pH 7) grown on an orbital shaker at 28 ◦C, 220 rpm,
70% relative humidity for 4 days.

2.3. Whole Genome Sequencing

The genome of the strain CA-293567 was sequenced, de novo assembled and annotated
by Macrogen (Seoul, Republic of Korea; http://www.macrogen.com, accessed on 27 April

http://www.macrogen.com
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2020), using a combined strategy of Illumina Novaseq 6000 and PacBio RSII platforms [43,44].
The PacBio long-reads were assembled with Microbial Assembly Application (https://www.
pacb.com/wp-content/uploads/SMRT-Link-User-Guide-v8.0.pdf, accessed on 27 April 2020),
and then Illumina reads were mapped to the assembly for accurate genome sequence and error
correction using Pilon (v1.21) [45]. After mapping, the consensus sequence was generated. The
completeness of the genome was assessed with BUSCO (Benchmarking Universal Single-Copy
Orthologous, v5.1.3) [46].

2.4. Bioinformatic Analysis

The genomic sequence of strain CA-293567, as well as the publicly available genomes
of other Kribbella strains (Table S1) were analyzed with antiSMASH v6.1.1 [47] and PRISM
v4 [48] to identify putative secondary metabolites BGCs. BLAST (Basic Local Alignment
Search Tool) [49] was also employed to predict the function of the genes. BiG-SCAPE
(Biosynthetic Gene Similarity Clustering and Prospecting Engine) and CORASON (CORe
Analysis of Syntenic Orthologs to prioritize Natural Product Biosynthetic Gene Clusters)
algorithms [50] were used to generate sequence similarity networks, that were visualized
using Cytoscape (v3.9.1) [51]. Genome annotation and visualization were performed in the
Department of Energy Systems Biology Knowledgebase (KBase, http://kbase.us/, accessed
on 19 October 2020) [52] using Prokka v1.14.5 [53] and the Circular Genome Visualization
Tool (CGViewAdvanced v0.0.2) [54], respectively.

3. Results and Discussion
3.1. Whole Genome Sequencing

Kribbella sp. CA-293567 genome sequence was obtained with a combination of de
novo PacBio and Illumina approaches yielding one circular contig of 7,611,196 bp, with
a G+C DNA content of 68.6%. The genome was 100% complete according to the BUSCO
analysis results. No extrachromosal elements were identified (Table S2).

The genome was analyzed with Prokka and a total of 7,057 genes were identified.
Among them, 6982 were identified as protein-coding genes (CDSs) and their functions were
assigned (Table S2, Figure 2). Only 45.80% of the CDSs (45.30% of the total genes) were
assigned with a putative function while those remaining were annotated as hypothetical
protein CDS, thus highlighting the need to deepen the study of the functions of these genes.

The complete genome sequence has been deposited in GenBank under the reference
[CP114065].

3.2. Secondary Metabolites BGC Analysis

The complete genome sequence was analyzed with antiSMASH and PRISM and a total
of 19 regions putatively encoding BGCs were identified, including three NRPS, three PKS,
two terpenes, two RiPPs and three lanthipeptides (Table 1, Figure 2). Interestingly, only
two of the predicted BGCs showed 100% similarity with the known BGCs geosmin [55] and
alkylresorcinol [56]; two showed a 60% similarity with the catenulipeptin BGC [57] and the
rest showed <60% similarity with known BGCs, indicating that they could synthesize new
molecules. The BGCs were found to be distributed throughout the genome (Figure 2). The
total length of the predicted BGCs is about 653 Kb, comprising the ~8.6% of the Kribbella sp.
CA-293567 genome. The number of predicted BGC in relation to the genome size is among
the average proportion found in prokaryotes (2.4 clusters per Mb) [58], although it is much
lower than other prolific genera such as Streptomyces, which can reach 22% of its genome
devoted to the biosynthesis of secondary metabolites [58].

