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Abstract: Through the promotion of phagolysosome formation, autophagy has emerged as a crucial
mechanism to eradicate intracellular Mycobacterium tuberculosis (Mtb). A cell-autonomous host
defense mechanism called lysosome biogenesis and autophagy transports cytoplasmic cargos and
bacterial phagosomes to lysosomes for destruction during infection. Similar occurrences occurred
in stressful or starvation circumstances and led to autophagy, which is harmful to the cell. It is
interesting to note that under both hunger and infection states, the transcription factor EB (TFEB)
acts as a master regulator of lysosomal activities and autophagy. This review highlighted recent
research on the multitier regulation of TFEB-induced autophagy by a variety of host effectors and
Mtb sulfolipid during Mtb infection and starvation. In general, the research presented here sheds
light on how lysosome biogenesis and autophagy are differentially regulated by the TFEB during
Mtb infection and starvation.
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1. Introduction

Mtb is an intracellular bacterium that may avoid fusion with phagolysosomes to
live and stay within macrophages [1,2]. According to the World Health Organization’s
global tuberculosis report, 2022, 10.6 million people contracted the disease, and 1.6 million
people are predicted to have died from it in just the year 2021 (https://www.who.int/
publications/i/item/9789240061729, accessed on 6 October 2023). Numerous methods
are employed by host macrophages to eliminate pathogenic mycobacteria [1]. As a result
of multiple extracellular and intracellular challenges, including food or growth factor
deficiency, oxidative stress, an accumulation of damaged organelles or misfolded proteins,
and viral or microbial infection, Mtb is removed from infected macrophages through the
onset of autophagy. Autophagy controls the intracellular loads of Mtb in macrophages
as a result; however, Mtb evolved several immunological escape strategies to promote
infection [3].

One of the transcription factors involved in the induction of autophagy is TFEB, which
is a crucial regulator of autophagic activation [4,5]. The TFEB belongs to the family of
proteins known as the microphthalmia/transcription factor E (MiT/TFE) and is a basic
helix-loop-helix-leucine-zipper (bHLH-Zip) protein [5]. The TFEB, transcription factor
E3 (TFE3), transcription factor EC (TFEC), and melanocyte inducing transcription factor
(MITF) are the four members of the MiT-TFE family. The same basic domain that binds
particular DNA sequences, a helix-loop-helix (HLH), and a leucine-zipper (Zip) region that
is crucial for protein-protein interactions with other MiTF/TFE family members is shared
by all four of the members [5,6]. A conserved activation region is also present in TFEB,
MITF, and TFE3 and is crucial for the transcriptional activation of these genes [7]. The most
divergent member of the family, TFEC, lacks the activation domain and appears to inhibit
rather than trigger transcription [6]. Several genes, including those involved in substrate
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targeting, degradation, and autophagosomal and lysosomal biogenesis, are transcription-
ally regulated by the TFEB. By attaching to a 10-base E-box-like motif at the promoter
region known as coordinated lysosomal expression and regulation (CLEAR), the TFEB
also stimulates the transcription of several lysosomal genes. Through post-translational
changes, protein-protein interactions, and spatial organization, the TFEB function is tightly
controlled. In resting cells and nutrient-rich environments, the TFEB is primarily cytosolic
and inactive [8,9]. However, the TFEB quickly moves to the nucleus in response to hunger
or lysosomal dysfunction and triggers the transcription of its target genes. The degree of
phosphorylation of the TFEB is a major determinant of both its cellular location and activity.
Ser142 and Ser211, two specific serine residues in the TFEB protein, are critical regulators
of the protein’s subcellular distribution [10]. The TFEB is kept in the cytoplasm when both
of these two serine residues are phosphorylated. It has been demonstrated that phosphory-
lation of Ser211 in particular acts as a docking site for the chaperone 14-3-3, which locks the
TFEB in the cytoplasm and inhibits it from moving to the nucleus, most likely by obscuring
its nuclear localization signal (NLS) [11]. Additionally, the TFEB positively controls the
expression of genes in the CLEAR network, including ATG9, LC3, SQSTM1, and LAMP1,
which are engaged in multiple sequential phases of autophagy in response to famine, stress,
or lysosomal dysfunction [10,12–14]. It is discovered through starvation tests that the TFEB
controls its transcription by interacting with the CLEAR sites in the first intron [15]. Other
transcriptional regulators of the TFEB include the fasting transcriptional activator cAMP
response element-binding protein (CREB) and the fed state sensing nuclear receptor farne-
soid X receptor (FXR), which respectively inhibit or induce the TFEB expression in the liver
when in a fed or fasted state. The FXR-CREB axis performs as a crucial physiological switch
that controls the TFEB-mediated autophagy, leading to continuous autophagic regulation
of nutrients during feeding and fasting cycles [16]. Then, in nutrient-rich conditions, the
mTORC1 phosphorylates TFEB on lysosomes, where it remains in the cytoplasm. The
TFEB is dephosphorylated and translocates from the cytoplasm to the nucleus in response
to starvation, where it upregulates genes related to autophagy and lysosomal biogene-
sis [17,18]. In this review, we discussed new developments about the direct or indirect
induction of autophagy by various host effectors via nuclear translocation of the TFEB,
a key transcriptional regulator of the autophagy-lysosomal pathway genes to eradicate
Mtb that is still present in macrophages. We paid particular attention to the differential
regulation of the TFEB-induced autophagy during Mtb infection and starvation along with
the possible target for the development of host-directed therapies (HDTs) against Mtb.

