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Abstract: The bacterium strain Cetobacterium sp. C33 was isolated from the intestinal microbial
content of Nile tilapia (O. niloticus) under anaerobic conditions. Given that Cetobacterium species are
recognized as primary constituents of the intestinal microbiota in cultured Nile tilapia by culture-
independent techniques, the adaptability of the C33 strain to the host gastrointestinal conditions,
its antibacterial activity against aquaculture bacterial and its antibiotic susceptibility were assessed.
The genome of C33 was sequenced, assembled, annotated, and subjected to functional inference,
particularly regarding pinpointed probiotic activities. Furthermore, phylogenomic comparative
analyses were performed including closely reported strains/species relatives. Comparative genomics
with closely related species disclosed that the isolate is not phylogenetically identical to other
Cetobacterium species, displaying an approximately 5% sequence divergence from C. somerae and a
13% sequence divergence from Cetobacterium ceti. It can be distinguished from other species through
physiological and biochemical criteria. Whole-genome annotation highlighted that Cetobacterium sp.
nov. C33 possesses a set of genes that may contribute to antagonism against competing bacteria and
has specific symbiotic adaptations in fish. Additional in vivo experiments should be carried out to
verify favorable features, reinforcing its potential as a probiotic bacterium.

Keywords: probiotics; fish microbiome; Cetobacterium; freshwater fish; whole genome sequencing;
Nile tilapia; anaerobic bacteria

1. Introduction

The aquaculture industry is considered the fastest-growing industry in several coun-
tries worldwide and represents about 17% of global protein intake as reported by the
FAO [1]. The increased demand for fish in the world market has led to production in-
tensification with the increase in stocking densities being associated with stress factors
and fish susceptibility to pathogens [2]. Therefore, in recent years strategies based on the
manipulation of intestinal microbiota balance have been proposed to improve fish survival
and growth [3]. Among these strategies, probiotics selection with mechanisms of action
such as modulatory effect on the intestinal microbiota, the production of antimicrobial
metabolites, vitamins, and enzymes, and immune regulation have been employed.

Numerous studies have highlighted the significance of the composition of intestinal
bacteria for animal health due to its crucial role in protecting against infectious diseases and
in maintaining the host’s immune and metabolic homeostasis [3–5]. Due to the complexity
of the intestinal microbiota of humans and other animals, probiotics composed of more
than one strain have mainly been developed with aerobic bacteria and yeast [6,7]. Even
though most probiotic studies have been conducted to evaluate aerobic bacteria, it is known,
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mostly by culture-independent studies, that anaerobic bacteria are significant members of
the fish intestinal microbiota.

Tsuchiya et al. [8] isolated vitamin B12-producing Cetobacterium somerae from the in-
testines of freshwater fish: goldfish, common carp, and Mozambique tilapia. Later, Ramírez
et al. [9] reported C. somerae as a major component of the intestinal microbiota of the giant Ama-
zonian freshwater fish, Arapaima gigas, using sequenced microbial DNA-based techniques.

Likewise, Melo-Bolivar et al. [10] reported the significant presence of Fusobacteria, rep-
resented mainly by Cetobacterum species, in O. niloticus microbial content from two different
farms, and also in a continuous-flow competitive exclusion culture from the intestinal con-
tent of Nile tilapia juveniles using a metataxonomic DNA-based approach.

In addition, LaFrentz et al. [11] reported a C. somerae genome sequence from intestinal
isolates of pond-raised channel catfish, Ictalurus punctatus. Recently, Xie et al. [12] evaluated
the effects of stabilized C. somerae XMX-1 fermentation products on gut and liver health
and zebrafish survival during a viral challenge; C. somerae XMX-1, was isolated from
zebrafish intestines, cultured in anaerobic conditions, and added to the diet in a four-week
feeding trial. It was found that dietary administration of C. somerae (XMX-1) improved
the gut and liver health of zebrafish, reducing the intestinal inflammatory score, reducing
proinflammatory cytokines, and increasing the antiviral gene expression; it also altered
the composition of gut microbiota, reducing proteobacteria and increasing Firmicutes
and Actinobacteria.

Zhang et al. [13] found that Cetobacterium was the core genus in the foregut, midgut,
and hindgut of tilapia. They isolated Cetobacterium sp. NK01 from Nile tilapia foreguts,
and sequenced the whole genome of the isolate, which indicated it to be a novel candidate
species of the Cetobacterium sp. The genome analysis showed the production of amino acids,
participating in various metabolic activities, and synthesizing vitamins, which indicated
that Cetobacterium plays a key role in fish nutrition. However, the functions of Cetobacterium
in the fish gut need to be further explored through in vivo and in vitro experiments [12,13].

In summary, probiotics are widely used in aquafeeds and exhibit beneficial effects
in fish by improving host health and resistance to pathogens. Nevertheless, probiotics
applied to aquaculture are mostly from terrestrial sources rather than the host animal and
are mostly aerobic [14].

The purpose of the work was to isolate and characterize anaerobic bacteria from the
gastrointestinal tract of Nile tilapia (O. niloticus) and to evaluate the probiotic potential
in vitro.

