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Abstract: There are no studies reporting the effects of Salmonella enterica subsp. enterica serovar
Infantis (S. Infantis) on intestinal architecture and immunoglobulin serum levels in chickens. Here,
we measured these parameters and hypothesized whether probiotic administration could modulate
the observed outcomes. Two-hundred 1-day-old COBB 500 male chicks were allocated into four
groups: (I) the control, (II) the group treated with L. fermentum, (III) the group exposed to S. Infantis,
and (IV) the group inoculated with both bacteria. At 11 days post infection, blood was gathered from
animals which were then euthanized, and samples from the small intestine were collected. Intestinal
conditions, as well as IgA and IgM serum levels, were assessed. S. Infantis reduced villus-height-to-
crypt-depth (VH:CD) ratios in duodenal, jejunal, and ileal sections compared to control conditions,
although no differences were found regarding the number of goblet cells, muc-2 expression, and
immunoglobulin concentration. L. fermentum improved intestinal measurements compared to the
control; this effect was also evidenced in birds infected with S. Infantis. IgM serum levels augmented
in response to the probiotic in infected animals. Certainly, the application of L. fermentum elicited
positive outcomes in S. Infantis-challenged chickens and thus must be considered for developing
novel treatments designed to reduce unwanted infections.

Keywords: Lactobacillus fermentum; Salmonella enterica subsp. enterica serovar Infantis; broiler chickens;
small intestine; villus height; crypt depth; surface; goblet cell count; muc-2 expression levels; IgM
serum levels

1. Introduction

Salmonella enterica has emerged across the globe as a threat to health systems [1].
Serovars of this species can infect humans, causing diverse effects varying from typhoid
fever to gastroenteritis [2]. Non-typhoidal Salmonella (NTS) is associated with millions
of infections and thousands of deaths annually around the globe [3,4]. S. Typhimurium
and S. Enteritidis are considered the principal serovars associated with human infections;
nevertheless, S. enterica subsp. enterica serovar Infantis (S. Infantis) has emerged as a
relevant serovar causing salmonellosis in humans [5]. Since S. Infantis has been reported
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as a dominant serovar isolated from poultry and human sources [6,7], it should be con-
sidered a global emerging threat to public health. Furthermore, various isolates have
shown resistance to multiple drugs and enhanced pathogenicity, which has been linked
to the acquisition of a virulence-resistant plasmid known as the plasmid of the emerging
S. Infantis (pESI) that encodes virulence factors and the antibiotic and mercury resistance
genes [8]. Antibiotic resistance genes have also been associated with integrons, which may
contribute to their mobility among S. Infantis strains [9].

Poultry, as well as pigs, are considered the main reservoirs [10]. Thus, various studies
have focused on testing different approaches for decreasing S. Infantis colonization, in-
cluding algae and probiotics. For instance, inoculation with probiotic strains have reduced
S. Infantis levels in the guts of pigs and broiler chickens [11,12], which is associated with
the capacity of these bacteria to produce short-chain fatty acids, secrete antimicrobials,
stimulate the immune system, or competitively exclude other bacteria [13]. On the other
hand, dietary administration of the green microalga Tetraselmis chuii did not alter S. Infantis
cecal load in broilers, despite the presence of fermentable polysaccharides as part of the cell
wall [14]. Such polysaccharides are known for modulating cecal microbiota [15], and it has
been shown that application of seaweed-derived polysaccharides reduced S. Enteritidis
levels in laying hens [16].

Serovars of Salmonella, such as S. Pullorum and S. Typhimurium, are known for
causing mucosal damage of the small intestine [17,18]. As S. Infantis is not considered a
significantly invasive serovar [19], information concerning its effects on intestinal architec-
ture in broiler chickens is not available despite the importance of the gut epithelium as a
barrier against invading pathogens, in nutrient acquisition, and in host immunity [20,21].
S. Pullorum, for instance, is known for eliciting production of both IgA and IgM [22].
However, immunoglobulin serum levels, in response to a S. Infantis infection, have not
been reported so far. In this study, we not only aimed to measure such parameters but
also to determine whether inoculation with a probiotic strain could modulate the observed
effects. Indeed, probiotic strains, including Bacillus subtilis and Lactobacillus acidophilus, have
relieved the intestinal damage initiated by S. Enteritidis and S. Typhimurium in broiler
chickens [23]. Administration of L. fermentum has proved useful not only for enhancing
the immune reaction of broiler chickens challenged with Campylobacter coli and C. jejuni
but also for diminishing the intestinal damage induced by the latter [24–26]. Lactobacillus
species harbor associated molecular patterns that are capable of activating NLRP (Nod-like
receptor protein) and Toll-like receptors in epithelial and dendritic cells, triggering differ-
ential cytokine expression that promotes enterocyte differentiation via cellular signaling
or cytokine secretion, including IL-22, IL-1β, IL-13, and IL-4 [27]. Similarly, recognition of
these molecular patterns, by the aforementioned receptors, induces polarization of helper
cells and the concomitant synthesis of interleukins that prompt production of antibodies by
activated B cells [28].