2. TFEB Is Differentially Regulated by Host Factors to Restrict Mtb Growth

Several host factors, including PPAR (nuclear receptor peroxisome proliferator-activated
receptor), NR1D1 (nuclear receptor subfamily 1, group D, member 1), IFNγ, IRGM (Im-
munity related GTPase M), TRIMs (tripartite motif family proteins), and NCoR1 (Nuclear
receptor corepressor) mediate the nuclear translocation of TFEB, a significant transcription
factor that connects autophagy and lysosome formation, as a result of Mtb infection.

PPAR: Kim et al. have demonstrated that the PPAR is essential for eliciting a host
response during Mtb infection. The PPAR controls inflammation, mitochondrial and
peroxisomal activity, and energy metabolism. Additionally, the PPAR activates the TFEB
and prevents the development of lipid bodies. During Mtb infection, the TFEB silencing
decreases phagosomal maturation and antibacterial responses while increasing macrophage
inflammatory responses. According to this work, the TFEB is necessary for Mtb clearance
and the PPAR-mediated activation of the autophagy-lysosomal pathway [19]. Later in 2019,
Kim et al. demonstrated that the mitochondrial deacetylase sirtuin 3 (SIRT3) can lessen
oxidative stress and pathological inflammation following Mtb or Bacillus Calmette-Guerin
(BCG) infection. The SIRT3’s anti-mycobacterial activity is carried out via PPAR and TFEB.
It is proven that mice lacking Sirt3 had higher bacterial loads and more lung inflammation
than mice with Sirt3, although macrophages lacking Sirt3 were able to regain their anti-
mycobacterial activity by overexpressing either TFEB or PPAR. Overall, it can be said that
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the SIRT3-PPAR-TFEB axis is crucial in promoting host resistance against Mtb infection by
antibacterial autophagy (Figure 1) [20].

Microorganisms 2023, 11, x FOR PEER REVIEW  3  of  13 
 

 

PPAR and TFEB. It is proven that mice lacking Sirt3 had higher bacterial loads and more 

lung inflammation than mice with Sirt3, although macrophages lacking Sirt3 were able to 

regain their anti-mycobacterial activity by overexpressing either TFEB or PPAR. Overall, 

it  can  be  said  that  the  SIRT3-PPAR-TFEB  axis  is  crucial  in  promoting  host  resistance 

against Mtb infection by antibacterial autophagy (Figure 1) [20]. 

