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Abstract: Uropathogenic Escherichia coli (UPEC) strains are among the leading causes of urinary
tract infections (UTIs) worldwide. They can colonize the urinary tract and form biofilms that allow
bacteria to survive and persist, causing relapses of infections and life-threatening sequelae. Here, we
analyzed biofilm production, antimicrobial susceptibility, virulence factors, and phylogenetic groups
in 74 E. coli isolated from diagnosed patients with UTIs to describe their microbiological features and
ascertain their relationship with biofilm capabilities. High levels of ceftazidime resistance are present
in hospital-acquired UTIs. Isolates of multidrug resistance strains (p = 0.0017) and the yfcV gene
(p = 0.0193) were higher in male patients. All the strains tested were able to form biofilms. Significant
differences were found among higher optical densities (ODs) and antibiotic resistance to cefazolin
(p = 0.0395), ceftazidime (p = 0.0302), and cefepime (p = 0.0420). Overall, the presence of fimH and
papC coincided with strong biofilm formation by UPEC. Type 1 fimbriae (p = 0.0349), curli (p = 0.0477),
and cellulose (p = 0.0253) production was significantly higher among strong biofilm formation. Our
results indicated that high antibiotic resistance may be related to male infections as well as strong
and moderate biofilm production. The ability of E. coli strains to produce biofilm is important for
controlling urinary tract infections.

Keywords: UPEC; biofilm; virulence factors; antimicrobial resistance; multidrug resistance

1. Introduction

Urinary tract infections (UTIs) are among the most common bacterial infections, and
they are a significant public health problem globally. Worldwide, 404.61 million cases,
236,790 deaths, and 520,200 disability-adjusted life years (DALYs) were estimated in 2019 [1],
resulting in a high cost of healthcare treatment. Furthermore, UTIs can lead to multiple
severe sequelae, including relapse, pyelonephritis with sepsis, renal scarring, and preterm
birth [2,3].

Uropathogenic Escherichia coli (UPEC), a member of the extra-intestinal pathogenic
E. coli (ExPEC), is a primary pathogen causing community (80–90%) and hospital-acquired
(30–50%) UTIs [4]. These strains harbor a variety of virulence factors in order to establish
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the infection, including adhesins (i.e., type 1 and P-fimbriae, S/F1C fimbriae, Dr-binding
adhesins), toxins (i.e., cytotoxic necrotizing factor and hemolysin), host defense avoidance
mechanisms (i.e., group 2 capsule synthesis), and multiple iron acquisition systems (e.g.,
aerobactin and salmochelin), as well as biofilm formation [5–7].

In recent years, infections by UPEC have acquired resistance to nearly all antibiotics
currently used in clinical practice, leading to ineffective UTI therapy [8]. This increase is
related to the excessive use of antibiotics, including broad-spectrum antibiotics such as
fluoroquinolones, cephalosporins, and aminoglycosides [9–11], high rates of inadequate
antibiotic empirical therapies prescribed without antibiotic susceptibility testing [9,12], the
overconsumption of indiscriminate antibiotics by the population, the lack of consumer
attachment to the medical prescription in the community [13], the regular exposition of
humans to antimicrobial resistance through agriculture and foods from animals previously
treated by antibiotics, mostly like growth promotors, and the consumption of inadequately
treated drinking water [14]. Due to these selection pressures, UPEC could express a
multidrug resistance phenotype and higher values of minimal inhibitory concentrations
(MICs), enhancing the possibility of treatment failure in UTIs which is an important
risk factor for the development of E. coli bacteremia, and prolonging morbidity [15,16].
Indeed, the widespread use of fluoroquinolones in community UTI infections, which were
previously used as a first-line agent in the therapy of UTIs, is the cause of the continuous
increase in resistance to these drugs [9], which are now discouraged as first-line antibiotics
in community infections [8,10].

UPEC strains can form intracellular bacterial communities (IBCs) within the bladder
epithelium, known as biofilms [17,18]. Additionally, UPEC can form quiescent intracellular
reservoirs (QIRs) that reside in the underlying urothelium and can trigger reactivation
by the exfoliation of superficial epithelial cells, realizing bacteria back into the bladder
and acting as a source of recurrent UTIs [7,8,19,20]. These microbial communities are
difficult to eradicate because they are poorly responsive to conventional antimicrobial
treatment and are more resistant to the host immune response [21,22]. In addition, it
has been demonstrated that UPEC biofilms can persist despite treatment with multiple
antibiotics [8,20,23,24].

