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Abstract: Spore-forming bacteria of the Bacillus genus have demonstrated potential as probiotics for
human use. Bacillus clausii have been recognized as efficacious and safe agents for preventing and
treating diarrhea in children and adults, with pronounced immunomodulatory properties during
several in vitro and clinical studies. Herein, we characterize the novel strain of B. clausii CSI08
(Munispore®) for probiotic attributes including resistance to gastric acid and bile salts, the ability to
suppress the growth of human pathogens, the capacity to assimilate wide range of carbohydrates and
to produce potentially beneficial enzymes. Both spores and vegetative cells of this strain were able to
adhere to a mucous-producing intestinal cell line and to attenuate the LPS- and Poly I:C-triggered
pro-inflammatory cytokine gene expression in HT-29 intestinal cell line. Vegetative cells of B. clausii
CSI08 were also able to elicit a robust immune response in U937-derived macrophages. Furthermore,
B. clausii CSI08 demonstrated cytoprotective effects in in vitro cell culture and in vivo C. elegans
models of oxidative stress. Taken together, these beneficial properties provide strong evidence for
B. clausii CSI08 as a promising potential probiotic.
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1. Introduction

The term probiotics acknowledged by the Agriculture Organization of the United
Nations and the WHO (FAO/WHO) in 2001 and revisited later, in 2014, defines them
as “live microorganisms that, when administered in adequate amounts, confer a health
benefit on the host” [1]. The growing body of evidence highlighting the fundamental role
of microbiota in human health and disease [2] drives global interest in probiotic research,
and novel approaches helping to maintain “healthier” gut microbiota are in demand.
Indeed, health benefits of probiotics have been shown in multiple clinical trials and are
further backed by meta-analyses and systematic reviews. Through various modalities,
including interacting with the host microbiota and the host intestinal epithelium, probiotics
can influence a number of physiological processes including metabolism, immunity and
endocrine function amongst others [3].

Probiotic strains most cited in biomedical literature belong to the genera bifidobacteria
and lactobacilli [1,4]. In this context, spore-forming bacteria of the genus Bacillus are clearly
understudied [5], yet a number of bacilli strains have been shown to possess probiotic
characteristics and have decades-long history of medical use [5,6]. The ability to form
endospores that are resistant to heat, UV radiation, desiccation [7], can tolerate low pH
and high concentrations of bile salts [8] confers Bacillus-based probiotics several unique

Microorganisms 2023, 11, 240. https://doi.org/10.3390/microorganisms11020240 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms11020240
https://doi.org/10.3390/microorganisms11020240
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0001-5689-8399
https://doi.org/10.3390/microorganisms11020240
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms11020240?type=check_update&version=1


Microorganisms 2023, 11, 240 2 of 22

features. Being administered in the spore state, Bacillus spp. can survive aggressive gastric
conditions and reach the small intestine in large numbers where they germinate into
vegetative form [9]. Spore-based probiotic formulations have a long shelf life and do not
require refrigeration during storage [10,11]. Moreover, Bacillus spp. spores showed decent
stability during processing and storage of functional foods, such as pastries, fruit juices
and preserves, sausages, and pasta [12–14].

Different strains belonging to nine Bacillus species such as B. subtilis, B. coagulans,
B. indicus, B. licheniformis, B. clausii have been recognized as probiotics for human use [15].
B. clausii strains are ubiquitous in nature, and have been isolated from soil [16], seawa-
ter [17], milk [18] amongst others. Importantly, isolates of B. clausii have been recovered
from human feces more frequently than other Bacillus species [19].

Safety and efficacy of different probiotic strains of B. clausii have been demonstrated in
a number of clinical trials conducted around the globe [20–24]. For example, B. clausii (O/C,
N/R, SIN and T) can reduce the incidence of diarrhea, nausea, and epigastric pain associ-
ated with antibiotic treatment for H. pilory in adults [25,26]. Similarly, B clausii (A. clausii
088AE) showed their efficacy for managing diarrhea caused by broad-spectrum antibiotics
in both children and adults [27]. Treatment with probiotic strains of B. clausii were also effec-
tive in reducing main clinical symptoms of acute diarrhea, including rotavirus-associated
diarrhea in children [28–31]. In a recently published prospective study, B. clausii (O/C,
N/R, SIN and T) was beneficial for managing symptoms of IBS in children [31]. More-
over, prophylactic administration of B. clausii to preterm infants was associated with faster
achievement of full feeds [32]. In a pilot trial involving children with recurrent respiratory
infections prolonged treatment with B. clausii has been proven to reduce the duration of
infections [33]. B. clausii treatment has also been shown to alleviate symptoms of aphthous
ulcer and oral candidiasis [34].

In vitro and preclinical studies of probiotic strains of B. clausii, as well as genome
sequencing reports, revealed their key attributes, including the ability to produce antimi-
crobial substances and vitamins, the ability to withstand acidic pH and bile salts, and stress
adaptation factors and putative adhesion proteins [35–39]. Interestingly, the immunomod-
ulatory capacity of various B. clausii strains has been highlighted in a number of studies.
Park et al. reported that supplementation with viable cells B. clausii KCTC 10277 BP can
suppress pulmonary inflammation in ovalbumin-sensitized mice, reducing Th2 immune
response and affecting hypoxia-related pathway in lung tissue [40]. B. clausii MTCC-8326
has been shown to protect murine RAW 264.7 macrophages against S. typhimurium in-
fection supposedly by causing controlled inflammatory response and inducing several
defensins and interferons [41]. Administration of B. clausii (O/C, N/R, SIN, and T) can
affect expression of genes involved in inflammation, immune response, defense response
etc. in duodenal mucosa of healthy individuals [42]. An in vitro study conducted on Swiss
and C57 Bl/6j murine cells demonstrated the ability of the same strains to induce NOS II
synthetase activity, IFN-γ production, and CD4+ T-cell proliferation [43].

MuniSpore® is a commercial preparation of the spores B. clausii CSI08. The aim of the
present work was to characterize this novel strain. Firstly, we evaluated general probiotic
attributes of B. clausii CSI08, such as resistance to gastrointestinal conditions, adhesion
capability, enzymatic profile, and antimicrobial activity. Additionally, we examined im-
munomodulatory and antioxidant properties of the vegetative form of the strain in in vitro
and in vivo models.