 

Figure 1. TFEB localization into the nucleus is indirectly influenced by PPARα, IFNγ, IRGM, and 

TRIMs. PPARα  facilitates  the disposal of Mtb  in a TFEB-dependent manner  through  the SIRT3–

PPARα–TFEB axis. IFNγ stimulates autophagy and Mtb clearance via the PPP3-TFEB signaling axis 

in a way that is reliant on HMOX1. IRGM blocks mTORC1 while encouraging PPP3 activity, which 

together results in efficient TFEB activation. TRIM16 binds ATG16L1 and is associated with the key 

autophagy regulators ULK1 and Beclin1. Furthermore, TRIM16 controls  the activity of mTORC1 

and the localization of TFEB in the nucleus and cytoplasm. Host factors such as NR1D1 and NCoR1 

directly promote the nuclear localization of TFEB. Finally, TFEB causes lysosomal biogenesis and 

boosts autophagic flow in the nucleus that promotes the clearance of intracellular Mtb from infected 

macrophages. 

NR1D1: Several cell types, including adipose, vascular smooth muscle, skeletal mus-

cle, liver, heart, brain, and immune cells like T cells and macrophages, express NR1D1, 

which controls their functions [21]. According to reports, the NR1D1 participates in the 

destruction of Mtb by triggering the autophagy and lysosomal biogenesis pathways, and 

its overexpression  is  linked  to an  increase  in  the production of  the TFEB. This finding 

Figure 1. TFEB localization into the nucleus is indirectly influenced by PPARα, IFNγ, IRGM, and
TRIMs. PPARα facilitates the disposal of Mtb in a TFEB-dependent manner through the SIRT3–
PPARα–TFEB axis. IFNγ stimulates autophagy and Mtb clearance via the PPP3-TFEB signaling
axis in a way that is reliant on HMOX1. IRGM blocks mTORC1 while encouraging PPP3 activity,
which together results in efficient TFEB activation. TRIM16 binds ATG16L1 and is associated with
the key autophagy regulators ULK1 and Beclin1. Furthermore, TRIM16 controls the activity of
mTORC1 and the localization of TFEB in the nucleus and cytoplasm. Host factors such as NR1D1 and
NCoR1 directly promote the nuclear localization of TFEB. Finally, TFEB causes lysosomal biogenesis
and boosts autophagic flow in the nucleus that promotes the clearance of intracellular Mtb from
infected macrophages.

NR1D1: Several cell types, including adipose, vascular smooth muscle, skeletal mus-
cle, liver, heart, brain, and immune cells like T cells and macrophages, express NR1D1,
which controls their functions [21]. According to reports, the NR1D1 participates in the
destruction of Mtb by triggering the autophagy and lysosomal biogenesis pathways, and its
overexpression is linked to an increase in the production of the TFEB. This finding shows
that the NR1D1 stimulates autophagy through the TFEB in conjunction with lysosome
biogenesis to enhance Mtb clearance (Figure 1) [22].
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IFNγ: According to research, Mtb is removed by interferon-gamma (IFNγ)-induced
autophagy. In response to the immunomodulation by IFNγ, autophagy is induced and
Mtb living in macrophages is killed with the help of carbon monoxide (CO) produced by
heme oxygenase 1 (HMOX1). Through the lysosomal Ca2+ transporter MCOLN1/TRPML1,
which is activated by the HMOX1-produced CO, the cytosolic Ca2+ levels are raised. This
dephosphorylation of the TFEB leads to an increase in autophagy and lysosomal biogenesis.
These results demonstrate that IFNγ induces autophagy and Mtb clearance via the PPP3-
TFEB signaling axis in an HMOX1-dependent manner (Figure 1) [23]. Furthermore, the
TRPML1 might indirectly or directly facilitate the actions of calcineurin on the TFEB
through endoplasmic reticulum stress and reactive oxygen species (ROS) [24]. According to
studies, TRPML1 depletion prevents the lysosomal Ca2+ release and calcineurin activation,
which prevents the TFEB activation and the induction of autophagy in response to food
deprivation [25]. A separate study proposes TRPML1 as a lysosomal membrane-based ROS
sensor that controls an autophagy-dependent negative feedback loop to alleviate cellular
oxidative stress [26].