2. Materials and Methods
2.1. Ethical Statement

The project followed the regulations of the Colombian national government. The
Permit for access to genetic resources was issued by the Colombian Ministry of the Envi-
ronment Number 117 (Otrosi N 4 RGE0154-4), on the 8 May 2018.

2.2. Bacteria Isolation

The Cetabacterium C33 strain was isolated from the intestinal microbiota of cultured
Nile tilapia. Forty-seven samples were analyzed in which serial dilutions were conducted
in a phosphate buffer (pH 7.3) containing 0.05% hydrochlorinated L-cysteine and 0.001%
resazurin under anaerobic conditions [15]. Then, 100 µL was plated on Columbia agar at pH
7.22 with 5% lamb red blood cells, and incubated overnight under anaerobic conditions (O2:
less than 1%; CO2: 9–13%; 28 ◦C) in an anaerobic jar (2.5 L AnaeroJar, Oxoid, Hampshire,
UK). The colonies that showed different morphologies were sub-cultured in Columbia
media following gram staining. Among the anaerobes isolated, the colonies that had a
bacillus morphology and were gram-negative were selected. These selected samples were
sub-cultured in Columbia media following the same method, and cryopreserved in 20%
(v/v) glycerol under anaerobic conditions [16].
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2.3. Phenotypic Characterization

The physiological and biochemical indices of the pure cultured C33 strain were evalu-
ated using API 20A (BioMérieux, S.A., Marcy l’Etoile, France) according to the manufac-
turer’s instructions [13,17].

2.4. Whole-Genome Sequencing and Bacterial Identification
2.4.1. DNA Extraction, Library Preparation, and Sequencing

Bacterial genomic DNA from the bacterial isolate C33 was extracted using the DNeasy®

UltraClean® Microbial Kit (Qiagen, Hilden, Germany) following the manufacturer’s in-
structions. Briefly, bacteria were grown in Columbia Broth at 28 ◦C for 24 h. The DNA
extraction method was optimized to reach a DNA concentration of 100 ng/DNA of C33
isolate. The sequencing library was prepared using the TruSeq Nano DNA kit. Finally, the
paired reads were sequenced using the Illumina platform NovaSeq 6000.

2.4.2. Quality Control, Trimming, Assembly of Paired Ends Reads, and Contigs Selection

The Paired-End Reads were assembled with Shovill v1.1.0 (SPAdes, v3.15.3; Velvet,
v1.2.10; Megahit, v1.2.9; Skesa, v2.4.0) using default arguments (https://github.com/
tseemann/shovill (accessed on 18 June 2023)). After obtaining the assembled contigs, a
Quast comparison was used to select the assembly with the fewest contigs and an N50
length close to 50% of the total genome length [6,18].

2.4.3. Bacterial Identification

JSpeciesWS v3.8.5 was used to identify the species (default parameters) through a Tetra
correlation search along with ANIb (average nucleotide identity, calculated with the BLAST
algorithm) and ANIm (average nucleotide identity, calculated with the alignment tool
MUMmer) [19]. In addition to this approach, whole genome drafts were analyzed using
the Type (Strain) Genome Server (TYGS) [20] to define species-level taxonomic affiliation.

RefSeq (NCBI Reference Sequence Database) was used to obtain the reference genomes of
the bacteria. The assembled contigs were then loaded with their respective reference genomes
into Medusa (http://combo.dbe.unifi.it/medusa (accessed on 20 July 2023)) [21] to determine
the orientation and the order among the contigs to produce longer scaffolds [22,23]. The
genome sequence data was uploaded to the Type Strain Genome Server (TYGS), a free
bioinformatics platform available at https://tygs.dsmz.de (accessed on 26 July 2023), for
full genome-based taxonomic analysis [24] and, for the determination of closely related
type strains, a pairwise comparison of genomic sequences, phylogenetic inferences, and
grouping of species and subspecies based on the type [24].

2.4.4. Functional Annotation

Functional annotation of the genome and establishment of probiotic characteristics
of the isolated and identified anaerobic bacteria was performed using programs such as
the RAST (Rapid Annotation using Subsystem Technology) server for the identification of
putative genes involved in tolerance to acid and bile salts, proteins potentially implicated in
adhesion and aggregation, and genes important to intestinal survival, intestinal adhesion,
and probiotic potential (https://rast.nmpdr.org/, accessed on 20 August 2023) [25]. The
Resfinder program was also used for the identification of acquired resistance genes [26–28].
Regarding the detection of virulence genes, the Virulence Finder program was used [29].
The Mobile Element Finder tool enabled rapid detection of mobile genetic elements (MME)
and their genetic context in assembled sequence data. MMEs are screened for sequence
similarity against a database of 4452 known elements augmented with resistance gene
annotation, virulence factors, and plasmid analysis [30]. Likewise, the online resource Viru-
lence Factor Database (VFDB) for virulence factors [31] and antiSMASH were used for the
rapid identification, annotation, and analysis of genes that biosynthesize secondary metabo-
lites [32,33]. Finally, the BAGEL4 web server enabled the identification and visualization of
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gene clusters involved in the biosynthesis of ribosomal-synthesized post-translationally
modified peptides (RiPP) and bacteriocins [34].

The raw reads used to assemble the draft genome were deposited in the sequence
read archive (SRA) as PRJNA1010509. The genome sequence data was deposited under
accession number JAVIKH000000000.