Reports documenting the effects of S. Infantis on intestinal architecture and im-
munoglobulin serum levels in broiler chickens are not available. Thus, this study aimed
to examine such parameters. Moreover, we hypothesized whether probiotic admin-
istration could influence the measured outcomes. Consequently, we treated animals
with L. fermentum and infected them with S. Infantis. Histological measurements were
used to determine intestinal architecture; transcript abundance of muc-2 and serum anti-
body levels were also assessed using reverse-transcriptase quantitative PCR (RT-qPCR)
and ELISA, respectively.

2. Materials and Methods
2.1. Ethics Statement

All experimental procedures were performed following the guidelines for animal
management specified by the Agency for the Regulation and Control of Phytosanitary and
Animal Health (AGROCALIDAD, technical resolution n. 0017). The study was approved by
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the Ethics Committee on the Use of Animals in Research and Teaching of the San Francisco
de Quito University (USFQ) (reference number: 2020-008).

2.2. Experimental Design, Housing Conditions, and Animal Management

The experimental Center for Animal Research of the Veterinary Medicine Faculty,
Universidad Central del Ecuador, was used to carry out the experiments. A total of two-
hundred 1-day-old COBB 500 broiler male chicks were subjected to experimental conditions.
Chickens were assigned at random into four experimental groups: (I) the control group,
in which a saline solution (0.2 mL) was applied individually to birds each time their
counterparts were inoculated; (II) the L. fermentum group, in which birds were treated with
a suspension of the probiotic (109 colony-forming units [CFU]/0.2 mL) that was applied
from days 1 to day 7 of the experimental period [26]; (III) the S. Infantis group, infected
with a suspension of the bacteria (107 CFU/0.1 mL) on day 4 [14,19]; and finally, in group IV,
animals were exposed to the probiotic during the first week and inoculated with S. Infantis
on the fourth day. The experiment lasted 15 days.

Bacterial strains were administered orally (Table S1); they were prepared as described
previously [14,26]. The L. fermentum strain CCM7514 was provided in a lyophilized form
by the Czech Collection of Microorganisms (CCM), Brno, Czechia; the strain originated
from the intestine of domestic chickens. Saline solution (1 mL) was used for bacterial
resuspension; L. fermentum growth was carried out inside an anaerostate (BBL GasPak
Plus, Albany, NY, USA) at 37 ◦C for 48 h using De Mann–Rogosa–Sharpe (MRS) agar
(Merck, Germany). Solitary colonies, at least five, were inoculated in MRS broth (50 mL)
and incubation was performed for 24 h at 37 ◦C. After cultivation, MRS broth was added
(450 mL) and centrifugation took place for 45 min at 2268× g at 4 ◦C. Resuspension of the
resulting sediment was carried out with saline solution (50 mL); decimal dilutions were
performed to assess the number of bacteria. Each animal was inoculated per os with 109

colony-forming units [CFU]/0.2 mL from the first to the seventh day of the experiment [26].
S. Infantis growth was carried out using pure cultures (1× 109 CFU/mL); bacterial recovery
was achieved on differential selective medium (XLD, Xylose, Lysine, and Deoxycholate)
at 37 ◦C for 24 h. For biomass generation, characteristic colonies were selected for liquid
cultures (buffered-peptone water), which were later incubated at 37 ◦C with constant
agitation for 18 to 24 h. The generated biomass was collected in tubes and centrifuged at
500× g for 45 min for biomass concentration. Pellet resuspension was carried out with
saline solution (NaCl 5%) until reaching an OD600 of around 1.0. The solution was arranged
in series using plate count agar, and adjusted at around 1–2 × 107 CFU/0.1 mL. Each bird
was inoculated orally with 107 CFU/0.1 mL on the fourth day of the experiment [14].