3.3. Identification of the Kribbellichelins A and B BGC

Among the BGCs identified in the genome by antiSMASH, the region 13 putatively
contains a NRPS BGC with a 25% similarity with the amychelin BGC (Table 1, Figure 3).
This is the only NRPS BGC of the genome containing four modules for which the analysis
of the substrate specificity of the adenylation domains suggest incorporation of β-Ala, Ser,

https://www.pacb.com/wp-content/uploads/SMRT-Link-User-Guide-v8.0.pdf
https://www.pacb.com/wp-content/uploads/SMRT-Link-User-Guide-v8.0.pdf
http://kbase.us/
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β-Ala and Orn (Figure 3), thus in good agreement with the structures of kribbellichelins A
and B, which contain β-Ala, N5-OH-Orn, Ser and β-Ala (Figure 1).
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The BGC proposed for kribbellichelins A & B BGC (krb) spans ~59 Kb and contains
41 Open Reading Frames (ORFs) (Table S3). In addition to the NRPS genes, the BLAST
analysis of the proteins encoded by these ORFs shows the presence of an aspartate 1-
decarboxylase (Krb30) that could be involved in the biosynthesis of β-Ala from Asp [59];
enzymes related with the biosynthesis of dipicolinic acid [60], transcriptional regulators
and transporters.

Kribbellichelins A and B also harbor two moieties of methyl 6-carbonyl-4,5-dihydrox
ypicolinate connected to carbons C-11 and C-27 of the β-Ala units [40]. According to
PRISM, an AMP-binding protein present in the cluster (Krb26) is predicted to activate
3-hydroxypicolinic acid, as it has been described in the case of SanJ, an ATP-dependent
picolinate CoA ligase involved in nikkomycin biosynthesis [61]. SanJ and Krb26 share
a 35.8% identity and 49.8% similarity. Thus, Krb26 could be involved in the activation
of the methyl 6-carbonyl-4,5-dihydroxypicolinate moieties, that would be loaded onto a
thiolation (T) domain encoded elsewhere in the genome (Figure 4). A gene related with
the meso-diaminopimelate pathway (lysine biosynthesis), krb29, is present in the cluster.
BLAST analysis of Krb29 showed that it is a 4-hydroxytetrahydrodipicolinate reductase
homologous to DapB (90% identity, 95% similarity, Table S2), which catalyzes the reduction
of (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate to 2,3,4,5-tetrahydrodipicolinate in an
NADH/NADPH dependent reaction [60,62]. The role of Krb29 in the biosynthesis of
the methyl 6-carbonyl-4,5-dihydroxypicolinate moieties present in kribbellichelins would
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require further investigation. It is probable that any of the oxidases and methyltransferases
present in the cluster may hydroxylate and methylate dipicolinic acid to yield methyl
6-carbonyl-4,5-dihydroxypicolinate.

Table 1. Putative biosynthetic gene clusters identified by antiSMASH in the genome of Kribbella sp.
CA-293567.

Region Type From To
Most Similar

Known Cluster
(MIBiG Ref)

Similarity

Region 1 RRE-containing, thiopeptide, Linear
azol(in)e-containing peptide 712,243 741,688 Conglobatin

(BGC0001215) 15%

Region 2 Class II lanthipeptide 896,153 919,056

Region 3 Class III lanthipeptide 925,937 944,819 Catenulipeptin
(BGC0000501) 60%

Region 4 Arylpolyene 1,300,657 1,341,691 Triacsins
(BGC0001983) 6%

Region 5 Aminoglycoside/aminocyclitol cluster 2,603,585 2,624,304 Vazabitide A
(BGC0001818) 6%

Region 6 NRPS-like, NRPS 2,931,152 2,996,460 Thiocoraline
(BGC0000445) 34%

Region 7 Terpene 3,232,919 3,254,062 Geosmin
(BGC0000661) 100%

Region 8 Siderophore 3,326,381 3,339,918

Region 9 Class III lanthipeptide 3,364,301 3,386,850 Catenulipeptin
(BGC0000501) 60%

Region 10 NRPS 3,404,482 3,470,234 A54145
(BGC0000291) 6%

Region 11 Terpene 3,492,238 3,513,224 Isorenieratene
(BGC0000664) 28%

Region 12 Type I PKS, NRPS 3,555,559 3,604,623

Region 13 NRPS 3,659,495 3,718,843 Amychelin
(BGC0000300) 25%

Region 14 TransAT-PKS, NRPS, Type I PKS 5,038,833 5,103,685 Kanamycin
(BGC0000703) 1%

Region 15 Type III PKS 5,114,083 5,155,129 Alkylresorcinol
(BGC0000282) 100%

Region 16 RRE-containing 5,910,597 5,930,747 SCO-2138
(BGC0000595) 14%

Region 17 NAPAA 6,874,817 6,908,755

Region 18 Redox-cofactor 7,052,415 7,074,428 Lankacidin C
(BGC0001100) 20%

Region 19 Phenazine 7,585,752 7,606,243 Endophenazines A/B
(BGC0001080) 33%

Both NRPSs (Krb18 and Krb24) contain two modules including the expected conden-
sation (C), adenylation (A), and thiolation (T) domains. The substrate specificity analysis of
the A domains performed with antiSMASH and PRISM suggest incorporation of β-Ala,
L-ser, β-Ala and Orn for modules 1–4, respectively (Figure 3). The thioesterase (TE) domain
present in the second NRPS (Krb24) would hydrolyze the peptidic chain. An additional
condensation domain is present between the two modules present in Krb24 (Figure 3).