2. Materials and Methods
2.1. Bacterial Strains and Sample Preparation

Munispore®, the single-strain spore-based probiotic Bacillus clausii CSI08, was pro-
vided by Deerland Probiotics and Enzymes (US). Vegetative form of B. clausii CSI08, Es-
cherichia coli ATCC 25922, Salmonella enteritidis ATCC 13076, Staphylococcus aureus str. RF122,
Pseudomonas aeruginosa DSM 3227 were cultured routinely at 37 ◦C in Trypticase soy broth
(TSB) or agar (Merck, Ireland), unless otherwise specified. When preparing liquid cultures,
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above-named bacterial strains were grown with vigorous shaking (~170 rpm). Commer-
cial probiotic strains Lactobacillus rhamnosus GG (ATCC 53103) and Lactobacillus fermentum
were grown using DeMan-Rogosa-Sharpe broth or agar (Oxoid Ltd., Basingstoke, United
Kingdom) at 37 ◦C.

For cell culture experiments, 10 mL of overnight cultures prepared under conditions
described above were transferred into 50 mL falcon tubes and centrifuged for 10 min at
4000× g. Supernatants were then removed, and bacterial pellets were washed once with
10 mL of serum-free DMEM. Washed pellets were resuspended in 10 mL of serum and
additives free high glucose DMEM. To obtain cell-free supernatants bacterial preparations
in DMEM were further cultivated for 18 h. After that, cultures were centrifuged for 10 min
at 4000× g; pellets were discarded, and supernatants were filter-sterilized using syringe-
mounted filters with 0.22 µm pore diameter. 1N NaOH was added to cell-free supernatants
to bring pH to ~7.5, if necessary.

2.2. Stability of B. clausii CSI08 Spores during Pasteurization

Spore suspension was prepared by adding 50 mg of Munispore® spore powders to
100 mL of 1X PBS, pH 7.6 (Sigma-Aldrich, St. Louis, MO, USA). The suspension was mixed
using a vortex for 2 min and dispensed into glass test tubes, 5 mL of suspension per each.
The test tubes were treated at 45 ◦C, 75 ◦C and 90 ◦C in a water bath for 0.5, 1 or 3 min.
Following incubation, samples were serially diluted and plated in 3M™ Petrifilm™ aerobic
count plates.

2.3. Resistance of B. clausii CSI08 Spores to Simulated Gastric and Intestinal Conditions

The tolerance of B. clausii CSI08 spores to an in vitro simulated gastric and intestinal
conditions were assayed following the publication by Pisano et al. [44] with some modifica-
tions. Briefly, 100 µL of spore suspensions in PBS or 100 µL of L. rhamnosus suspension in
PBS were added to 900 µL of 0.3% pepsin (w/v, Sigma P6887) in NaCl pH 3 and incubated
for 2 h at 37 ◦C in a water bath. Following incubation, spores and bacteria were pelleted
by centrifuged at 3000× g for 5 min; the pellets were washed two times with 1 mL PBS
and resuspended in 100 µL PBS. 900 µL of solution containing 0.1% pancreatin (w/v, Sigma
P1750) and 0.3% bile salts (w/v, Sigma cat no. 48305) in PBS, pH 7.5, were added to the
spores and bacteria and incubated for another 2 h at 37 ◦C in a water bath. After 1, 2, 3, and
4 h of incubation, samples’ aliquots were serially diluted and plated onto 3M™ Petrifilm™
aerobic count plates (B. clausii CSI08 spores) or MRS agar plates (L. rhamnosus).

2.4. Quantitative Analysis of Amino Acids and Vitamins in B. clausii CSI08 Supernatants

Overnight cultures of B. clausii CSI08 prepared in TSB were taken for analysis. Amino
acids quantification was carried out using high performance liquid chromatography
(HPLC) and fluorescence detection (FLD), with a precolumn derivatization step using
6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC). Regarding the determination
of vitamins, ultra-high performance liquid chromatography (UHPLC) coupled to a simple
quadrupole mass detector (MS) was used. Full technical description of the methods can be
found in Appendices A and B.

2.5. Semi-Quantitative Assays for Carbohydrate Fermentation and Hydrolytic Activities

The ability of B. clausii CSI08 to use different carbon sources was investigated with
API 50CH (BioMérieux, Hampshire, UK); hydrolytic activities were determined using the
API-ZYM kit system (BioMérieux, Hampshire, UK), according to the instructions provided
by manufacturer.

2.6. Antimicrobial Activity of B. clausii CSI08 in Liquid Media

Tests in liquid culture were performed as previously described with some modifi-
cations [45]. Briefly, 10 µL of TSB were co-inoculated with 1 × 105 CFU/mL of the test
pathogen strain and 1 × 107 CFU/mL of MuniSpore®. Co-cultures were incubated at 37 ◦C
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with vigorous shaking (170 rpm) for 24 h; after that the co-cultures were serially diluted and
plated. Enumeration of gram-negative bacteria was performed on MacConkey agar (Merck,
Ireland). S. aureus enumeration was performed on Mannitol egg yolk polymyxin agar (MYP,
Merck, Ireland). Both MacConkey and MYP agar inhibited the growth of B. clausii CSI08,
enabling the detection of each pathogen.

2.7. Determination of Antioxidant Activity In Vitro

Fifty milliliters of overnight cultures of B. clausii CSI08 and L. rhamnosus prepared in
TSB broth and normalized by number of bacteria (1 × 108 CFU/mL), were centrifuged
at 4000× g for 15 min. Obtained pellets were washed three times with 10 mL phosphate
buffered saline (PBS, Sigma-Aldrich) and resuspended in 1 mL PBS. Cell suspensions were
transferred to beaded tubes (A29158, Thermofisher). Cells were lysed using BeadBug™6
homogenizer at 3500 rpm, 3 cycles 30 s each, suspensions were kept on ice between
cycles for 1 min. Tubes were centrifuged at 9800× g for 15 min to remove cell debris and
the supernatants were transferred to fresh microcentrifuge tubes. The level of catalase
activity in cell lysates have been determined using Catalase assay kit (CAK1061, Cohesion
Biosciences, UK). Total antioxidant capacity in Trolox equivalents have been measured
using Total Antioxidant Capacity Assay Kit (MAK187, Sigma-Aldrich).

2.8. Maintenance of Cell Lines

Human Colorectal Adenocarcinoma Cell Line HT-29 and mucous-secreting HT-29-
MTX (both purchased from Sigma-Aldrich) were propagated using low glucose DMEM
medium supplemented with 10% Fetal Bovine Serum, 2 mM L-glutamine, 100 U/mL
penicillin, and 100 µg/mL streptomycin in a 5% CO2 atmosphere at 37 ◦C. All cell cul-
ture reagents were purchased from Capricorn Scientific, Ebsdorfergrund, Germany. Pro-
monocytic human cell line U937 obtained from the American Type Culture Collection
(ATCC, CRL-1593.2) and was routinely cultured in RPMI-1640 medium containing 10%
FBS, 2 mM L-glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin under condi-
tions indicated above. All base media and supplements were purchased from Thermofisher.