Experimental groups were allocated in individual pens of 3 m × 3 m of 50 chickens
each. The animal was considered the experimental unit (EU), since they were independently
allocated to treatment conditions and experimental interventions; moreover, each EU
could not influence each other on the measured outcomes [29]. Animals were provided
a commercial feed, without coccidiostats, antibiotics, or probiotics, for starter (0–8 days)
and grower (9–14 days) diets (Supplementary Materials, Table S2) [30]; they had access to
feed and water ad libitum during the entire experimental period. Relative humidity was
maintained between 50–70%. During the first day of placement, a regime of continuous
light was provided (intensity 30–40 Lux). From day 2, light was turned off for 1 h until
the birds reached 130–180 g, then a regime of 18 h of light (intensity 5–10 Lux) and 6 h of
dark was provided until the end of the experiment (day 15). Hardwood shavings were
used to cover the floor where birds were raised. During the first week, temperature was
kept between 30 and 32 ◦C; it was decreased by 2 ◦C per week, on day 7 (28–30 ◦C) and
on day 14 (25–27 ◦C). Housing and management abided by the COBB 500 Management
Guide [31]. On day 15 (11 dpi, days post infection), 10 birds (n = 10) were selected per
experimental group and blood samples were collected from the brachial vein. Then, animals
were electrically stunned and finally euthanized by bleeding.
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2.3. Histological Analyses

From the intestine, the loop of the duodenum; the mid-point of the jejunum, located
between the point of entry of the bile duct and Meckel’s diverticulum; along with the
mid-point of the ileum, located between Meckel’s diverticulum and the ileocecal junction,
were collected (2 cm of each segment) [24]. A solution of formalin (10%) was utilized to
fix the samples for 2 days, and they were then serially washed with ethyl alcohol (70%,
90% and 100%) for dehydration. Xylol was used to diaphanize the samples, which were
later embedded in blocks of paraffin. A rotary microtome (Leica RM2235, Wetzlar and
Mannheim, Germany) was employed to slice the blocks in three longitudinal sections of
5 µm; staining was carried out using hematoxylin and eosin (HE staining). The Motic
Images Plus 2.0 software (Motic, Hong Kong, China) was utilized for capturing and
processing images from intestinal sections (duodenum, jejunum, and ileum). Villus height,
villus width, and crypt depth were assessed in each of these segments. At least six uninjured
villi were selected and the procedure was performed 4 times for a total of 24 readings per
chicken. An intact lamina propria was used as a reference for villus choice. Surface area was
calculated using the following formula: [2π× (villus width/2)× villus height] as described
by [32]. The villus-height-to-crypt-depth ratio was estimated as detailed previously [24].
The Motic Images Plus 2.0 software was used to assess the number of goblet cells in
10 intact villi, and this was estimated per 100 intestinal epithelial cells [33].

2.4. RNA Extraction, Reverse Transcription, and Quantitative Polymerase Chain Reaction Assays

A section of the ileum was kept in RNA later and stored at −80 ◦C. The tissue was
thawed and homogenized by manual grinding for approximatively 10 min using 1 mL of
TRIzol™ reagent (Thermo Scientific, Waltham, MA, USA). After extraction, samples were
left at −20 ◦C for 10 min. Subsequently, 4-bromoanisole (Sigma-Aldrich Inc., St. Louis,
MO, USA) (50 µL) was added to the tubes, which were later shaken. Centrifugation of
the mix was performed at 12,000× g for 15 min. The extracted RNA was precipitated and
purified using the AccuPrep Universal RNA Extraction Kit (BioNeer Corporation, Daejeon,
Republic of Korea) according to the provided guidelines. RNA quality and concentration
were assessed with a NanoDrop One spectrophotometer (Thermo Scientific, Waltham, MA,
USA). The RNA samples were stored at −80 ◦C.