IRGM: Immune-related another host component that aids in resistance to Mtb infection
is the IRGM protein family. The human IRGM polymorphisms are linked to differential
susceptibility to mycobacterial illness, and they also facilitate the delivery of Mtb into
autolysosomes that degrade proteins [27,28]. The TFEB activation, downstream autophagy,
and lysosome biogenesis are primarily mediated by the IRGM. Gamma-aminobutyric acid
receptor-associated protein (GABARAP), LC3, other mammalian Atg8 proteins (mAtg8s),
other ATG proteins, and the SNARE protein STX17 interact with IRGM to cause the
development of autolysosomes. The IRGM, on the other hand, blocks mTORC1 while
encouraging PPP3 activity, which together results in efficient TFEB activation. The mAtg8s
regulate TFEB, a crucial regulator of lysosomal biogenesis, while, the autolysosomal route
is controlled by the IRGM, STC17, and mAtg8s via TFEB activation (Figure 1) [29].

TRIMs: Galectins, which are important in selective autophagy, interact with TRIMs
on a large scale [30]. In 2016, Chauhan et al. demonstrated that TRIM16 identifies en-
domembrane damage through interactions with Galectin-3 in a ULK1-dependent way
using lysosomal and phagosomal damage models. In addition to being connected to im-
portant autophagy regulators ULK1 and Beclin1, TRIM16 binds ATG16L1. Additionally,
TRIM16 controls the activity of mTORC1 and the localization of TFEB in the nucleus and cy-
toplasm. In conclusion, TRIM16, ATG16L1, and Galectin-3 are necessary for Mtb clearance
via TFEB (Figure 1) [31].

NCoR1: Using the AMPK-mTOR-TFEB signaling axis, the NCoR1 mediates auto-
phagolysosomal pathway fine-tuning in Mtb pathogenesis regulation. The significance of
NCoR1 for the regulation of host defense against infection is highlighted by its increased
expression in myeloid cells during the initial stages of Mtb infection. By adjusting the
AMPK-mTOR signaling axis, which in turn controls the TFEB activity, NCoR1 loss of
function hinders the clearance of Mtb H37Rv and M. smegmatis infection in myeloid cells.
Mtb benefits from a survival advantage when the NCoR1 is reduced since the TFEB
independently regulates lysosomal biogenesis and autophagic machinery. The bacterial
burden is eliminated by the overexpression of the TFEB in NCoR1 deficient macrophages,
which also restored the expression of LC3 and LAMP1. This study summarizes that
the NCoR1 directly regulates Mtb survival by preserving the ideal auto-phagolysosomal
pathway. Additionally, their findings demonstrated a strong connection between them
by revealing a clinically significant association of NCoR1 expression during active TB
infection, which is recovered after 12 months of TB therapy. Comparable results are seen in
the Mtb-infected PBMCs, wherein the NCoR1 expression is elevated at the beginning of
infection and then reduced after 24 h. In terms of treatment, NCoR1 may be a good fit for
HDTs (Figure 1) [32].

Overall, the TFEB is controlled differently under strict multitier regulation of several
host variables to control the intracellular Mtb growth. Therefore, the TFEB-induced au-
tophagy regulatory mechanisms that are cross-intervened during infection and starvation
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might be developed as potential HDTs to combat tuberculosis. However, on the other hand,
Mtb can also inhibit autophagy via restricting acidification and phagolysosome maturation,
along with autophagosome fusion to the lysosomes [1,33]. Therefore, further detailed
studies are required for a complete understanding of Mtb pathogenesis.