2.5. Evaluation of Probiotic Potential In Vitro
2.5.1. Enzymatic Activity

To evaluate the enzymatic activity of C33 the Api-Zym galleries (BioMérieux, S.A.,
Marcy l’Etoile, France) were used [17,35].

2.5.2. Vitamin B12 Production

The C33 strain was cultured in 100 mL of Columbia Broth medium under anaerobic
conditions at 28 ◦C for 48 h, then the sample was filtered through 0.22 µm Millipore filters
and transferred to an amber container at 4 ◦C; the sample was sent to the AOXLAB S.A.S
laboratory, NIT 900.567.821-9 in Medellin Colombia; the Sample Code was Sample ID
9480-22. The analysis method used was AOAC 2011.09. Determination of vitamin B12 was
evaluated using HPLC purification on an immunoaffinity column (1st Action) [36].

2.5.3. Hemolytic Activity

The hemolytic activity was assessed following Melo-Bolívar et al. [6]. Briefly, the blood
agar was prepared using Columbia agar (Condalab, Madrid, Spain) at pH 7.22, containing
0.05% hydro chlorinated L-cysteine and 0.001% resazurin under anaerobic conditions,
with 5% (v/v) and sterile defibrinated sheep blood. The bacteria were seeded (100 µL at
1 × 108 CFU/mL) onto the agar after the culture medium was solidified in the continuous
flow of CO2. The Petri dishes were incubated at 28 ◦C for 48 h under anaerobic conditions
(O2: below 1%; CO2: 9–13%) in an anaerobic jar (2.5 L AnaeroJar, Oxoid, Hampshire, UK).

2.5.4. Bile Salts and pH Survival

This test was conducted following Melo-Bolívar et al. [6], with certain modifications.
First, the Columbia broth (Condalab, Madrid, Spain) culture medium was prepared for pH
resistance by adding 1 N HCl to a final pH of 2.0 or 3.0, containing 0.05% hydro chlorinated
L-cysteine) and 0.001% resazurin under anaerobic conditions.

Bacterial survival in bile salts was evaluated in Columbia broth culture medium
(Condalab, Madrid, Spain) adjusted to pH 7.0, containing 0.05% hydrochlorinated L-
cysteine and 0.001% resazurin under anaerobic conditions, then a salt was added. Then,
0.3 percent w/v bile salts (Sigma-Aldrich, St. Louis, MO, USA) was added, and the medium
was autoclaved. A saline solution (0.9 w/v) was used as a control. C33 isolate was then
inoculated at 4.2 × 107 CFU/mL in each treatment and incubated at 28 ◦C at 50 rpm.
Agar plate counts were carried out every hour for three hours by inoculating 20 µL onto
Columbia agar (Condalab, Madrid, Spain) containing 0.05% hydrochlorinated L-cysteine
and 0.001% resazurin, and incubated in anaerobic conditions (O2: below 1%; CO2: 9–13%;
28 ◦C) in an anaerobic jar (2.5 L AnaeroJar, Oxoid, Hampshire, UK) at 28 ◦C for 36 h. The
percentage of survival over time was estimated according to Equation (1) [6].

% Survival =
bacterial concentration each treatment per hour (CFU/mL)

bacterial concentration control at time 0 (CFU/mL)
× 100 (1)

2.5.5. Hydrophobicity Evaluation

The hydrophobicity of the isolates, as an indirect measure of adhesion ability, was
determined using the Darilmaz et al., protocol [37]. Briefly, 2 mL of the bacteria (OD
0.08–0.10 at 600 nm in saline solution) (0.9 percent w/v) was vortexed for 1 min with 0.5 mL
of chloroform in treatment one, or 0.5 mL ethyl acetate in treatment two. Then, the mixture
was incubated for 10 min at 37 ◦C, the aqueous phase was removed, and the absorbance
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value was measured. The percentage of hydrophobicity was calculated using the following
equation (2) [6]:

% Hydrophobicity =
OD600nm be f ore mixing − OD600nm a f ter mixing

OD600nm be f ore mixing
× 100% (2)

The hydrophobic activity of the evaluated strains was classified as high (51–100%),
medium (30–50%), and low (0–29%), as proposed by Nader-Macías [38].

2.5.6. Antibiotic Resistance

The minimum inhibitory concentration of antibiotics such as tetracycline, ampicillin,
vancomycin, gentamicin, and chloramphenicol against the C33 bacterial strain was evalu-
ated according to Florez et al. [39] and Melo-Bolívar et al. [6]. Colonies were suspended
in sterile glass or plastic tubes containing 2 to 5 mL of sterile saline to a density corre-
sponding to McFarland standard 1, or its spectrophotometric equivalent (approximately
108 CFU/mL). A sterile cotton swab of the above McFarland suspension was spread on
Columbia agar plates. After approximately 15 min, the E-test strips (BioMérieux, Durham,
NC, USA) were applied. Following 48 h of incubation at 28 ◦C in anaerobic conditions,
the results were classified as resistant (R) or susceptible (S) using the cut-off point recom-
mended by the European Food Safety Authority (EFSA) according to the respective species
and the inhibition zone [14].