Reverse transcription was performed with the OneScript Plus cDNA Synthesis Kit
(Applied Biological Materials Inc., Vancouver, Canada). The components were thawed and
mixed before use; reactions were performed on ice. The extracted RNA was mixed with
buffer, dNTPs, primers, nuclease-free water, and the OneScript RTase®. Synthesis of cDNA
was carried out by incubating for 15 min at 50–55 ◦C. For removal of complementary RNA,
1 µL of E. coli RNase H (Applied Biological Materials Inc., Vancouver, Canada) was added,
followed by incubation for 20 min at 37 ◦C. Dilution of the cDNA was carried out in 10× in
UltraPure™ DNase/RNase-Free distilled water (Invitrogen, Waltham, MA, USA) and
kept at −80 ◦C. For quantitative analysis, the following primers were utilized: muc-2 For-
ward 5′-GCCTGCCCAGGAAATCAAG-3′ and Reverse 5′-CGACAAGTTTGCTGGCACAT-
3′ [34]. GAPDH was used as a housekeeping gene, primers were as follows: Forward
5′-CCTGCATCTGCCCATTT-3′ and Reverse 5′-GGCACGCCATCACTATC-3′ [35]. Cycling
conditions, detection, amplification, calculation of melting curve, and data normalization
were set as described previously [36]. The primers used for analyses allowed amplification
efficiencies between 94% and 100%. The Stratagene Mx3000P Multiplex QPCR (Agilent,
Sta. Clara, CA, USA) was used for amplification and detection of specific sequences. The
cycling conditions were as follows: initial denaturation for 5 min at 95 ◦C, which was
followed by 36 cycles at 95 ◦C for 20 s. The annealing step was performed at 57 ◦C for 30 s
and the extension step at 72 ◦C for 30 s. A melting curve ranging from 50 ◦C to 95 ◦C, with
readings every 0.5 ◦C, was carried out for each RT-qPCR plate. Samples were evaluated
in duplicate and means were used for calculations. The reference gene (GAPDH) was
employed to normalize Ct values (Delta—∆—Ct) that were calculated as 2−∆Ct [37].
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2.5. Antibody Determination

Blood was collected from the brachial vein with 4 mL vacuum tubes; this procedure
was restricted to a maximum of 2 min. Samples were kept at room temperature for
120 min and stored at 4 ◦C overnight. Centrifugation was then carried out at 2500× g
at 4 ◦C for 10 min, and the serum was maintained at −80 ◦C. Detection of IgA and IgM
levels was carried out by an enzyme-linked immunosorbent assay (ELISA) using chicken
IgA and IgM ELISA kits (Abcam, Cambridge, UK), following the provided instructions.
Briefly, 100 µL of IgA or IgM standards, along with diluted serum samples and suitable
controls were added to selected wells in duplicates. The IgA plate was incubated at room
temperature for 20 min and the IgM plate for 30 min, which was followed by treatment
with a wash buffer (4 times). Then, 100 µL of anti-chicken IgA or IgM—HRP (horseradish
peroxidase) conjugate antibody were added to each well and incubated at room temperature
in the dark for 20 (IgA) and 30 min (IgM). After the washing steps (4 times), 100 µL
of the chromogen solution 3,3,5,5′-tetramethylbenzidine (TMB) was added to each well.
Following incubation at room temperature (10 min), the reaction was halted with 100 µL
of stop solution. Absorbance was measured at 450 nm in a Multiskan EX microplate
reader (Thermo Scientific, Waltham, MA, USA). Reads were carried out in duplicates,
which were averaged for further analyses. Control values were subtracted from treatment
values. Antibody concentration was determined using a standard curve generated with the
GraphPad Prism 9 Software (San Diego, CA, USA).

2.6. Statistical Analysis

Analyses were performed in MATLAB version 9.9.9341360 (MathWorks, Natick, MA,
USA) (R2016a). Normality was assessed using the Shapiro–Wilk’s test, and homogeneity
of variance was calculated with Levene’s test. A one-way analysis of variance and a
Tukey post hoc test were utilized to determine differences between groups when data was
homoscedastic and normally distributed. For normally distributed and heteroscedastic
data, Welch’s ANOVA and Welch’s t-test were applied. The Kruskal–Wallis test and the
Mann–Whitney U test (Wilcoxon rank sum test) were used when data were non-normally
distributed. In this case, medians were used as a measure of the tendency of distribution as
means are affected due to the non-symmetrical distribution.