3. Regulation of the mTORC1-TFEB Axis and Mtb Clearance under Starvation

Inducing autophagy through starvation can destroy pathogenic Mtb in macrophages
by simulating stress or infection conditions [34]. Induced by nutritional deprivation,
cellular injury, or stress, starvation-induced autophagy, also known as macroautophagy,
involves the breakdown of damaged organelles, abnormally folded or folded proteins,
and cytoplasmic foreign entities. By engulfing bacteria in autophagosomes, which fuse
with lysosomes to produce autolysosomes, pathogens are destroyed in a process known as
xenophagy [35,36]. To liberate nutrients for the de novo production of molecules during
starvation, autophagy sequesters the cytosolic components of cells [37]. Unc-51-like kinase
complex (ULK1) dissociates from adenosine monophosphate-activated protein kinase
(AMPK) during stress situations such as nutrient deprivation or Mtb invasion. Beclin 1 is
phosphorylated by the ULK1 complex, which then joins with phosphatidylinositol 3-kinase
class 3 (PI3KC3) to create a complex. Phosphatidylinositol 3-phosphate (PI3P) is produced
on endoplasmic reticulum membranes by beclin1-PI3KC3 complexes. The creation of an
autophagic phagophore, which develops into a whole autophagosome, is then signaled by
PI3P [38]. The WD-repeat protein interacting with phosphoinositide (WIPI) is recruited
by the synthesis of PI3P to aid in the development of the phagophore. The ubiquitin-like
conjugation mechanism, which is unique to autophagy, is recruited to the phagophore
by WIPI2B. The lipidation of microtubule-associated protein 1A/1B light chain 3 (LC3)
to phosphatidylethanolamine, also known as LC3 lipidation, is facilitated by WIPI2B-
dependent recruitment of the ATG12-5/ATG16 complex. Additionally, LC3 lipidation
causes the double membrane to self-fuse to form the autophagosome, which then merges
with the lysosome to break down the ingested contents [39]. Soluble N-ethylmaleimide-
sensitive factor attachment (SNARE) Syntaxin 17 (STX 17) promotes this fusion of the
autophagosome and lysosome, and trapped Mtb or other cellular cargos are ultimately
broken down in the resulting autolysosomes [38]. This is accomplished by increasing the
expression of genes related to autophagy and lysosomal biogenesis by the AMPK-activated
transcription factors Forkhead Box O3 (FoxO3) and TFEB (Figure 2) [40,41].