2.9. Cell Viability Assays

Cell viability assays were carried out using CyQUANT™ XTT Cell Viability kit (Invit-
rogen™), according to manufacturer’s instructions. Prior to experiments, HT-29 cells were
seeded onto 96-well plate at a density 1 × 105 cell/well. The day after seeding, cells were
washed twice with 200µL of DPBS; 100µL of prewashed bacteria (107 CFU/mL–108 CFU/mL)
were added to the wells. Full culture medium containing 2.5% ethanol was added to the
control wells (positive control). Twenty hours after exposure to bacteria HT-29 cells were
washed twice with 200 µL of DPBS; 100 µL of full medium containing antibiotics were added
to the wells. HT-29 cells were then stained with 0.3 mg/mL solution of XTT (sodium 3′-[1-
(phenylaminocarbonyl)-3,4-tetrazolium]-bis (4-methoxy6-nitro) benzene sulfonic acid hydrate)
for 4 h. Absorbance was detected at 450 and 595 nm.

In a parallel experiment, HT-29 cells pretreated with B. clausii CSI08 were subjected to
three rounds of washing with 200 µL of DPBS; after that HT-29 cells were exposed to H2O2
added to a final concentration of 4 mM. After 24 h of incubation staining with XTT solution
was performed as described above.

2.10. Adhesion Assays

HT-29-MTX cells were seeded onto 24-well plates at a density of 5 × 105 cell/well and
cultured for 21–28 days to complete maturation. Media was replaced every 2–3 days. Four
hundred microliters of full media (low glucose DMEM, 10% Fetal Bovine Serum, 2 mM
glutamine) without antibiotics were added to the wells allocated for bacteria; DPBS was as-
pirated from the wells allocated for spores after the second round of washing. One hundred
microliters of pre-washed bacteria in DMEM (2.0 × 107 CFU/mL–1.2 × 108 CFU/mL) or
500 µL of spores suspensions (4.0 × 107–9.0 × 107 CFU/mL) were added to the cells, mixed
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by a gentle swirl, and incubated for 2.5 h at 37 ◦C in a 5% CO2 atmosphere. Control wells
not containing mammalian cells were prepared and incubated in parallel in the same way.
Upon incubation HT-29-MTX cells were washed 4 times with 0.5 mL PBS. After that, 50 µL
of Trypsin/EDTA solution (CC-5012, Lonza, Switzerland) and 50 µL of PBS were added to
the wells and incubated for 10 min with gentle shaking (~100 rpm) at 37 ◦C. Fifty microliters
of Trypsin/EDTA solution were added to control wells. Consequently, 450 µL of PBS were
added to the wells with bacteria or spores, contents of the wells were transferred into mi-
crocentrifuge tubes with scrapping and subjected to three rounds of vigorous shaking 30 s
each. Contents of control wells were transferred into microcentrifuge tubes and subjected
to one round of shaking. Serial dilutions (plus dilutions of control wells) were prepared in
PBS and plated onto PetriFilm™ or MRS agar plates for quantification of B. clausii CSI08 or
L. fermentum.

2.11. Anti-Inflammatory Activity Assays

HT-29 cells were seeded onto 24-well plates at a density of 5 × 105 cell/well. The day
after seeding cells were washed twice with 0.5 mL DPBS; 0.4 mL of full cell culture media
without antibiotics were added to the wells allotted for pretreatment with viable bacteria.
Alternatively, 0.25 mL of full cell culture media containing antibiotics were added to the
wells allotted for pretreatment with bacterial supernatants. One hundred microliters of
pre-washed bacterial cells (108 CFU/mL) or 0.25 mL of cell free supernatants were added
to the corresponding wells. After 20 h of incubation (CO2 atmosphere at 37 ◦C), HT-29 cells
were washed twice with 0.5 mL of DPBS and 0.5 mL of full cell culture medium containing
antibiotics were added to the wells. Lipopolysaccharides from E. coli O111:B4 (LPS, Sigma
L4391) were added to HT-29 cells pretreated with viable bacteria and cell free supernatants
to final concentration of 15 ng/mL. Poly I:C (P9582, Sigma) was added to pretreated HT-29
cells to final concentration of 10 µg/mL. Three or four hours after adding LPS or poly I:C,
cell culture supernatants were removed and HT-29 cells were lysed in the wells by adding
300 µL of lysis buffer supplied with Monarch Total RNA Miniprep Kit (NEB, MA, USA).

2.12. RNA Extraction, Reverse Transcription, and Quantitative Real-Time PCR

Total RNA was extracted from cell lysates using Monarch Total RNA Miniprep Kit
(NEB, MA, USA), according to manufacturer’s instructions. Then, fifty microliters of
nuclease-free water were taken to elute RNA. A Qubit™ RNA broad range kit was used
to quantify RNA after isolation. Next, one microgram of total RNA was taken to set up
reverse transcription reactions using Luna script RT Supermix kit (NEB, MA, USA). Real-
time PCR reactions were set up using Luna® Universal qPCR Master Mix (NEB, MA, USA)
and appropriate primer pairs (see Table S1) at a concentration of 200 nM using 1 µL of
generated cDNA per 9 µL of master mix. The reactions were performed in duplicates
using the following program: initial denaturation 95 ◦C 5 min, denaturation 94 ◦C 20 s,
annealing 60 ◦C 20 s, extension 72 ◦C 20 s (40 cycles). The specificity of reaction products
was confirmed by melting temperature analysis (from 70 ◦C to 95 ◦C in 0.5 ◦C/15 s
increments). Quantification of target transcripts was done using gapdh as a normalizing
house-keeping gene.

2.13. Human Nulcear Factor-κB (NF-κB) p65 Transcription Factor Activity Assay

HT-29 cells were seeded onto 6-well plates at a density of 2 × 106 cell/well. The day
after seeding, cells were washed twice with 2 mL of DPBS; 1.6 mL of full cell culture media
without antibiotics and 0.4 mL of pre-washed as described above (see Section 2.1) B. clausii
CSI08 suspension in DMEM were added to the corresponding wells. Two milliliters of
media were added to the control wells. After 20 h of incubation (37 ◦C CO2 atmosphere),
HT-29 cells were washed two times with 2 mL of DPBS and 2 mL of full media containing
antibiotics were added to all the wells. LPS were added to the wells pretreated with
bacteria and to the control wells to a final concentration of 15 ng/mL. HT-29 cells were
collected with 1 mL of ice-cold PBS by scrapping 45 min after adding LPS. Nuclear fractions
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were extracted using ProteinExt® Mammalian Nuclear and Cytoplasmic Protein Extraction
Kit (TransGen Biotech, Beijing, China) according to the manufacturer’s instructions with
one modification. Nuclear fractions were collected with 150 µL of NPEB buffer, instead
of 500 µL indicated in the supplied manual. Total protein concentration was thereafter
determined using Bicinchonic Acid Protein Assay Kit (B9643, Sigma). The nuclear fractions
normalized by total protein concentration (~25 µg of protein) were taken to evaluate NF-κB
activity using the NF-κB activity assay kit (TFEH-p65-1, RayBiotech, GA, USA) according
to the manufacturer’s instructions. Experiments were performed two times with three or
four technical replicates per assay.