Indeed, the minimal inhibitory concentration of antibiotics against bacteria in biofilms
may be 101–104 times higher than that against planktonic cells [22,25]. Furthermore, the
proximity of cells within a biofilm can facilitate horizontal gene transfer of genes encoding
for antibiotic resistance, enhancing the spread of antimicrobial resistance and virulence
properties [26]. Thus, biofilm production is one of the most important virulence factors
possessed by UPEC and has become a primary global concern.

Several virulence factors have been associated with UPEC strong biofilm-producing
strains, including type 1 fimbriae [26–28], papC [29–31], papG alleles, sfa/focDE, focG,
sfa [28,29,32,33], cnf1 [27,34], agn43 [2,6,35], afa, fimH [29,31,36], traT [36], hemolysin pres-
ence [21,37], sdiA, rcsA, and rpoS genes [38]. Moreover, the relationship between antimicro-
bial resistance and biofilm-producing on E. coli has been studied [21,37–40]. However, an
inconsistent conclusion was found. This study aimed to characterize the biofilm-forming
ability of UPEC isolates recovered from human infections and investigate whether there
is a link between the ability to form biofilms and the demographic characteristics of the
patients and the characteristics of the UPEC strains.

2. Materials and Methods
2.1. Bacterial Strains and Detection of Phylogroups and Virulence Genes

A total of seventy-four urine cultures were collected from Centenario Hospital Miguel
Hidalgo, Aguascalientes, Mexico, in 2013. The hospital is located in Aguascalientes State,
a province of Mexico. The cultures were collected anonymously. Only one non-duplicate
E. coli isolate was used in the present study. The isolation was performed according to the
previously described diagnostic criteria for UTIs [41]. The inclusion criteria were patients
with UTIs. Their fresh urine samples contained bacterial counts ≥ 105 colony-forming
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units per milliliter (CFU/mL). Patients with E. coli isolated at least 48 h after admission
were considered to have a hospital-acquired infection; all other infections were considered
community-acquired [42]. Putative E. coli was inoculated on MacConkey agar plates and
screened for the uidA gene by PCR for confirmation, as previously described [43].

As previously described, a multiplex PCR phylo-grouping assay was performed to
determine the phylogroups [44]. E. coli strains H10407 (phylogroup A), E22 (phylogroup
B1), CFT073 (phylogroup B2), ECOR 70 (phylogroup C), 042 (phylogroup D), EDL933
(phylogroup E), and ECOR 36 (phylogroup F) were taken as positive controls. Nuclease-
free water was used as the negative control.

E. coli isolates were also screened by PCR for the presence of selected virulence genes
associated with E. coli strains responsible for extra-intestinal infections. Oligonucleotide
sequences and PCR conditions are listed in Supplemental Table S1. E. coli strains J96
(sfaS, hlyA, and cnf1), CFT073 (uidA, papC, fyuA, chuA, kpsMTII, yfcV, and fimH), and
UTI189 (vat) were used as positive controls. Nuclease-free water was used as the negative
control. The fyuA (yersiniabactin receptor), sfa (S fimbriae), afa/dra (afimbrial adhesion),
kpsMTII (capsular polysaccharide genes) [45,46], fimH (adhesin of type 1 fimbrae), cnf1
(cytotoxic necrotizing factor), [45], yfcV (major subunit of a putative chaperone usher
fimbriae) [46], hlyA (alfa-hemolysin) [47,48], agn43 (antigen 43 precursor/major phase-
variable outer membrane protein) [49], papC (P fimbriae) [45,46,50], and vat (autotransporter
serine protease toxin) [51,52] genes were investigated. We selected virulence gene markers
based on the relationship with the pathogenesis of UTIs and biofilm formation-relatedness.
Production of alpha-hemolysin was tested on 5% sheep blood agar. E. coli strains were
inoculated onto blood agar plates and incubated overnight at 37 ◦C. Hemolysis was detected
by the presence of a lysis zone around the colony [53]. Details and functions of the virulence
gene tested are shown in Supplemental Table S2.