2.5.7. Antibacterial Activity against Streptococcus agalactiae and Aeromonas hydrophila

The antimicrobial activity of Extracellular Products (ECPs) obtained from C33 anaero-
bic bacteria was assessed against S. agalactiae and A. hydrophila, following the methodology
previously described by Melo-Bolívar et al. [6]. The supernatants were centrifuged at
10,000× g for 30 min, and the ECPs were subsequently filtered, first with 0.45 µm Syringe
Filters and then with 0.22 µm Syringe Filters to eliminate any remaining cells. The thermal
stability of the ECPs was evaluated through two treatments: one involving heating at 80 ◦C
for 3 min [40], and the other without a heating process. The dose–effect relationship was
determined by diluting the ECPs to 50%, 25%, and 12%.

The experiments were conducted in 96-well plates, where pathogenic bacterial sus-
pensions at a concentration of 6 × 108 cells/mL (100 µL) were incubated with 100 µL of
ECPs at different concentrations. Absorbance readings at 600 nm were taken every 60 min
for a duration of 12 h, at 28 ◦C.

The survival rate was calculated as the absorbance percentage using Equation (3) [41]:

% Inhibition =
(Absorbance o f control − Absorbance o f test)

Absorbance o f control
× 100 (3)

3. Results
3.1. Bacteria Characterization

Of the 47 samples of bacteria obtained from the tilapia intestinal content [10], sample
C33 presented the typical characteristics of the Cetobacterium genus, therefore, it was
selected for investigation due to the high presence reported in the intestinal microbiota
in fish [8–13] and the beneficial properties that this genus has for Nile tilapia reported
by several authors [12,13]. The C33 isolate was found to be a gram-negative bacillus, see
Figure 1b, taken with a bright field microscope, and see Figure 1c,d, taken with a scanning
electron microscope (SEM) (JEOL JSM-6460LV), which generates a round, white colony of
1.0 to 2.0 mm in diameter (Figure 1a) and grows in Columbia agar anaerobic medium as
small colonies with an irregular shape, curved edge, umbonate elevation, moderate size,
smooth texture, shiny appearance, and an opaque optical property.
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Figure 1. Cetobacterium sp. nov C33. (a) Colony morphology, 24 h culture in Columbia agar; (b) Gram
staining, bright field microscopy (100×); SEM images of morphology and arrangement of C33 after
24 h culture in Columbia broth. (c) 5000× magnification and (d) 7000× magnification.

Regarding the phenotypic characterization, the indole production test and gelatinase
test for the C33 strain were negative, and the glucosidase test was positive. The urease
reaction was negative and the fermentation of glucose, sucrose, maltose, salicin, mannitol,
and trehalose was positive. However, the tests for mannitol, lactose, xylose, arabinose,
glycerol, cellobiose, pine triose, raffinose, sorbitol, and rhamnose were negative, and the
catalase reaction was negative (Table 1).

Table 1. Cetobacterium sp. nov. C33 phenotypic properties. (−) negative reaction, and (+) positive reaction.

Properties Cetobacterium sp. nov. C33

Indole formation −
Urease −
Acidification (GLUcose) +
Acidification (MANnitol) −
Acidification (LACtose) −
Acidification (SACcharose) +
Acidification (MALtose) +
Acidification (SALicin) +
Acidification (XYLose) −
Acidification (ARAbinose) −
Hydrolysis (protease) (GELatin) −
Hydrolysis (ß-glucosidase) (ESCulin) +
Acidification (GLYcerol) −
Acidification (CELlobiose) +
Acidification (ManNosE) +
Acidification (MeLeZitose) +
Acidification (RAFfinose) −
Acidification (SORbitol) −
Acidification (RHAmnose) −
Acidification (TREhalose) −
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Table 1. Cont.

Properties Cetobacterium sp. nov. C33

Catalase −
Vitamin B12 −
Spores −
Gram reaction −
Morphology Rod

3.2. Whole-Genome Sequencing and Bacterial Identification
3.2.1. Whole-Genome Sequencing

The counting assembly resulted in a scaffold level with a length of 2,830,091 bp
(Figure 2a) and 2753 features were annotated: 2754 were protein-coding sequences and
40 were RNA genes, of which 22 were tRNA genes (Figure 2b). The G + C content of the
C33 strain was 28.2 mol%.
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Figure 2. Cetobacterium sp. nov C33 whole-genome analysis. (a) Genomic atlas. Circles illustrate the
following, from outermost to innermost rings: the scaffolds; the location of the contigs; the local % GC
plot, and the innermost ring represents the GC skew. (b) Subsystem distribution of Cetobacterium sp.
nov C33 based on Rapid Annotation using Subsystem Technology (RAST). Numbers mean: Number
of Coding Sequences.
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3.2.2. Bacterial Identification

When the whole-genome sequence of the C33 strain was compared to closely related
strains, both the Average Nucleotide Identity, ANIb, and the digital DNA–DNA hybridiza-
tion, dDDH, values were low (Table 2). The closest relative to the C33 strain in the analyses
was Cetobacterium somerae ATCC BAA-474, with ANIb, ANIm, dDDH, and Tetranucleotide
Signature Correlation Indices (Tetra) of 83.64, 86.21, 28.8%, and 0.9832, respectively. Simi-
larly, in the analyses of Cetobacterium sp. NK01, also isolated from Nile tilapia, the ANIb,
ANIm, dDDH, and Tetra were 83.97, 87,73, 28.9%, and 0.9822, respectively. Analysis of
the C33 strain, using genome–genome comparisons with state-of-the-art approaches and
up-to-date genomic and taxonomic reference databases such as the Genome Type (Strain)
Server (TYGS), indicates that it belongs to the Cetobacterium genus, but its genome and
16S rRNA gene sequence phylogeny shows that it represents a new, undescribed species,
having as its closest relatives both C. somerae and C. ceti (Figure 3). Therefore, we propose
the name of Candidatus Cetobacterium colombiensis sp. nov. for the C33 strain.