2.14. Macrophage Differentiation and Challenge Study

U937 cells were seeded at a concentration of 105 cells/well in 96-well plates and
subjected to macrophage differentiation upon 50 ng/mL phorbol 12-myristate 13-acetate
(PMA) treatment for 72–96 h. Macrophages were then stimulated with 108 CFU/mL of
B. clausii CSI08 or 5 ng/mL LPS in complete RPMI-1640 medium without antibiotics for 5 h
at 37 ◦C. Afterwards, cell supernatants were harvested and stored at −20 ◦C until cytokine
determination. The analysis was carried out using Luminex 200™ System according to
the manufacturer’s instructions with a cytokine panel from Thermofisher including IL-1β,
IL-18, IL-6, TNF-α, GM-CSF, G-CSF, IL-10, IL-1RA and EGF.

2.15. C. elegans Culture Conditions and Experiments

Caenorhabditis elegans strains N2, Bristol (wild type) was obtained from the Caenorhab-
ditis Genetics Center at the University of Minnesota and maintained at 20 ◦C on Nematode
Growth Medium (NGM) plates with E. coli strain OP50 as normal diet for nematodes.
Overnight, B. clausii CSI08 culture was grown, as described in Section 2.1, and then cen-
trifuged for 10 min at 4000× g. Supernatants were then removed, and bacterial pellets
were washed once with saline solution. C. elegans wild-type strain (N2) cultured in NGM
(control fed condition), or NGM supplemented with B. clausii CSI08 at two different doses
(108 and 109 cells/plate). Vitamin C (10 µg/mL) was used as positive control. Worms were
incubated in these conditions and after several days were submitted to an acute oxidative
stress (2 mM H2O2) according to a previously published protocol [46]. Afterwards, viability
of nematodes was determined in each fed condition. Experiments were performed in
duplicate. Each experiment was conducted on 5 different plates, each containing 10 worms
(50 worms/assay). The antioxidant activity (worm survival) of total population was cal-
culated. Final survival data correspond to the average of two independent assays (total
population of 100 worms/condition). The effect of B. clausii CSI08 antioxidant activity was
studied by comparing the survival of treated nematodes versus the control-fed nematodes.

2.16. Statistical Analysis

All data were analyzed using Prism 9 (GraphPad Software, San Diego, CA, USA). Normal
distribution was determined using Shapiro-Wilk test. Samples following normal distribution
were tested for significance using unpaired t test or one-way ANOVA with Tukey, Bonferroni
or Dunnets post-hoc as relevant. When samples did not follow normal distribution, a Mann-
Whitney U test or Kruskal-Wallis with Dunn’s post-hoc was performed.

3. Results
3.1. In Vitro Evaluation of the Probiotic Properties of B. clausii CSI08
3.1.1. Resistance to an In Vitro Simulated Gastric and Intestinal Conditions

The ability of B. clausii CSI08 spores to survive during an in vitro simulated digestion
process was compared to that of the commercial L. rhamnosus GG (ATCC 15103) strain. As
shown in Figure 1, there was no decrease in the B. clausii CSI08 spores count after exposure
to simplified gastric and small intestinal conditions. At the same time, we detected a
significant drop in viable bacterial counts at the intestinal stage (0.1% pancreatin, 0.3%
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bile salts). These data indicate the potential ability of B. clausii CSI08 spores to efficiently
survive the transit through the upper digestive tract.
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Figure 1. Survival of B. clausii CSI08 spores and L. rhamnosus ATCC 53103 at gastric and small
intestinal digestion conditions simulated in vitro. The values are expressed in Log10 CFU/mL. Data
represent the mean (n = 8) ± SEM of two independent experiments performed in four technical
replicates. **** p < 0.0001 Survival of L. rhamnosus compared to 0 h.

3.1.2. Stability of B. clausii CSI08 Spores during Pasteurization

The temperature stability of B. clausii CSI08 spores was assessed at various conditions
(45, 75, and 90 ◦C) at three different time points (0.5, 1, and 3 min) in PBS. The summarized
results are shown in Figure 2. No change in viability was detected at 45 ◦C or 75 ◦C at all
three time points. Yet, we recorded the reduction in spore counts after treatment at 90 ◦C
from the 6.87 × 109 to 3.01 × 109 CFU. Nevertheless, B. clausii CSI08 spores showed good
overall performance at pasteurization conditions.
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3.1.3. Antimicrobial Activity

Antimicrobial activity B. clausii CSI08 in its vegetative form was evaluated for antimi-
crobial activity against four strains of E. coli, S. enteritidis, S. aureus, and P. aeruginosa. The
results shown in Figure 3 demonstrate the reduction in bacterial counts of three tested
pathogens grown in the presence of B. clausii CSI08. At the same time, under conditions
indicated above B. clausii, CSI08 was unable to inhibit growth of S. enteritidis.
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3.1.4. Enzymatic Capacity of B. clausii CSI08

The carbohydrate assimilation pattern determined using the API 50 CH assay kit is
shown in Table S2. B. clausii CSI08 was able to metabolize various simple carbohydrates
including glycerol, L-arabinose, D-ribose, D-glucose, D-fructose, D-mannose, L-rhamnose,
as well as disaccharides, including saccharose, cellobiose, trehalose, with moderate ability
to metabolize polymeric amidon and glycogen.

Enzymatic profile of B. clausii CSI08 detected using the API ZYM kit is presented in
Table S3. We detected activities of esterase-lipase C8 and esterase C4, hydrolyzing lipids
into free glycerol and unsaturated and saturated fatty acids. Notably, B. clausii CSI08 was
able to produce β-galactosidase, the enzyme that catalyzes lactose hydrolysis into glucose
and galactose and, importantly, is responsible for formation of galacto-oligosaccharides
(GOS) promoting the growth of Bifidobacterium and Lactobacillus species [47].