3. Results
3.1. Intestinal Parameters

In all sections, exposure to S. Infantis did not influence the height of villi compared to
the control. Probiotic administration, on the other hand, proved to increase this condition
in both the duodenum and jejunum; chickens exposed to L. fermentum showed taller
villi than control and S. Infantis-infected birds (p < 0.05). In jejunal sections, the positive
effect of L. fermentum was observed even in the presence of S. Infantis. Exposure to both
microorganisms augmented the height of villi in ileal sections (p < 0.05), although no
effects were observed when bacteria were administered individually (p > 0.05) (Figure 1)
(Table S3). In duodenal and ileal sections, inoculation with S. Infantis resulted in deeper
crypts compared to control conditions. In the duodenum, such an arrangement was not
detected in the presence of the probiotic. In animals exposed to all experimental conditions,
ileal sections showed deeper crypts than those of control animals (p < 0.05) (Figure 1). A
higher villus-height-to-crypt-depth ratio was determined in the duodenum and jejunum of
chickens exposed to the probiotic than in those of the control group. On the other hand,
infection with S. Infantis reduced such values in all sections. This negative effect was not
observed when infected birds were previously treated with L. fermentum (p < 0.05) (Figure 1).
In the duodenum and jejunum, animals of the L. fermentum group showed larger surface
areas than those of the control and S. Infantis group. In jejunal sections, this improvement
was observed even in the presence of S. Infantis. In ileal sections, simultaneous exposure to
both bacteria yielded higher surface values in treated chickens than in control conditions
(p < 0.05) (Figure 1). Similarly, the number of goblet cells in the duodenum, jejunum, and
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ileum was augmented in animals treated with both bacteria compared to those of the
control. In duodenal and jejunal sections, higher values were registered in the probiotic
than in the control group (p < 0.05) (Figure 1). Administration of the probiotic as well as
infection with S. Infantis did not modify transcript abundance of muc-2 (p > 0.05) (Table 1)
(Table S3).
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Figure 1. Effects of bacterial administration on morphological characteristics of the small intestine
in broiler chickens with respective illustrative photomicrographs (40×magnification, HE staining).
Values are means plus SD (n = 10). Box plots are used for depicting medians with their corresponding
interquartile range (IQR). * designates differences from the control group (p < 0.05), � from the Lf
group, and N from the Si group. Lf: L. fermentum; Si: S. Infantis; VH: villus height; CD: crypt depth;
SD: standard deviation. Circles denote outliers. Yellow and black double-headed arrows indicate
villus height and crypt depth, respectively.
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Table 1. Expression levels of ileal muc-2 in probiotic and pathogen-treated broiler chickens.

Expression Levels (2−∆Ct)

Gene symbol Control L. fermentum S. Infantis L. fermentum + S. Infantis

muc-2 0.107 ± 0.216 0.256 ± 0.613 0.159 ± 0.348 0.455 ± 1.262
Values represent means ± SD (n = 10). SD: standard deviation.

3.2. Antibody Serum Levels

No differences in IgA serum levels were found between experimental groups. IgM
concentration was only altered when animals were inoculated with both L. fermentum and
S. Infantis. Levels detected in the co-exposure group were higher than those detected in the
other groups (Figure 2) (Table S3).
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Figure 2. Effects of bacterial treatments on IgA and IgM serum levels (n = 10). Box plots are used
for depicting medians with their corresponding interquartile range (IQR). * designates differences
from the control group (p < 0.05), � from the Lf group, and N from the Si group. Lf: L. fermentum;
Si: S. Infantis. Circles denote outliers.

4. Discussion

S. Infantis has emerged as a significant serovar commonly reported in poultry prod-
ucts [38–40], and its spreading could be considered of importance for public health [41,42].
Various studies have focused on testing different approaches for successfully decreas-
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ing S. Infantis cecal colonization not only in broiler chickens but also in pigs [11,12].
However, there is no information regarding its effects on intestinal architecture and im-
munoglobulin serum levels in broiler chickens, since it is not considered as invasive as other
serovars [19]. Besides measuring such effects, this investigation sought to determine the
influence of L. fermentum administration during a S. Infantis infection. Probiotic treatment
not only relieved the intestinal effects elicited by S. Infantis but also improved levels of
serum IgM in 15-day-old chickens. This study represents the earliest report demonstrating
that L. fermentum can play a protective role in the intestines of birds infected with the
aforementioned serovar.