Table 2. Cetobacterium sp. nov. C33 pairwise genome comparisons vs. type strain genomes. Average
Nucleotide Identity based on BLAST (ANIb); Average Nucleotide Identity values based on MUMmer
algorithm (ANIm); digital DNA-DNA hybridization (dDDH).

Subject Strain NCBI RefSeq ANIb ANIm dDDH (d4, in %) Tetra

Cetobacterium somerae
ATCC BAA-474 GCA_000479045.1 83.64 86.21 28.8 0.98320

Cetobacterium sp. NK01 NCBI:txid2993530 83.97 87.73 28.9 0.98225
Cetobacterium ceti ATCC 700028 GCA_900167275.1 73.33 83.63 19.2 0.93057
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Figure 3. Cetobacterium sp. nov. C33 whole-genome sequence-based phylogenomic tree. The tree was
inferred using FastME 2.1.6.1 with Genome Blast Distance Phylogeny approach (GBDP) distances
calculated from genome sequences. The branch lengths were scaled in terms of GBDP-distance
formula d5. The numbers below the branches are GBDP pseudo-bootstrap support values > 60%
from 100 replications, with an average branch support of 73.1%. For the Percent G + C and Delta
statistics columns, Darker color means higher value.

3.2.3. Functional Annotation as an In-Silico Tool for Probiotic Screening in Aquaculture

Moreover, the predicted genes were assigned to clusters of orthologous groups (COGs);
these COG functional categories are compiled in Figure 2b. Based on the COG annotation
results, the most gene-rich COG classifications were principally Carbohydrates (231),
followed by Amino Acids and Derivatives (192), Protein Metabolism (159), Cell Wall and
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Capsule (141), Cofactors, Vitamins, Prosthetic Groups, Pigments (115), RNA Metabolism
(102), Fatty Acids, Lipids, and Isoprenoids (61), Stress Response (58), Virulence, Disease
and Defense (50) (Table S1). The present article determines the possible presence of genes
related to the following subsystems: amino acid and vitamin biosynthesis, adherent ability,
carbohydrate utilization, and bacteriocin production. Amino acid biosynthesis of glutamine,
glutamate, aspartate, asparagine, polyamine, methionine, threonine, homoserine, lysine,
tryptophan, phenylalanine, tyrosine, proline, glycine, alanine, serine; and degradation of
urea, histidine, arginine, ornithine, threonine, methionine, lysine, creatine, and creatinine
was observed. Additionally, the vitamin biosynthesis of compounds like biotin, thiamin,
cobalamin, heme, siroheme, riboflavin, flavodoxin, folate, and coenzyme A was also
observed. Furthermore, Table S1 shows the possible presence of genes related to the
metabolism of carbohydrates in the C33 bacteria strain.

The C33 strain featured the bacteriocin Linocin M18 and Zoocin A and two ribosomal
sactipeptides (Table 3). C33 presented mobile genetic elements such as the tetA and tetB
genes and Lnu(C) gene (Table 4). In addition, the C33 strain presented the plasmid named
rep7a (Table 5).

Table 3. Gene clusters involved in biosynthesis in Cetobacterium sp. nov. C33 obtained from BAGEL4
web server.

Areas Of Interest (AOI) Contig Position Class

NODE_14_length_68805_cov_11741857.1.AOI_01 9860–29,860 Sactipeptides
NODE_14_length_68805_cov_11741857.1.AOI_02 21,395–41,395 Sactipeptides
NODE_12_length_73494_cov_14215396.25.AOI_01 24,074–44,827 3.3; Bacteriocin
NODE_13_length_71663_cov_18402088.3.AOI_01 38,945–59,284 93.3; Zoocin_A

Table 4. Cetobacterium sp. nov. C33 genetic elements obtained from Mobile Element Finder tool.

Gen Phenotype Accession Counting Contig
Position Coverage Identity

tetB(P)
doxycycline,
tetracycline,
minocycline

NC_010937 NODE_39_length_5959_
cov_111.589261_pilon 1788–3746 100.00% 97.54%

tetA(P) doxycycline,
tetracycline AB054980 NODE_39_length_5959_

cov_111.589261_pilon 1804–542 99.92% 92.72%

Inu(C) Lincomycin AY928180 NODE_61_length_1005_cov_
102.149888_pilon 429–923 100.00% 98.99%

Table 5. Cetobacterium sp. nov. C33 plasmid obtained from Mobile Element Finder tool.