3.1.5. Amino Acids and Water-Soluble Vitamins in B. clausii CSI08 Supernatants

Furthermore, we performed an exploratory study to assess the ability of B. clausii
CSI08 to produce amino acids and vitamins. The levels of 22 amino acids and water-soluble
vitamins were determined in overnight cultures of B. clausii CSI08. The analysis showed the
higher levels of glutamic acid, alanine, glutamine and histidine mixture, threonine, proline,
tyrosine, valine, and methionine in bacterial supernatants compared to TSB medium
(Figure 4a). These data suggest the capacity of B. clausii CSI08 to synthesize the above-
mentioned amino acids during their growth in rich medium. At the same time, the elevated
concentration of amino acids might be the result of a peptidase activity of the strain. We
further detected high levels of pantothenic acid (B5) and cobalamin (B12) in B. clausii CSI08
supernatants (Figure 4b), which supports the assertation of the strain to produce vitamins.
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3.1.6. Assessment of Safety of B. clausii CSI08 and Adhesion to Mucous-Producing Cell
Line HT-29-MTX

To evaluate any potential cytotoxic effect of vegetative cells B. clausii CSI08 on HT-29
intestinal cells, the XTT assay has been carried out 20 h after bacterial exposure. Approxi-
mate multiplicity of infection (MOI) in the assay constituted 1:500. As shown in Figure 5a,
B. clausii CSI08 did not negatively impact the survival of intestinal epithelial cells at given
MOI. The adhesion ability of B. clausii CSI08 and its spore preparations were compared
to that of a commercial probiotic L. fermentum strain (Figure 5b). Both forms (cells and
spores) of B. clausii were able to adhere to HT-29-MTX cells. Percentage of adhesion of the
vegetative cells was approximately three times higher than that of the spores. L. fermentum
was shown to adhere to the mucous-producing cells twice as efficiently as vegetative cells
of B. clausii.
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Figure 5. Interaction of B. clausii CSI08 with intestinal epithelial cells. (a) B. clausii CSI08 did not reduce
HT-29 viability. Data represent percentage of XTT dye conversion after 20 h of coincubation with B.
clausii CSI08 compared with untreated cells (medium). Values are means± SEM of three independent
experiments. (b) Adhesion of vegetative cells and spores B. clausii CSI08 to the HT-29-MTX. Values
represent percentage of adhered cells/spores after 2.5 h of incubation with HT-29-MTX followed
by four rounds of washing. Values are means (n = 6) ± SEM of three independent experiments
**** p < 0.0001 vs. CSI08 cells, ++++ p < 0.0001 vs. L. fermentum.
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3.2. Immunomodulatory Effect of B. clausii CSI08 in Human Cell Lines

The vegetative form of B. clausii CSI08 and its cell-free supernatants were assessed
for their ability to modulate pro-inflammatory response in HT-29 cell line, triggered by
E. coli lipopolysaccharides (LPS) or Poly I:C, a synthetic double-stranded RNA ligand.
Expression level of IL-8, TNF-α, IL-17C, CXCL10 genes have been evaluated at mRNA
level using qRT-PCR. As shown in Figure 6, expression of all 4 genes was strongly induced
4 h after stimulation with LPS. Pretreatment with B. clausii CSI08, but not with its cell-free
supernatants, greatly inhibited LPS-triggered pro-inflammatory response. Notably, neither
the vegetative cells of B. clausii or their supernatants by themselves elicited a significant
increase in IL-8, TNF-α, IL-17C, CXCL10 gene expression after co-incubation with HT-29
cells (Figure 6).
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Figure 6. B. clausii CSI08 attenuated LPS-induced pro-inflammatory response in HT-29 cell line. qPCR
analysis of IL-8, TNF-α, IL-17C, and CXCL10 gene expression 4 h after exposure to 15 ng/mL LPS
in HT-29 cells preincubated with B. clausii CSI08 or its cell free supernatants (CFS). * p < 0.05 vs.
LPS, ** p < 0.01 vs. LPS, *** p < 0.001 vs. LPS, **** p < 0.0001 vs. LPS. The pattern of gene expression
determined after co-incubation of HT-29 cells with B. clausii CSI08 and its CFS in unstimulated
conditions is also shown. Results show mean ± SEM of three independent experiments.
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When the pro-inflammatory changes in HT-29 cell line were triggered by Poly I:C,
both cells and cell-free supernatants of B. clausii CSI08 have been shown to attenuate the
overexpression of IL-8, TNF-α, IL-17C, and CXCL10 genes (Figure 7).
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Figure 7. B. clausii CSI08 attenuated the Poly I:C-triggered pro-inflammatory response in HT-29
cell line. qPCR analysis of IL-8, TNF-α, IL-17C, and CXCL10 gene expression 4 h after exposure to
10 µg/mL Poly I:C in HT-29 cells preincubated with B. clausii CSI08 or its cell free supernatants (CFS).
* p < 0.05, ** p < 0.01; *** p < 0.001, **** p < 0.0001. Results show mean (n = 6) ± SEM.

In order to confirm that inhibitory effect of B. clausii CSI08 on the expression of
proinflammatory marker genes was associated with attenuation of NF-κB, we investigated
the activity of the transcription factor in the nuclear fractions of HT-29 cells preincubated
with viable bacteria 45 min after adding LPS. As shown in Figure 8, B. clausii CSI08
significantly counteracted the LPS-triggered activation of NF-κB.
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Figure 8. B. clausii CSI08 down-regulated the LPS-stimulated activation of NF-κB in HT-29 cell line.
Adsorption values correspond to the levels of the transcription factor in the nuclear fractions of control
cells, cells exposed to 15 ng/mL of LPS for 45 min, cells pretreated with B. clausii CSI08 for 20 h prior to
adding LPS. Values are means ± SEM of two independent experiments. ** p < 0.01 vs. LPS.

Subsequently, we investigated the effect of B. clausii CSI08 on the innate immune
system, adopting the cell model of U937-derived macrophages. The latter were stimulated
with 108 CFU/mL of vegetative cells B. clausii CSI08, followed by quantification of cy-
tokines/chemokines 5 h after exposure to bacteria. The concentrations of pro-inflammatory
TNF-α, IL-1β, IL-18, regulatory G-CSF, GM-CSF, IL-6, and anti-inflammatory IL-10, IL-1RA,
EGF were determined. The response to E. coli lipopolysaccharides has been assessed in
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parallel experiments. As shown in Figure 9, B. clausii CSI08 provoked a robust cell response,
resulting in secretion of high levels of all analyzed cytokines.
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Figure 9. Immunostimulatory effect of B. clausii CSI08. Cytokine levels in cell culture supernatants
of U937-derived macrophages: untreated (NC) or challenged with 108 CFU/mL of vegetative cells
of B. clausii CSI08 or LPS for 5 h. Values are the means ± SEM of three independent experiments.
* p < 0.05, ** p < 0.01, *** p < 0.001; **** p < 0.0001 LPS or CSI08 vs. NC; + p < 0.05; ++++ p < 0.0001
CSI08 vs. LPS.