According to the predictions described above and to the co-linearity rule [63], the
peptide sequence of kribbellichelins A and B would be β-Ala-Ser-β-Ala-N5-OH-Orn. How-
ever, the order of the amino acids in the structure is β-Ala-Ser-N5-OH-Orn-β-Ala, and two
moieties of methyl 6-carbonyl-4,5-dihydroxypicolinate are connected to the β-Ala units.
Thus, we propose a non-canonical assembly of kribbellichelins A and B (Figure 4): the
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activated methyl 6-carbonyl-4,5-dihydroxypicolinate would be transferred to the β-amino
groups of the β-Ala amino acids loaded into the T domains of modules 1 and 3 of Krb18
and Krb24, respectively. This would then be followed by the independent assembly of
methyl 6-carbonyl-4,5-dihydroxypicolinate-β-Ala-Ser by Krb18 and methyl 6-carbonyl-4,5-
dihydroxypicolinate-β-Ala-N5-OH-Orn by Krb24. Finally, amide formation between the δ

carbon of N5-OH-Orn and the carboxylic group of Ser (Figure 4), which might be catalyzed
by the extra condensation domain found in Krb24, would lead to kribbellichelin A. One of
the methyltransferases present in the cluster would methylate kribbellichelin A at carbonyl
C-23 to yield kribbellichelin B [40]. A similar post-assembly connection of two separate
chains synthesized in parallel assembly lines has been proposed for the biosynthesis of the
linear polyketide alpiniamide A by a hybrid PKS-NRPS [64]. Further experiments will be
required to confirm this type of non-linear NRPS assembly.
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3.4. Identification of the Sandramycin BGC

In the course of this work, the cluster responsible for the biosynthesis of sandramycin (sdm)
was annotated in the genome of Kribbella sandramycini ATCC 39419T [41]. However, a detailed
analysis of the genes involved in sandramycin biosynthesis has not been reported so far.

Based on the antiSMASH results and on the sandramycin structural characteristics [39],
the putative sandramycin BGC, showing a 34% similarity to that of thiocoraline [65], was
identified in the genome of the strain CA-293567. This BGC (san) has nearly the same
organization of the sdm cluster, containing 18 ORFs and spanning 37 Kb (Figure 5, Table S4).
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and the modifications performed by the E and nMT domains are indicated. (A): adenylation do-
main; (C): condensation domain; (E): epimerization domain; (nMT): N-methyltransferase domain;
(T): thiolation domain; (TE): thioesterase domain.

Pipecolic acid, present in sandramycin [39], is a non-proteinogenic amino acid widely
distributed in microorganisms, plants and animals, and is an important precursor of many
natural products, such as meridamycin [66] or rapamycin [67]. The lysine cyclodeaminase
RapL has been identified as the enzyme responsible for the generation of the pipeco-
late moiety of rapamycin in Streptomyces hygroscopicous by the direct cyclodeamination
of L-lysine [67].

The san cluster contains the gene san2, encoding a protein homologous to RapL (58%
identity/70% similarity) which is proposed to biosynthesize the pipecolic acid present in the
molecule. In addition to rapamycin BGC, other natural product clusters also contain RapL
orthologs, such as FK506/520 [68], virginiamycin S [69], tubulysin [70] or friulimicin [71].