Name of
Plasmid Database Accession Counting Position in

Contig Coverage Identity

rep7a Gram-
positive SAU83488 NODE_53_length_2280_

cov_1.059013_pilon 1408–1976 95.31% 90.53%

3.3. Evaluation of Probiotic Potential In Vitro
3.3.1. Enzymatic Activity

Enzyme activities were determined using an API-ZYM kit (BioMerieux) according to
the manufacturer’s instructions. Positive enzymatic activities were determined for Esterase
(C4) (2-naphthyl butyrate) and Acid Phosphatase (2-naphthyl phosphate) (Table 6).

Table 6. Cetobacterium sp. nov. C33 enzymatic activity analysis using Api Zym. (+) Positive result,
(−) Negative result.

Enzyme Analyzed Cetobacterium sp. nov. C33

Phosphatase alkaline −
Esterase (C 4) +
Esterase Lipase (C 8) −
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Table 6. Cont.

Enzyme Analyzed Cetobacterium sp. nov. C33

Lipase (C 14) −
Leucine arylamidase −
Valine arylamidase −
Cystine arylamidase −
Trypsine −
α-chymotrypsine −
Phosphatase acide +
Naphtol-AS-BI-phosphohydrolase −
α-galactosidase −
ß-galactosidase −
ß-glucuronidase −
α-glucosidase −
ß-glucosidase −
N-acetyl-ß-glucosaminidase −
α-mannosidase −
α-fucosidase −

3.3.2. Vitamin B12 Production

The reported result indicates that the analyzed sample did not produce vitamin B12 as
the value was below 0.05 µg/100 mL (quantification limit for this specific method).

3.3.3. Hemolytic Activity

C33 is non-hemolytic; the hemolysis range (γ) was present.

3.3.4. Bile Salts and pH Survival

The C33 strain survived in the presence of 0.3% bile salts (Figure 4). After three hours
of incubation, a higher survival rate was observed in the treatment with pH 3.0 (48%)
followed by pH 2.0 (39%) (Figure 5a,b).

Microorganisms 2023, 11, x FOR PEER REVIEW 11 of 19 
 

 

3.3.4. Bile Salts and pH Survival 
The C33 strain survived in the presence of 0.3% bile salts (Figure 4). After three hours 

of incubation, a higher survival rate was observed in the treatment with pH 3.0 (48%) fol-
lowed by pH 2.0 (39%) (Figure 5a,b). 

 

Figure 4. Evaluation of Cetobacterium sp. nov. C33 survival at 0.3 percent w/v% bile salts). Data rep-
resents mean + SEM (n = 3). 

 
(a) 

Figure 4. Evaluation of Cetobacterium sp. nov. C33 survival at 0.3 percent w/v% bile salts). Data
represents mean + SEM (n = 3).



Microorganisms 2023, 11, 2922 11 of 19Microorganisms 2023, 11, x FOR PEER REVIEW 12 of 20 
 

 

 

(a) 

 

(b) 

Figure 5. Evaluation of Cetobacterium sp. nov. C33 survival at (a) pH 3.0; (b) pH 2.0. Data represents 

mean + SEM (n = 3). 

3.3.5. Hydrophobicity Evaluation 

The hydrophobicity percentages of the C33 strain were higher in chloroform than 

when ethyl acetate was used, at 64% ± 1.15 and 8% ± 0.60, respectively. 

3.3.6. Antibiotic Resistance 

The results of the Minimum Inhibitory Concentrations (MIC), expressed in μg/mL, 

obtained for the C33 strain are shown in Table 7. There is no report of a cut-off point for 

the Cetobacterium genus established by the European Food Safety Authority [14]. However, 

the breakpoints of a gram-negative bacillus (Escherichia coli) were used as a reference. In 

the context of probiotics, antibiotic susceptibility testing is performed to find the sensitiv-

ity and resistance of the probiotic strain against certain antibiotics that may be 

Figure 5. Evaluation of Cetobacterium sp. nov. C33 survival at (a) pH 3.0; (b) pH 2.0. Data represents
mean + SEM (n = 3).

3.3.5. Hydrophobicity Evaluation

The hydrophobicity percentages of the C33 strain were higher in chloroform than
when ethyl acetate was used, at 64% ± 1.15 and 8% ± 0.60, respectively.

3.3.6. Antibiotic Resistance

The results of the Minimum Inhibitory Concentrations (MIC), expressed in µg/mL,
obtained for the C33 strain are shown in Table 7. There is no report of a cut-off point for the
Cetobacterium genus established by the European Food Safety Authority [14]. However, the
breakpoints of a gram-negative bacillus (Escherichia coli) were used as a reference. In the
context of probiotics, antibiotic susceptibility testing is performed to find the sensitivity
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and resistance of the probiotic strain against certain antibiotics that may be administered.
The antibiotic susceptibility profile of the C33 isolate indicates that the strain was sensitive
to all antibiotics evaluated in comparison to the cut-off value.

Table 7. Antibiotic Minimum Inhibitory Concentrations (MIC) were obtained in Cetobacterium sp.
nov. C33.