3.3. Antioxidant Capacity of B. clausii CSI08 In Vitro and In Vivo

The total antioxidant capacity and the catalase activity of B. clausii CSI08 cell lysates
were compared to those of L. rhamnosus GG. Strong antioxidant properties of the above-
mentioned strain have been acknowledged by a number of studies [48]. B. clausii CSI08 and
L. rhamnosus GG exhibited a similarly high level of total antioxidant activity (Figure 10a). In
contrast, the level of catalase activity was significantly higher in B. clausii CSI08 cell lysates
as compared with the reference L. rhamnosus strain (Figure 10b).
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superior catalase activity (in U/g) as compared with L. rhamnosus GG cell lysates. Values are means 
(n = 3) ± SEM. ** p < 0.01. (c) Cytoprotective effect of B. clausii CSI08 on H2O2-exposed epithelium. 
Data represent percentage of XTT dye conversion 20 h after exposure to 4 mM H2O2 by HT-29 cells 
preincubated with 2.0 × 108, 1.0 × 108, 5.0 × 107 CFU of B. clausii CSI08 compared with control group 
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Figure 10. (a) Total antioxidant capacity of B. clausii CSI08 and L. rhamnosus GG cell lysates in Trolox
equivalents (nmol/g). Presented values are means (n = 3) ± SEM. (b) B. clausii CSI08 demonstrated
superior catalase activity (in U/g) as compared with L. rhamnosus GG cell lysates. Values are means
(n = 3) ± SEM. ** p < 0.01. (c) Cytoprotective effect of B. clausii CSI08 on H2O2-exposed epithelium.
Data represent percentage of XTT dye conversion 20 h after exposure to 4 mM H2O2 by HT-29 cells
preincubated with 2.0 × 108, 1.0 × 108, 5.0 × 107 CFU of B. clausii CSI08 compared with control
group (NC). The values are the means ± SEM. **** p < 0.0001 vs. H2O2. (d) Survival rate of C. elegans
N2 fed with 108 and 109 CFU/mL B. clausii CSI08 followed by an acute oxidative stress caused by
2 mM H2O2. NGM—control-fed nematodes; Vitamin C as a positive control. Values presented are
the average of two independent experiments (n = 100/condition). * p < 0.05.

The antioxidant potential of B. clausii CSI08 has been confirmed using the cell model
of oxidative damage. The viability rate of HT-29 epithelial cells treated with hydrogen
peroxide has been compared with that of the cells preincubated with B. clausii CSI08 taken
at three different concentrations prior to adding H2O2. A significant reduction in viability
was observed in HT-29 cells exposed to H2O2. Pretreatment with 2.0 × 108, 1.0 × 108,
5.0 × 107 CFU of B. clausii CSI08 partially restored the impaired viability of epithelial cells.
Summarized results are shown in Figure 10c. To further characterize antioxidant properties
of B. clausii CSI08, the in vivo C. elegans model was employed. Nematodes were fed with
vegetative cells at two different concentrations and after that subjected to acute oxidative
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stress with hydrogen peroxide. The survival rate was compared to that of the control group
nematodes (fed with nematode growth medium only). As shown in Figure 10d, B.clausii
CSI08 added to the worm diet caused an increase in the survival of the C. elegans population
after exposure to oxidative stress in a dose-dependent manner, being 109 cells/ml the
functional dose, with a survival of 44% compared to 29% of the control fed condition.

4. Discussion

Spore-forming bacteria of the genus Bacillus represent an ample and remarkably di-
verse group of microorganisms. Their capacity to produce a wide variety of secondary
metabolites, such as antibiotics, enzymes, vitamins, and carotenoids, created a huge po-
tential for use in pharmaceutical, agricultural, and industrial processes [49–51]. Bacillus
strains have been recognized as safe and efficacious probiotics, offering, in addition to
classic probiotic traits, notably high stability during processing and storage [52], as well
as relatively low production costs [53]. Microorganisms of B. clausii group stand out from
other Bacillus species featuring a distinctive ability to modify immune response in vitro
and in vivo [54]. In the present work we introduced the novel strain of B. clausii CSI08,
with a focus on immunomodulatory properties of this potential probiotic.

The ability to withstand low pH and the presence of high concentration of bile salts
is one of the fundamental properties of probiotic strains [55]. Generally recognized as
being highly resistant to extreme environmental stress, spores can struggle to maintain
viability after exposure to bile salts [56]. Therefore, assessment of spores’ survival un-
der digestion-related stress is a crucial step in a spore-based probiotic selection pipeline.
B. clausii CSI08 spores demonstrated excellent resistance to the simulated gastric and small
intestinal environment, indicating their potential ability to survive passage through upper
gastrointestinal tract. Previous findings have demonstrated that spore formulations of
the well-known B. clausii probiotic strains can tolerate pH 2 and up to 1% conjugated bile
salts and, moreover, can germinate and multiplicate under mimicked human intestinal
environment [39,57,58]. Similarly, we demonstrate herein that B. clausii CSI08 spores can
survive simulated gastric and small intestinal conditions.

Adherence to the intestinal mucosa is another essential characteristic of potential
probiotics. Stable binding to the intestinal epithelium helps bacteria and spores to avoid
their quick removal by peristalsis. Even transient colonization of mucosa by probiotic
strains leads to competitive exclusion of pathogens [59] and allows them to interact with
the local immune system [60]. Given the critical role of mucins in adhesion [61,62], we
have investigated the ability of vegetative cells and spores of B. clausii CSI08 to adhere to
the mucous-producing cell line HT-29-MTX. B. clausii CSI08 in both live states showed the
strong adhesive capacity, somewhat lower than that of the control L. fermentum strain. In
the study published by Ahire JJ et al. [58], spores of B. clausii UBBC07 demonstrated signifi-
cantly higher adhesion levels to porcine mucin compared to vegetative cells, conversely
to our results. Genome sequencing analysis of the probiotic B. clausii strains [37,38] re-
vealed the presence of genes encoding for adhesion-related proteins such as mucus-binding
protein [63], enolase [64], flagellar hook-associated protein [65], and exopolysaccharide
biosynthetic gene clusters [66]. Moreover, strains of B. clausii/ Enterogermina™ have been
recovered from feces of healthy volunteers twelve days after single administration of probi-
otic preparations, which indirectly suggests the ability of B. clausii strains to temporarily
colonize the intestine [67].