Another structural characteristic of sandramycin is the presence of the aromatic chro-
mophore 3-hydroxyquinaldic acid (3HQA) attached to D-Ser [39]. This chromophore is
also present in other structurally related depsipeptides such as SW-163 C-G [72], thio-
coraline [73], BE-22179 [74] or quinaldopeptin [75], and is the starter unit used during
the assembly line of these NRPSs [76]. The biosynthesis of 3HQA, derived from L-Trp,
has been described in the thiocoraline BGC [65,76]: L-Trp is first bound to TioK, a small
monomodular NRPS protein formed by a didomain A–T module, which needs the struc-
tural assistance of the MbtH-like protein TioT. The attached L-Trp is then β-hydroxylated
by the cytochrome P450 TioI, and the resulting β-hydroxy-L-Trp is released by the type II
thioesterase TioQ. Then, the Trp-2,3-dioxygenase TioF opens the indole ring, generating
N-formyl-β-hydroxykynurenine. Loss of this formyl moiety can be spontaneous, or other
enzymes could be involved (TioL, TioM). The resulting molecule, β-hydroxykynurenine,
is transformed into 3,4-dihydroxy-quinaldic acid by the aminotransferase TioG. Finally,
the oxidoreductase TioH converts 3,4-dihydroxy-quinaldic acid into 3HQA. The san BGC
contains genes encoding proteins homologous to TioK (san4), TioT (san13), TioI (san5), TioQ
(san6), TioF (san9), TioG (san8), TioJ (san3) and TioH (san7), but no homologous to TioL or
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TioM were identified. This indicates that the biosynthes of the 3HQA moiety present in
sandramycin occurs in the same way described for thiocoraline, but the loss of the formyl
moiety of N-formyl-β-hydroxykynurenine may be spontaneous [76].

Similar to what has been described in thiocoraline biosynthesis [65,77], the starter unit
of sandramycin would be 3HQA, that would be activated by the TioJ homolog San3. The
San3-activated 3HQA may be loaded onto a fatty acid synthase (FAS) thiolation (T) domain
FabC located outside of the sandramycin gene cluster, as in the case of thiocoraline [77].

Two ORFs of the san cluster, san11 and san12, encode two NRPS containing a total
of five modules (Figure 5), whose characteristics agree with the sandramycin peptide
backbone (D-Ser, Pipecolic acid, L-Gly, N-Met-L-Gly (sarcosine) and N-Met-L-Val). The
five modules of the NRPS contain five A domains that are predicted to activate D-Ser,
L-Gly, L-Gly, L-Gly and L-Val, respectively. The first amino acid in the sandramycin peptide
backbone is a D-Ser, and an epimerization domain (E) is present in the first module. The
last two amino acids, L-Gly and L-Val are N-methylated, forming N-MetGly (sarcosine) and
N-MetVal; these modifications may be performed by the N-methyltransferase domains
(nMT) present in the last two modules. Thus, the predicted modified peptide synthesized
by the NRPS, according to the collinearity rule [63], would be D-Ser, L-Gly, L-Gly, N-MetGly
and N-MetVal, which agrees with the sandramycin reported backbone. Moreover, the
presence of a condensation (C) domain in the first module of San11 (C1), instead of the
standard loading module composed just by an A and a T domain [78], confirms that the
3HQA activated by San3 is the starter unit and is attached to the D-Ser by the C1 domain,
as it has been described in similar BGCs [76]. While C1, C3, C4 and C5 condensation
domains are LCL-type domains which catalyze peptide bond formation between two
L-amino acids, the C2 condensation domain is a DCL-type domain, which catalyzes the
condensation between a D-aminoacyl/peptidyl-T donor and a L-aminoacyl-T acceptor [79],
and in the case of the sandramycin biosynthesis, this domain would catalyze the peptide
bond formation between D-Ser and pipecolic acid. Finally, the thioesterase domain (TE)
present in the last module would be involved in the peptide-chain release and cyclization.

As sandramycin is a dimer of two identical NRP chains [39] (Figure 1), the TE domain
is proposed to catalyze both the dimerization and the macrolactonization of the molecule,
as it has been demonstrated in vitro with the TE domains involved in the biosynthesis of
the NRP gramicidin [80] or in the polyketides conglobatin [81] and elaiophylin [82]. A
“backwards transfer” mechanism was proposed for this type of biosynthesis: a T-bound
PK/NRP chain is proposed to attack the thioester of an identical PK/NRP chain tethered
to the downstream TE domain, sending it “backwards” to the T domain. The linear dimer
is then returned to the active site of the TE domain for macrocyclization [80,83] (Figure 6).
Further experiments will be needed to confirm this type of chain release mechanism.

Other genes present in the san BGC encode two transcriptional regulators (San10 and
San15), a protein homologous to the thiocoraline resistance protein TioX (San1) [84], a HNH
endonuclease (San18), two ABC transporters (San16 and San17) and an unknown protein
(San14) (Figure 5, Table S4).