Antibiotic
MIC C33 Strain * Escherichia coli

(µg/mL) (µg/mL)

Tetracycline 3 (S) 8
Ampicillin 0.016 (S) 8
Vancomycin 0.250 (S) not reported
Gentamicin 0.750 (S) 2
Chloramphenicol 1.5 (S) 16

* Cut off values by EFSA (µg/mL) for Escherichia coli. Resistant (R) MIC > cut-off value; Susceptible (S)
MIC < cut-off value.

The C33 strain was more sensitive to Ampicillin, followed by Vancomycin, and Gen-
tamicin, and less sensitive to Chloramphenicol (1.5 µg/mL) and Tetracycline (3.0 µg/mL)
(Table 7).

3.3.7. Antibacterial Activity against S. agalactiae and A. hydrophila

The pH of the extracellular products (ECPs) was at the value of 5.7. The ECPs of C33
showed antibacterial activity against S. agalactiae and A. hydrophila. In both pathogenic
bacteria; a higher percentage of inhibition was observed in the ECPs that were not heated to
80 ◦C. However, no significant difference was observed between the different concentrations
of ECPs. In contrast, the ECPs that were heated to 80 ◦C showed a significant difference
between the different concentrations (Figures 6 and 7).
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4. Discussion

In the present study, we isolated the bacterial strain C33 from the intestinal content
of Nile tilapia. It was previously found, in a continuous-flow competitive exclusion cul-
ture (CFCEC) obtained from Nile tilapia intestinal content, that Fusobacteria, primarily
represented by the Cetobacterum genus, were highly abundant in the first days of the
CFCEC [10].

C33 is an anaerobic gram-negative bacterium, that, according to the genome annotation,
was identified as Cetobacterium sp. nov C33. Since it was found to be a dominant species, it
in vitro analyses that could determine its potential use as probiotic were conducted.

The results of the phenotypic characterization of C33 showed gelatinase negative
activity, which is favorable since it has been suggested that the presence of this activity
in probiotic microorganisms could be detrimental to the health of the host due to the
possible damage it can cause in the extracellular protein matrices of intestinal tissue [42]. In
addition, the positive activity of esterase is related to the breaking activity of the ester bonds
of polysaccharides, favoring the action of hydrolases of high molecular weight compounds
such as carbohydrates and proteins. Likewise, the positive activity of acid phosphatase is
important for the degradation of organic phosphorus found primarily in plant and animal
protein sources [43]. In addition to these characteristics, the C33 strain has the possibility
of using different energy sources such as glucose, sucrose, maltose, salicin, mannitol, and
trehalose, a fact that may favor the fish’s nutrition, improving the absorption of nutrients
by solubilizing the elements of the diets through extracellular enzymes; this facilitates
the absorption of individual molecules through the intestinal epithelium of the animal
host [44,45] and provides enzymes that the animal host does not have [44,46]. Furthermore,
we have identified the C33 strain as a gamma (γ) hemolytic bacterium. In addition, for
a bacterium to qualify as a probiotic, it must be able to survive and ideally colonize the
intestine. This involves overcoming the stress generated by the low pH of the stomach
and contact with bile salts, which are inhibitory for multiple microorganisms because they
cause cell lysis [47–51]. Here we report the significant capacity of C33 to survive even at
pH 2.0.

On the other hand, after passing through the digestive tract of the host, for a strain
candidate to be used as a probiotic it must be able to colonize the gut. The C33 strain
showed hydrophobicity percentages higher than 50% with a non-polar solvent (chloroform),
a result that indicates a hydrophobic character of the cell surface, a factor that contributes
to the interaction of the bacteria with the cells of the gastrointestinal tract. This indicates
the potential ability of this isolate to colonize and persist in the gastrointestinal tract [6,41].
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Antibiotic resistance and a growing reluctance to administer antibiotics have led to an
increase in the use of probiotics [6,52]. Bacterial antibiotic resistance mechanisms can be
innate, natural, or acquired. There is no horizontal transferability of the intrinsic resistance;
nevertheless, the acquired resistance can be gained by mutations or the acquisition of
genes through mobile genetic elements into their genomes [6,53,54]. The resistance to
antimicrobial agents in a potential bacterial probiotic should be considered with caution.
On the other hand, some authors mention that resistance to given antibiotics may be
acceptable because, in the event of the use of any of these compounds being required in the
fish culture, the probiotic will not be eliminated [6,55].

Nevertheless, the cutoff value of all the antibiotics tested in C33 indicated that this
bacterium is sensitive. Additionally, in the RASfinder genome annotation, no resistance
genes were found for any antibiotics (amoxicillin, ertapenem, aztreonam, amoxicillin,
ampicillin, piperacillin, cefixime, ceftriaxone, ticarcillin, penicillin, cefotaxime, temocillin,
metronidazole, doxycycline, minocycline, tigecycline, teicoplanin, and vancomycin). Due
to the potential migration of antibiotic resistance factors, we consider that it is better to
use a probiotic free of any acquired antibiotic resistance to avoid further changes in the
microbial community induced by the overuse of the probiotic bacteria.

C33 presents with the plasmid rep7a, belonging to the group of glutathione S-transferases
(GST), which are dimeric proteins that can conjugate glutathione (GSH) with a variety of
compounds containing electrophilic centers. On the other hand, C33 also presented with
the rep7a gene, the tetA and tetB genes related with tetracycline resistance, and the Lnu(C)
gene that confers resistance to lincomycin [56].