The enzymatic profiling conducted In the course of present study revealed β-galactosidase
activity of B. clausii CSI08. Release of this enzyme, responsible for the hydrolysis of lactose,
is an important feature of probiotics, since it has been involved in the relief of lactose intol-
erance symptoms [68]. Another significant trait of B. clausii CSI08 is the lack of detrimental
β-glucuronidase, α-chymotrypsin, and β-glucosaminidase activities. Beta-glucuronidase plays
a critical role in colorectal carcinogenesis, being implicated in reactivation of carcinogen metabo-
lites [69,70], α-chymotrypsin and β-glucosaminidase, produced by gut bacteria, are among
important factors in the pathogenesis of endocarditis [71].
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Antimicrobial activity is another undoubtedly essential feature of potentially probiotic
bacterial strains. We showed the capacity of B. clausii CSI08 to inhibit the growth of
opportunistic pathogens, E. coli, S. aureus, and P. aeruginosa, during co-cultivation in liquid
culture. Probiotic strains of B. clausii are known to produce substances with antimicrobial
activity; some of them have been identified and characterized. Biological target of the
lantibiotic clausin, first discovered in the cell-free supernatants of B. clausii O/C, are
lipid intermediates essential for the biosynthesis of peptidoglycan and other bacterial
cell wall polymers [43,72]. Clausin has been shown to be active against a range of Gram-
positive bacteria including C. difficile [39,43]. Recently, Ahire JJ et al. demonstrated the
production of class I lantibiotic clausin by B. clausii UBBC07 in the in vitro Simulator of
Human Intestinal Microbial Ecosystem (SHIME) model [39]. Interestingly, production of
antimicrobial substances active against Gram-negative and Gram-positive species have
been observed upon whey fermentation by B. clausii [36], indicating the importance of
starting substrates for synthesis of antimicrobials. Another remarkable example of indirect
antimicrobial activity has been reported by Ripert G et al. in 2016 [35]. The study describes
the serine protease produced during the sporulation phase by B. clausii O/C that can
abolish the cytotoxic effects of toxigenic strains of C. difficile and B. cereus.

It has been shown that gut bacteria can influence the bioavailability of amino acids
to the host organism [73]. Adsorption of amino acid is highly efficient in the small intes-
tine [74], whereas in the colon amino acids are effectively metabolized by the microbiota [75].
The metabolic end products amongst others include short chain fatty acids and branched-
chain fatty acids, that in turn significantly effect physiology of epithelial cells and the
mucosal immune system [76]. We have demonstrated that growth of B. clausii CSI08 in rich
medium was associated with an increase in concentration of eight essential amino acids.
Further studies are needed to confirm the nature of the observed effect (de-novo synthesis
or proteolytic activity). Furthermore, we have reported that B. clausii CSI08 can potentially
synthesize pantothenic acid and cobalamin. Recent studies suggest an immunostimulatory
role of pantothenic acid in the context of anticancer therapy [77]. Interestingly, vitamin B5
and its metabolite CoA, vital for metabolism of fatty acids, have been recently shown to in-
crease mitochondrial metabolism of T cells and subsequently their anti-tumor efficacy [78].
Vitamin B12, amongst multiple biological functions, have been shown to regulate cellular
immunity by increasing activity of CD8+ T lymphocytes and natural killer (NK) cells [79].

Disruption of the normal microbial community structure, environmental factors such
as stress, and diet, as well as genetic factors, can trigger chronic intestinal inflammation [60].
The ability of B. clausii CSI08 to attenuate inflammatory response induced by LPS and Poly
I:C, interacting with TLR4 [80] and TLR3 [81] receptor complexes correspondingly, was
evaluated in the course of the present work. Pretreatment of HT-29 cells with vegetative
B. clausii CSI08 attenuated the LPS-induced expression of pro-inflammatory (IL-8, TNF-α,
IL-17C) genes. We also confirmed that this effect was associated with down-regulation
of the canonical NF-κB transcription factor [82]. Both cells and cell-free supernatants of
B. clausii CSI08 attenuated the pro-inflammatory response triggered by Poly I:C. Similarly,
the protective effect of B. clausii (O/C, T, SIN and N/R) strains against Rotavirus-induced
changes in Caco-2 cell line of human enterocytes have been demonstrated in the recent
study published by Paparo L et al. [83]. Moreover, in a murine model of chronic colitis
administration of B. clausii (O/C, T, SIN and N/R) resulted in reduction of the colonic
inflammatory score [84]. Another strain of B. clausii, MTCC8326, was found to be effec-
tive in attenuating Salmonella typhimurium-associated dysbiosis and inflammation in Th2
(BALB/c)-biased mice [85].

It has been proven that certain probiotic strains can enhance innate immune response
via stimulation of macrophages and dendritic cells located in the lamina propria [86–88].
Vegetative cells of B. clausii CSI08 were able to elicit the robust response in U937-derived
macrophages, resulted in markedly increased production of pro-inflammatory (TNF-α,
IL-1β, IL-18) and anti-inflammatory (IL-10, IL-1RA, EGF) cytokines. This is in agreement
with Pradhan B et al. [41] who observed the induction of a pro-inflammatory response at
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earlier time points and an anti-inflammatory response at later time points after exposure
murine RAW 264.7 macrophages to B. clausii MTCC-8326. Villéger et al. [89] have proposed
the essential role of D-alanine of lipoteichoic acids for the immunomodulatory properties
of probiotic strains of B. clausii. Another remarkable example of involvement of B. clausii
in the immune activation, that can influence clinical outcomes in patients with pancreatic
adenocarcinoma, has been described by Riquelme E et al. [90].

The antioxidant capacity of probiotics and potential health-promoting effects related
to it have been widely studied in recent decades [91]. B. clausii CSI08 showed strong antiox-
idant activity in vitro, and, moreover, in its vegetative form exerted cytoprotective effect in
cell culture and C. elegans models of oxidative stress, likely through the reduction of reactive
oxygen species. Publications demonstrating the antioxidant capacity of B. clausii strains are
limited and reported only in cell lines and murine studies. In a rat model of uremia, admin-
istration of B. clausii UBBC07 was associated with alleviation of oxidative response induced
by acetaminophen, evidenced by increased levels of glutathione, superoxide dismutase,
and catalase [92]. Similarly, in a rat trinitrobenzenesulfonic acid (TNBS)-induced colitis
model treatment with B. clausii was partially protective against oxidative damage [93].
Finally, B. clausii have been shown to suppress Rotavirus-induced production of reactive
oxygen species in Caco-2 cell line [83].