It is known that several bacterial effector proteins can influence autophagy. The type I
to type VII and type IX secretion systems are used to secrete several of these effectors [42].
Numerous Type VII secretion systems (Esx1–Esx5) are present in mycobacteria. Mycobacte-
rial egress is made possible by the phagosome being punctured by Mtb ESX-1 [43]. Cyclic
GMP-AMP synthase (cGAS), a cytosolic DNA sensor that detects mycobacterial DNA,
releases cyclic guanosine monophosphate (cGMP) as soon as it detects mycobacterial DNA
during Mtb infection [44]. Numerous of these effectors are produced by type I to type VII
and type IX cGMP, which is recognized by the stimulator of interferon genes (STING) and
causes the production of type I IFN as well as the recruitment of the autophagy receptors
p62, NDP52, and optineurin [45,46]. These receptors are attracted to the ubiquitinated
pathogen, enabling the autophagosome to target it precisely. To bind the LC3 autophagy
protein, the receptors have an LC3 interaction region (LIR) (Figure 2) [47,48]. According to
studies, the pathogenic Mtb H37Rv is suppressed when autophagy is induced in infected
macrophages through fasting or rapamycin [34]. This effect is reversed by conventional
autophagy inhibitors. Phagosomes carrying mycobacteria associate with Beclin 1, a hVPS34
PI3K component that promotes autophagy [49,50]. Therefore, it is likely that mycobac-
terial phagosomes recruit Beclin 1 complexed with PI3-kinase when there is hunger. In
cells induced for autophagy, phagosome colocalization with Beclin 1 exceeds 60% of all
mycobacteria-containing vacuoles, roughly matching the total decline in mycobacterial
viability. Studies have shown that mutation or knockdown of host genes linked with
autophagy, such as p62, Beclin1, Atg5, Atg7, or Unc-51-like kinase 1 (Ulk1), increases
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the survival of intracellular bacteria [51,52]. In general, the mTORC1-TFEB axis plays a
significant role in controlling autophagy under starvation and stress circumstances. Star-
vation and Mtb-induced autophagy appear to be tightly regulated by many levels of the
mTORC1-TFEB axis, and they may be new targets for the development of anti-Mtb drugs.
However, one should not forget that Mtb can also inhibit autophagy as its own immune
escape strategies.
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Figure 2. Macroautophagy and autophagy caused by starvation in Mtb. Starvation inhibits mTORC1,
which in turn triggers ULK1 activation, the creation of autophagosomes, and TFEB activation, which
further boosts the transcription of genes related to autophagy and lysosomes. Phagophores combine
to generate autophagosomes. The phagophore enlarges by capturing cytoplasmic cargos, and Mtb
contracts to create an autophagosome, a double-membrane vesicle. The Mtb and cytoplasmic cargos
are then quickly broken down by lysosomal hydrolases and released into the cytosol for additional
recycling after the lysosome and autophagosome combine to produce autolysosomes. Pathogens
inside cells are targeted by xenophagy for lysosomal breakdown. The same processes that are
involved in classical autophagy; initiation, elongation, substrate targeting, maturation/lysosomal
fusion, which destroys cargo are also present in xenophagy. In the case of Mtb infection, substrate
targeting entails the ubiquitination of bacteria or the colocalization of ubiquitin to bacteria. The
recognition of the ubiquitin by autophagy receptors that interact with LC3 to attract the bacteria
to autophagosomes, which then fuse to lysosomes to degrade the cargo, is then necessary for the
recruitment of the bacteria to the autophagosomes.
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4. Induction of Autophagy as a Host-Directed Therapeutic Approach against Mtb

Mtb can persist in a dormant, semi-replicating, or non-replicating form in the gran-
uloma environment. It has been reported that granulomas help the host by preventing
Mtb from spreading to other tissues or organs by enclosing the affected region with activat-
ing immune cells [53]. Also, the host-pathogen interactions in granulomas are extremely
complicated, with the potential for bacterial death as well as survival. The host immuno-
logical response and the bacterial capacity to withstand or evade it are considered to have
a cumulative influence on the intracellular survival of Mtb [54]. Thus, enhancing the
immune repertoire to battle Mtb by the HDTs may be one strategy for efficient clearance
and bacterial death [55]. To maximize the pro-inflammatory response or alter tissue physi-
ology, host-directed treatment attempts to manipulate the metabolism and/or immune cell
activity [56–58]. Due to the potential to repurpose medications that have already received
approval for the treatment of chronic illnesses and the benefit that pathogenic bacteria, like
Mtb, cannot become resistant to an HDT because it targets host cell functions, research
on HDT as a potential therapeutic strategy for infectious diseases has recently gathered
significant strength [59,60]. Thus, one emerging idea in the treatment of several chronic
illnesses is to target the autophagy mechanism using small molecules and medications
to enhance the host cell effector functions [61,62]. Here are the details of some known
autophagy inducers that combat Mtb infection via upregulation of the TFEB.

GSK4112: It has been shown that the synthetic small molecule GSK4112 increases
lysosome biogenesis and induces autophagic flow by acting as an agonist to NR1D1 [22].
TFEB expression is modulated by the activation of the transcriptional protein NR1D1,
which is important in infection and inflammation [63]. When Mtb strain H37Rv infected
THP-1 cells, the overexpression of the TFEB increased the quantity of both autophagosomes
and lysosomes [22].