Intestinal epithelial cells are considered crucial constituents of the gut ecosystem
as they not only partake in protection against invading pathogens but are also involved
in nutrient acquisition [43,44]. Alternatives to improve intestinal architecture have been
tested with success, including plant extracts, microalgae biomass, or probiotics [24,45,46].
Salmonella serovars, including S. Pullorum and S. Typhimurium, are known for eliciting
mucosal damage of the small intestine [17,18]. Probiotic bacteria, on the other hand,
help preserve the integrity of the epithelium [47–49], which stimulates the absorption of
nutrients and ultimately leads to a superior growth performance [50,51]. L. fermentum, as
many other Lactobacillus species, has proved useful for ameliorating intestinal health of
broiler chickens [24,52–54]. Indeed, this probiotic species improved the height of villi in
duodenal and jejunal sections, but it did not influence crypt depth. S. Infantis did not
alter villus height, although it led to the development of deeper crypts in the duodenum
and ileum. Longer villi are associated with improved nutrient intake due to an increase
of absorptive surface; indeed, shortening of the intestinal villi has been linked to poor gut
health [55,56]. Deeper crypts have been related to an active regeneration of the villi [57],
although an increase in crypt depth, associated with a decrease in villus height, might
result in an augmented metabolic cost of epithelium turnover [58]. Crypt stem cells divide,
differentiate, and migrate upwards, providing cells for villus development. Shallow crypts
indicate a greater number of mature cells, thus improving feed utilization [17].

The villus-height-to-crypt-depth ratio is an effective parameter for assessing intestinal
integrity; when this ratio increases, it is assumed that digestion and absorption are ame-
liorated [59]. The assessed values were larger in birds treated with the probiotic than in
control and Salmonella-infected animals. Birds from the latter group showed even lower
ratios than those of untreated chickens. The improvement observed with regard to in-
testinal architecture could help ameliorate the capacity for digestion and absorption, as
suggested by the increase of villi absorptive area observed in animals exposed to L. fermen-
tum. Microbial synthesis of fermented products (e.g., short-chain fatty acids) modulate
intestinal epithelium proliferation [60], and exposure to lactic acid bacteria has proved
to accelerate the crypt–villus axis movement of intestinal enterocytes by activating inte-
grin collagen receptors [61]. A large area of villi is capable of rapidly absorbing nutrients
from digested food; thus, a loss of this absorptive surface may inhibit nutrient intake,
leading to alimentary deficiency and even intestinal failure [62]. It has been reported that
infection by S. Typhimurium and S. Enteritidis reduced intestinal surface area in broil-
ers [63,64]. S. Infantis did not modify this parameter in comparison to control animals,
although measured values were lower than those found in probiotic-treated chickens. In
birds colonized by L. fermentum with prior infection with S. Infantis, villi surface area was
larger than that of only infected chickens, and in the jejunum and ileum, it was larger
than that of control animals. Clearly, the use of the probiotic triggered beneficial effects in
the presence or absence of S. Infantis. Similar results have been hitherto reported in the
context of infections associated with other serovars. For instance, addition of B. subtilis
increased villus surface area in chickens infected by S. Typhimurium compared to values
registered in animals challenged only with the pathogen [23]. Similarly, L. acidophilus, in
combination with an aqueous extract from Thymus vulgaris, was capable of augmenting
villus surface area in the jejunum of S. Enteritidis-challenged chickens [65]. Overall, the
present outcomes corroborate previous reports showing that Lactobacillus administration
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alleviates intestinal impairments caused by Salmonella infections [17,66], which may have
beneficial repercussions on nutrient absorption during later critical stages of growth.