5. Conclusions

The study presented the novel strain of B. clausii CSI08 with prominent probiotic
characteristics. Spore preparations of B. clausii CSI08/Munispore® demonstrated high level
of resistance to gastric pH and high bile salts concentration. The vegetative form of the strain
showed significant ability to suppress the growth of pathogenic bacteria in liquid culture,
was capable of assimilating a wide range of carbohydrates and was shown to produce
potentially beneficial enzymes. B. clausii CSI08 did not demonstrate cytotoxic effect towards
intestinal epithelial cells and displayed moderate adhesion capacity in both live states.
Additionally, we showed that spores of B. clausii CSI08 can effectively survive an in vitro
simulated pasteurization process. Furthermore, B. clausii CSI08 exhibited a strong ability to
attenuate LPS- and Poly I:C-triggered inflammatory response in the intestinal epithelial cell
line and to enhance the innate immunity via macrophage stimulation. Moreover, this novel
strain displayed excellent antioxidant characteristics when studied in vitro and in vivo.
Taken together, the data herein provide strong evidence for potential therapeutic efficacy
for B. clausii CSI08 as a promising probiotic strain.
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Appendix A. HPLC-FLD Determination of Amino Acids

Materials. AccQ-Tag chemistry package for the amino acid determination was pur-
chased from Waters Corp. (Milford, MA, USA). The 22 amino acids determined (aspartic
acid, asparagine, glutamic acid, glycine, arginine, alanine, serine, glutamine, threonine, pro-
line, cysteine, tyrosine, histidine, cystine, valine, ornithine, isoleucine, methionine, lysine,
leucine, tryptophan and phenylalanine) were obtained from MilliporeSigma (Burlington,
MA, USA).

Analytical procedures. Liquid chromatographic separation was performed on an
Acquity Arc system (Waters, Milford, MA, USA) coupled to a fluorescence detector (FLD
2475, Waters) controlled by the Empower 3 software (v. 7.4) (Waters, Milford, MA, USA).
Sample preparation includes a filtration through 0.22 µm PVDF filters followed by an
aqueous dilution in the range 1/10 to 1/160, to adjust the results to the range of the standard
curves. Additionally, prior to chromatographic analysis, samples were derivatized using
AccQ-Tag Ultra derivatization reagent (AQC) according to the manufacturer’s instructions.
Briefly, a 20 µL sample was mixed with 60 µL borate buffer (pH 8.8), then a 20 µL AccQ-tag
Ultra derivatization reagent was added to each sample and shaken vigorously. Finally, they
were kept at room temperature for 1 min and incubated at 55 ◦C for 10 min. The separation
of the derivatized amino acids was carried out on an AccQ-Tag column (Nova Pak C18
4 µm; 3.9 × 150 mm, Waters, Milford, MA, USA) guarded by Nova-Pak C18 inline filter
(4 µm; 3.9 × 20 mm, Waters, Milford, MA, USA). Solvent A was 10% (v/v) AccQ-Tag eluent
A Concentrate in milli-Q filtered water, solvent B was HPLC-grade acetonitrile and solvent
C was milli-Q filtered water. A 36 minute long gradient (0–1% 0.5 min, 1–5% 17.5 min,
5–9% 1 min, 9–17% 10.5 min, 17–60% 3.5 min and 60–0% 3 min) was established with
1 mL/min flow rate and 37 ◦C column temperature. The subsequent steps corresponded
to the cleaning and final column equilibration stage. The injection volume was 2 µL.
Fluorescence detection was carried out by λ irradiation at 250 nm excitation and 395 nm
emission wavelength.

Peaks were identified by comparison to retention times of analytical standards and
quantified using standard curves of the different amino acids (asparagine co-elutes with
serine and glutamine with histidine). The chromatographic standards were prepared in
milli-Q filtered water at a final concentration of 10 and 5 ppm, except tryptophan, which
was 200 and 100 ppm. The calibration curves were prepared from the stock solutions
through serial dilutions [94,95].

Appendix B. UHPLC-MS Determination of Water-Soluble Vitamins

Materials. Water-soluble vitamins (Thiamine hydrochloride, Riboflavin, Nicotinic acid,
Calcium-d-pantothenate, Pyridoxine hydrochloride, Biotin, Folic acid, Cyanocobalamin
and L-ascorbic acid), formic acid solution and the ammonium salt of this acid, ammonium
formate, were purchased from Millipore Sigma (Burlington, MA, USA). Also, XSelect™
Premier HSST3 VanGuard™ FIT column (2.1 × 150 mm, 2.5 µm particle size) with attached
guard column (2.1 × 5mm) were purchased from Waters Corp. (Milford, MA, USA).
Regarding the solvents, methanol, acetone and acetonitrile, they were purchased from
Scharlab (Sentmenat, Barcelona, Spain).

Analytical procedures. Liquid chromatographic separation was performed on an
Acquity Arc system coupled to a single quadrupole mass detector (Acquity QDa), controlled
by the Empower 3 software (v.7.4) (Waters, Milford, MA, USA). Sample preparation includes
a filtration through 0.22 µm PVDF filters followed by a 1/5 aqueous dilution. Samples
were analyzed as such and diluted to fit the range of the standard curves. The separation
of vitamins was carried out on a XSelectTM Premier HSST3 column with a matching guard
cartridge. Mobile phases A and B consisted of 0.1% formic acid 10 mM ammonium formate
in milli-Q filtered water and methanol, respectively. The separation was carried out under
gradient conditions (1% 6.3 min, 1–5% 0.2 min, 5–20% 4.1 min, 20–98% 4.2 min and 98%
9.2 min), at a flow rate of 0.324 mL/min. The column was kept at room temperature and
the samples at 15 ◦C. Ten microliters were injected for analysis. Peaks were detected with a
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QDa mass detector (mass range 2-1250 m/z). Capillary voltage was set to 0.8 kV. The probe
temperature was held at constantly 60 ◦C. Positive scan mode in a range of 100–700 m/z
with a cone voltage of 15 V was used as a verification method. For quantification, the
compounds were measured in Single Ion Recording (SIR) mode. The sampling rate was
10 points per second. The selected m/z (mass m to charge z) by vitamin was 177.0 for
ascorbic acid and for group B vitamins 265.2 (B1), 124.1 (B3), 170.1 (B6), 242.2 (B5), 377.3 (B2),
245.2 (B7), 442.0 (B9) and 678.0 (B12). Standard curves of the different vitamins were used
for quantification. The chromatographic standards were prepared in different solvents
according to their solubility (B7 in dimethyl sulfoxide, B2 and B9 were dissolved in 0.1 M
NaOH and the rest in milli-Q filtered water) at a final concentration of 75 and 50 ppm. The
calibration curves were prepared from the stock solutions through serial dilutions [96].
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