GW7647: A synthetic small molecule agonist of the PPARα transcription factor,
GW7647, has been shown by Kim et al. to increase autophagic flow in mice BMDMs
against M. bovis BCG and Mtb strain H37Rv. The overexpression and translocation of TFEB,
a crucial regulator of many genes involved in autophagic flux, is the outcome of GW7647’s
activation of PPARα. Moreover, during mycobacterial infection, PPAR-α activation pre-
vented the development of lipid bodies [19].

Lipid-lowering drugs (Simvastatin, Pravastatin, Rosuvastatin, Atorvastatin): These
drugs decrease the Mtb load in human macrophages by lowering cholesterol levels and
modulating the AMPK-mTORC1-TFEB axis in ways that encourage autophagy for Mtb
clearance along with phagosome maturation and lysosome fusion [64,65].

Wy14643: It activates the PPARα receptor protein and subsequently enhances autophagic
flux via upregulation of the TFEB signaling, along with increased lipid catabolism [19].

Compound 2062: An aminopyrimidine with the chemical name 2062 was the subject
of a different investigation by Bryk et al. in 2020, which demonstrated enhanced control of
intracellular Mtb in conjunction with rifampicin and linked with the activation of TFEB,
which encourages lysosomal activation to accelerate Mtb clearance. According to this
study, specific TFEB activators can enhance host control of Mtb infection and enhance the
effectiveness of low-dose rifampin [66].

Ambroxol: This mucoactive drug suppresses excessive mucus secretion by inhibiting
NO-dependent activation of soluble guanylate cyclase that further induces autophagy via
TFEB nuclear translocation stimulation [67].

Honokiol: Low molecular weight polyphenol honokiol has been shown to enhance
the autophagic activities in human peripheral blood mononuclear cells (PBMCs), BMDMs,
and HMDMs against strains of M. bovis BCG and Mtb H37Rv. It does this by activating
SIRT3 deacetylase. The activation of SIRT3 by honokiol-mediated autophagy led to the
subsequent induction of PPARα transcription factor expression, which in turn caused the
overexpression and translocation of the TFEB, a crucial regulator of several genes involved
in autophagic flux [20].
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Bedaquiline: Bedaquiline sparks autophagy to promote clearance of Mtb. It induces
autophagy by upregulating lysosomal activation via the TFEB and calcium signaling and
potentiates the exertion of other anti-TB medicines [68].

Trehalose: Naturally occurring disaccharide trehalose has been shown to promote au-
tophagy in many cell lines to combat Mtb and non-tuberculous mycobacterial (NTMs) [69].
Trehalose elevated phosphatidylinositol 3,5-bisphosphate, which functioned as an agonist
for the mucolipin subfamily, member 1 (MCOLN1) channel and enhanced the release of
Ca2+ from the lysosomal lumen, therefore inducing autophagic flow [70]. Released Ca2+

causes calcineurin, a serine-threonine phosphatase, to become active. This dephosphory-
lates TFEB and causes trehalose-mediated nuclear translocation of TFEB, which in turn
triggers mTOR-independent autophagy in macrophages. Furthermore, trehalose competi-
tively inhibited the GLUT transporters SLC2A3/GLUT3 and SLC2A8/GLUT8, inducing
autophagy through AMPK activation and mTOR inhibition that resulted in a response that
is similar to pseudo-starvation [69].

Autophagy targeting HDTs is an appealing adjunct to current medications. Impor-
tantly, autophagy inducers can restrict the Mtb growth via induction of TFEB-induced
autophagy as well as can also combat the autophagy inhibition by Mtb itself. However,
before being tested as a therapeutic intervention for tuberculosis in human clinical trials,
considerable pre-clinical research employing suitable animal models of tuberculosis is
necessary to determine the efficacy, toxicity, and other characteristics of these HDTs.