C33 has two ribosomal sactipeptides (peptides cross-linked from sulfur to carbon alpha
thioether) belonging to RiPP, that show various biological activities such as antibacterial
properties and post-translationally modified peptides (RiPPs) [57]. Nevertheless, this
condition requires further research for better understanding of its bacterial physiology.

The C33 strain has a gene encoding the Linocin M18 bacteriocin; a protein that forms
nano compartments within the pathogenic bacterium, it also contains ferritin-like proteins
or peroxidases and enzymes involved in the oxidative stress response. Various authors
have reported that Linocin M18 has bacteriostatic activity against strains of Arthrobacter,
Bacillus, Brevibacterium, Corynebacterium, and Listeria [58]. In addition, C33 presents with
genes encoding Zoocin A, a peptidoglycan hydrolase, which, combined with lauricidin,
a cell membrane active lipid, has been reported to selectively suppress the growth of
Streptococcus mutans [59].

Here cell-free extracellular products (ECPs) of Cetobacterium sp. C33 are found to
have antimicrobial activity against S. agalactiae and A. hydrophila, two pathogenic bacteria
responsible for high mortality in Nile tilapia cultures and substantial economic losses in
tilapia farms [48,60–62].

Probiotic use has been reported as an alternative to the use of antibiotics which has
caused antimicrobial resistance in the aquaculture industry [63]. They contribute to natural
resistance and a higher survival rate of the fish [64,65].

C33 has the capacity to biosynthesize amino acids, such as glutamine, glutamate,
aspartate, asparagine, polyamine, methionine, threonine, homoserine, lysine, tryptophan,
phenylalanine, tyrosine, proline, glycine, alanine, and serine, that benefit fish growth [66].
In addition, biotin production is important for the synthesis of fatty acids, the oxidation
of carbohydrates, and the synthesis of purines. Biotin deficiency causes loss of appetite,
dark coloration, and seizures in fish. Thiamine acts in Nile tilapia as a coenzyme in various
metabolic decarboxylation reactions (pyruvic acid, alpha-ketoglutaric acid). Thiamine
deficiency in fish results in weakness, terminal convulsions, degeneration, and fish fin
paralysis. Tetrapyrrole compounds like heme, cobalamin, etc., have multiple essential
functions in fish. Its synthesis begins with the formation of aminolaevulinic acid from
glutamine [67]. Riboflavin and FAD are components of two enzymes (FMN and FAD)
that are oxidases and reductases that participate in the metabolic degradation of proteins,
carbohydrates, and lipids. Its deficiency in tilapia generates loss of appetite, dark skin,
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cataracts, and photophobia. Deficiencies in B vitamins, such as folate and vitamin B12,
affect the offspring’s resistance and fertility [68].

In general, the C33 strain breaks down and uses Mannose, Chitin, N-acetylglucosamine,
Sucrose, Maltose, Maltodextrin, Lactose, Galactose, Lactate, Glycerol, Glycerol-3-phosphate,
D-ribose utilization, L-ascorbate, and Fructose. The genus Cetobacterium provides extra-
cellular enzymes to degrade complex carbohydrates [69]. The presence of Cetobacterium
may be associated with better glucose utilization [70] and could improve glucose home-
ostasis and increase insulin expression [71]. The above supports the role of Cetobacterium in
carbohydrate regulation.

Finally, by comparing the sequencing results of the whole genome with the NCBI
database, it was found that the C33 strain can be classified within the genus Cetobacterium.
Similarly, the phylogenetic analysis indicates that the C33 strain has the greatest similarity
with the species Cetobacterium somerae ATCC BAA-474, with a tetranucleotide signature
correlation index (Tetra) result of 0.98712, a value that was less than 0.99 (Minimum value
to consider it to be the same species [72]), which suggests that it can be considered a new
species. In addition, the C33 strain differs from C. somerae WAL 14325T Cetobacterium
sp. NK01 and C. ceti M 3333T in other aspects, such as no indole production, positive
glucosidase reaction, positive enzyme activities for esterase (C4) (2-naphthyl butyrate)
and acid phosphatase (2-naphthyl phosphate), and finally, it did not present any vitamin
B12 production.

Consequently, the physiological characteristics and the phylogenetic analysis suggest
that the C33 strain represents a new species of the genus Cetobacterium with high probiotic
potential for Nile tilapia cultures based on the in vitro analysis shown here. Nevertheless
in vivo experiments should be conducted in other studies to verify the effects on immune
regulation, microbiota modulation fish growth, and resistance.

5. Conclusions

The anaerobic bacterial strain C33, isolated from the intestinal microbial content of
Nile tilapia was sequenced, showing that it was a new candidate species of the genus
Cetobacterium that could be named Cetabacterium colombiensis sp. nov C33.

Isolated C33 has probiotic characteristics which are high adaptability to gastrointestinal
conditions, and a potential capacity to adhere to epithelial intestinal cells and produce
antimicrobial substances.

To continue with the development of the probiotic product, the next step is to incor-
porate these bacteria into the fish feed and evaluate the effect on growth performance,
microbiota modulation, and immunomodulation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms11122922/s1, Table S1: Whole genome annotation
of bacteria strain C33 with features of interest.
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