Goblet cells make up part of the luminal surface and produce large amounts of a
glycoprotein called Mucin 2 [67,68]. Intestinal gel-forming mucins procedure a highly
protective viscous layer, which is known to play an important role during infection by
pathogenic microorganisms [69]. S. Infantis augmented cell counts in the duodenum
but did not alter this parameter in the jejunum and ileum. On the other hand, broiler
chickens infected with S. Enteritidis showed a reduced number of goblet cells in the jejunum
compared to control conditions [70]. Similar results were reported in chicks challenged with
S. Pullorum, in which an important loss of goblet cells was observed in jejunal sections [22].
Treatment with probiotics diminished the negative effects triggered by the aforementioned
serovars [22,70]. Indeed, exposure to L. reuteri induced epithelial cell proliferation and
goblet cell differentiation [71]. Here, we have shown that administration of L. fermentum not
only augmented the number of goblet cells in the duodenum and jejunum compared to the
control group but also maintained such conditions despite infection by S. Infantis. Indeed,
in chickens exposed to both bacteria, goblet cell count was observed to be the largest,
demonstrating the utility of this probiotic to avoid potential barrier dysfunction caused
by Salmonella colonization. Bacteria are known for their associated molecular patterns and
secreted products that lead to the activation of the host receptors on epithelial and immune
cells; this activation prompts goblet cell differentiation via cellular signaling or cytokine
secretion [27]. Despite detecting a small increase in the number of goblet cells in the ileum,
no changes were observed concerning transcriptional abundance of muc-2. Similarly, in
S. Typhimurium-challenged mice, it has been observed that probiotic inoculation did not
modify muc-2 levels in colon samples [72]. Relative expression of muc-2 has been observed
to increase after L. reuteri administration in young chicks compared to control conditions,
although in probiotic treated animals, goblet cell count almost doubled that of untreated
birds [71].

In broiler chickens, L. fermentum application has been shown to increase plasma
immunoglobulin (IgA and IgM) levels [73]. Furthermore, inoculation with this species
augmented the percentage of IgA and IgM cells in the cecal lamina propria of chickens
challenged with C. coli [26]. Here, we demonstrated that L. fermentum is also able to
modulate IgM serum levels in chickens infected with S. Infantis, although no changes were
observed regarding IgA production. Serum IgM is the first antibody to act after infection
and contributes with pathogen clearance [74]. Higher levels of serum IgM, compared to
control conditions, have been reported after simultaneous exposure to L. plantarum and
S. Enteritidis in mice [74]. No effects on immunoglobulin concentration were registered
in chickens infected with S. Infantis; indeed, this serovar is not considered as invasive as
others [19].

IgA plays a key role in protecting the mucosal surface by neutralizing or preventing
bacteria, viruses, or toxins from binding the intestinal epithelium [75]. IgA levels were not
altered in response to any treatment. In line with our results, previous studies revealed
that administration of a mixture of probiotics, including L. reuteri and L. salivarius, did
not change plasma IgA levels [76,77]. In contrast, infection with S. Pullorum triggered
production of plasma IgA, IgM, and IgG; such abundance was modulated by dietary
administration of L. casei [22]. Certainly, administration of certain probiotics, including
L. fermentum, might enhance the immune capacity of birds for coping with infections,
especially with the host ability to handle long-term Salmonella colonization [78].

5. Conclusions

S. Infantis is associated with human salmonellosis and has been commonly reported
in poultry-derived products, so it is considered a threat to public health. However, infor-
mation is scarce concerning its effects on intestinal morphometry and immunoglobulin
serum levels in broiler chickens. In this investigation, we showed that S. Infantis reduced
villus-height-to-crypt-depth ratios in the duodenum, jejunum, and ileum compared to
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control conditions. The number of goblet cells was not altered, and in ileal sections, muc-2
expression remained similar to those of the control. Similarly, the abundance of serum
IgM and IgA was not modified by infection. Administration of L. fermentum not only
ameliorated VH:CD ratios but also increased surface area and goblet cell count compared
to control animals; this effect was also observed in S. Infantis-challenged birds. IgM
serum levels were augmented in response to colonization by the probiotic in challenged
chickens. Treatment with probiotic Lactobacilli elicited positive effects on the intestine and
immunoglobulin serum levels and also relieved the outcomes triggered by S. Infantis.
Undoubtedly, L. fermentum appears convenient for developing novel probiotic/prebiotic
treatments aimed at reducing unwanted infections.
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Z.; Levkut, M.; Herich, R.; Revajová, V. The probiotic Lactobacillus fermentum Biocenol CCM 7514 moderates Campylobacter
jejuni-induced body weight impairment by improving gut morphometry and regulating cecal cytokine abundance in broiler
chickens. Animals 2021, 11, 235. [CrossRef] [PubMed]

25. Šefcová, M.; Larrea-Álvarez, M.; Larrea-Álvarez, C.; Revajová, V.; Karaffová, V.; Koščová, J.; Nemcová, R.; Ortega-Paredes, D.;
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