5. Mtb Sulfolipid Controls the mTORC1-TFEB Axis and Prevents Infection

The most prevalent sulfated glycolipid in mycobacteria’s outer membrane and cell
wall, sulfolipid-1 makes up to 1–2% of the dry weight of the cell wall but is only present in
pathogenic mycobacteria [71]. Multiple mechanisms govern sulfolipid-1 synthesis, which
has been shown to increase during infection in murine and human macrophages [72,73].
According to a recent study, pure Mtb sulfolipid-1 influences the kinetics of phagosome
trafficking in macrophages and stimulates lysosomal biogenesis in host cells without
regard to the cell type. Sulfolipid-1 works by preventing mTOR activity, which then
causes TFEB to translocate into the nucleus and activate the expression of genes involved in
lysosomal biogenesis (Figure 3). Human macrophages infected with Mtbpks2, a mutant that
does not produce Sulfolipid-1 and lacks polyketide synthase 2, exhibit reduced lysosomal
rewiring. Reduced bacterial interaction with lysosomes is caused by altered lysosomal
activities, which is correlated with higher intracellular Mtb survival. In contrast, the
mutant overproducing Sulfolipid-1 exhibits limited bacterial survival. The fact that mutants
overproducing acetylated sulfated glycolipid (AC4SGL) are unable to stop phagosome
maturation and are easily transported to lysosomes supports this as well [74]. To determine
whether Mtb harbors a lipid that is beneficial to the host or whether targeting sulfolipid-1
could be a host-directed method to combat Mtb infection, more research will be needed [75].
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Figure 3. Intracellular Mtb simulates lysosome biogenesis via sulfolipid-1. Mtb sulfolipid-1 sup-
presses the activity of mTORC1 and causes the translocation of TFEB into the nucleus, which induces
lysosomal gene expression and promotes lysosome biogenesis and subsequently Mtb clearance.

6. Conclusions and Future Perspective

By modulating the expression of genes involved in autophagy and lysosomal bio-
genesis, the TFEB is a crucial transcriptional regulator that regulates Mtb intracellular
clearance as well as energy consumption during hunger or stress. Essentially, the TFEB
takes part in physiological processes like hunger and cellular responses to Mtb infection.
Understanding how cells react to environmental stress or famine conditions, like food
shortage, has been largely dependent on the action of the TFEB. Although it has been
demonstrated that several transcription factors can trigger autophagy, TFEB seems to play
a much more significant role because it regulates genes that are involved in numerous
critical stages of the autophagic pathways, such as the formation of autophagosomes, the
fusion of autophagosomes and lysosomes, and the degradation of the autophagosomal
content. A thorough knowledge of the different extracellular and intracellular stimuli that
control and customize an ideal response to stimulate TFEB-dependent lysosome formation
and autophagy genes followed by clearance of engulfed cargo is still required, despite
the existence of several studies. The TFEB is a therapeutic medication target for many
human disorders that are linked to autophagic or lysosomal dysfunction and the buildup
of toxic aggregates because of its role in intracellular clearance pathways. Several disease
models, including Mtb, have already had success with the treatment approach of inducing
the TFEB activation [76]. Compounds that target the TFEB may have fewer pleiotropic
and undesirable side effects and may therefore be a possible target to treat tuberculosis in
conjunction with fasting and stress circumstances like dietary deficits. This is because the
TFEB directly regulates effector functions that induce autophagy. The TFEB could be devel-
oped as a viable host-directed target because it is differently and tightly controlled by many
host variables during both infection and stress situations. However, it should be noted
that alteration of the TFEB activity either induction or suppression may result in different
biological outputs that may be further affected by many biological or physical factors. Also,
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TFEB signaling is reported to have heterogeneity in different cell types that further need to
be investigated in different subsets of Mtb-infected macrophages. In consideration of the
differential activity of the TFEB, it is important to coordinate its activity judiciously along
with substantial information. Overall, the TFEB could be a potential target to eradicate
Mtb, however, further detailed studies are needed considering differential regulation of the
TFEB-induced autophagy in Mtb infection and starvation.
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