3.5. Comparative Genomic Analysis of Kribbella Strains

The publicly available genomes of 38 Kribbella strains (Table S1) were analyzed
with antiSMASH to identify putative secondary metabolite BGCs. The 453 predicted
BGCs, including those obtained from the strain CA-293567, were used as input for BiG-
SCAPE/CORASON analysis to calculate the distances and to map the BGC diversity onto
sequence similarity networks (Figure 7). Of the 453 BGCs analyzed, only 57 possess se-
quence similarities ≥70% with annotated BGCs in the MIBiG repository of antiSMASH and
might produce characterized metabolites or potential analogues. Thus, nearly the 87% of
the BGCs within the network might produce yet to be discovered metabolites.

The results show the presence of several groups of similar BGCs (Figure 7), which were
mostly identified as NRPS-PKS-I-trans-AT PKS, NAPAA, Class II and III lanthipeptides,
siderophores and RiPPs.
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The kribbellichelins BGC has also been shown to be present in the strains K. antibiotica
JCM 13523, K. albertanoniae JCM 30547, K. italica DSM 28967 and K. sandramycini DSM
15626 (ATCC 39419T). Furthermore, a BLAST search of the krb biosynthetic gene cluster
against the NCBI whole genome sequence database found homologous clusters in several
Streptomyces strains (Figure 8). The organization of the cluster is very conserved among
the strains, except for Kribbella antibiotica JCM 13523, whose NRPS2 includes an additional
module incorporating β-Ala. It is worth noting that the krb cluster lacks genes involved
in N5-OH-Orn biosynthesis, while the homologous clusters harbor a lysine/ornithine N-
monooxygenase. However, a lysine/ornithine N-monooxygenase is present in the genome
of the strain CA-293567, so it is probable that the kribbellichelins biosynthesis is fed with
N5-OH-Orn synthesized outside the krb BGC.
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Figure 6. Proposed NRPS assembly line of sandramycin: two identical peptide chains are synthesized,
and the T-bound PK/NRP chain is proposed to attack the thioester of the second chain tethered to
the TE domain, sending it “backwards” to the ACP domain. The linear dimer is then returned to the
active site of the TE domain for macrocyclization.

Surprisingly, the sandramycin BGC present in Kribbella sp. CA-293567 was not clus-
tered with the two homologous pathways found in the K. sandramycini genomes (Figure 7),
despite their high similarity. This may be caused by the fact that the sandramycin BGC
antiSMASH prediction from K. sandramycini genomes includes more NRPS genes than
those that are predicted in Kribella sp. CA-293567 in the same region. These superclusters,
which are composed of subclusters with different biosynthetic features, are not properly
resolved by antiSMASH, causing that BiG-SCAPE, which calculates BGC distances using a
combination of the Jaccard Index of domain types, the Domain Sequence Similarity and
the Adjacency Index [50], does not accurately group similar BGCs since they are assigned
to different families (Figure 9), as it has been previously reported in other comparative
genome analysis [85]. A BLAST search of the san biosynthetic gene cluster against the NCBI
whole genome sequence database found a homologous cluster in the genome of Kribbella
quitaiheensis SPB151, and neither was clustered by BiG-SCAPE (Figure 9).
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Figure 9. CORASON phylogenetic tree of the three Gene Cluster Families (GCF) in which sandramycin
BGC has been classified. FAM_00439: sandramycin BGC from Kribbella sp. CA-293567; FAM_0083:
sandramycin BGC from K. sandramycini; FAM_00029: sandramycin BGC from Kribbella quitaiheensis SPB151.
The BGCs have been manually centered in the NRPS genes for a better visualization.

4. Conclusions

In this work, the genome of the actinomycete strain Kribbella sp. CA-293567 has
been sequenced, and the BGCs of sandramycin and kribbellichelins A & B have been
identified. Based on the genomic predictions, a backwards transfer release mechanism is
proposed for sandramycin biosynthesis, and a non-canonical post-assembly connection
of two separate chains is proposed for kribbellichelins A–B biosynthesis. The number of
new chain release mechanisms and new non-canonical assembly lines will grow as more
genomes, especially those from minor genera of actinomycetes, are sequenced and new
biosynthetic gene clusters are discovered [82]. Thus, the experimental confirmation of these
proposed non-canonical mechanisms will contribute to a better understanding of PKS and
NRPS biosynthesis, as well as to design new biosynthetic pathways in order to obtain
new compounds.

Additionally, the genomic comparison of the publicly available Kribbella genomes has
shown that almost 87% of the identified BGCs could putatively encode new metabolites,
highlighting the biosynthetic diversity of the strains belonging to this genus. This work
supports the need to continue to explore new minor genera of actinomycetes as talented
sources of novel biosynthetic pathways and to study their hidden biosynthetic capabilities.
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