2.2. Antimicrobial Susceptibility Testing

Susceptibility profiles to different antimicrobial agents were determined by the agar
diffusion method [34]. The tested antimicrobial agents were as follows: amikacin (30 µg),
gentamicin (10 µg), tobramycin (10 µg), netilmicin (30 µg), ampicillin (10 µg), ampicillin-
sulbactam (10/10 µg), amoxicillin-clavulanic acid (20/10 µg), piperacillin-tazobactam
(100/10 µg), cefazolin (30 µg), cefotaxime (30 µg), ceftazidime (30 µg), ceftriaxone (30 µg),
cefepime (30 µg), trimethoprim-sulfamethoxazole (25 µg), ciprofloxacin (5 µg), levofloxacin
(5 µg), norfloxacin (10 µg), nitrofurantoin (300 µg), ertapenem (10 µg), and imipenem
(10 µg). E. coli ATCC 25922 was used as the negative control. Norfloxacin susceptibility
was tested only on thirty-one samples. All other antibiotics were tested in the 74 isolates.
Strains were categorized as resistant (R), multidrug-resistant (MDR), or extensively drug-
resistant (XDR). Resistant (R) bacteria were defined as those resistant to at least one agent
in all classes of antibiotics tested. MDR bacteria were defined as those resistant to at
least one agent in three or more antimicrobial classes, and XDR bacteria were defined as
non-susceptibility to at least one agent in all but one or two antimicrobial classes tested [54].

2.3. Biofilm Formation Anlaysis

Biofilm formation was evaluated as described previously [55,56]. Briefly, overnight
cultures of E. coli in Luria Bertani (LB) broth were diluted 1:100 in M9 minimal medium plus
glycerol 0.2% plus minerals (1.16 mM MgSO4, 2 µM FeCl3, 8 µM CaCl2, and
16 µM MnCl2) and incubated overnight at 37 ◦C. These cultures were diluted (1:100) in M9
medium supplemented with glycerol and minerals, and 150µL was aliquoted in triplicate in
a sterile 96-well microtiter plate (Costar® 3370, Corning, NY, USA). E. coli ATCC 25922 was
included in each assay as a positive control, and M9 medium without bacteria was used
as a negative control. Following incubation for 24 h at 30 ◦C, the wells were washed three
times carefully with distilled water and dried at 37 ◦C for 30 min. The wells were stained
with 0.1% (w/v) crystal violet for 2 min, washed three times with distilled water, and dried
at 37 ◦C for 30 min. Cristal violet was resuspended in 150 µL of ethanol/acetone 80:20 (v/v)
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solution. Absorbance was measured at 595 nm using a spectrophotometer (Benchmark
plus Microplate Reader, BIO-RAD). As previously published, the results were interpreted
and grouped into none, weak, moderate, or strong biofilm-producing [57]. Briefly, the
optical density of control (ODc) was defined as the mean OD of the negative control. Strains
were classified as non-adherent (OD ≤ ODc), weak (ODc < OD ≤ 2 × ODc), moderate
(2 × ODc < OD ≤ 4 × ODc), or strong biofilm-producing (ODc > 4 × ODc).

The ability of E. coli isolates to express a D-mannose-binding phenotype
was measured by the ability to agglutinate Saccharomyces cerevisiae cells, as described
previously [58–60]. The agglutination titer was established as the lowest bacterial dilution
at which agglutination was observed. If α-D-mannopyranose (5% (w/v)) (Sigma, St. Louis,
MO, USA) inhibited agglutination, yeast agglutination was considered to be due to type
1 fimbriae [58–60].

The ability to express curli fimbriae was evaluated as previously described [60,61].
Briefly, each strain was spotting on LB agar plates without NaCl containing 0.004% of
Congo Red (CR) and 0.002% of Coomassie Brillant Blue G (USB Corporation, Cleveland,
OH, USA). Red or pink colonies indicated Congo Red binding after overnight incubation
at 30 ◦C. Cellulose production was determined by spotting the strain on LB agar plates
containing 0.02% of calcofluor (Fluorescent Brightener 28; Sigma-Aldrich, St. Louis, MO,
USA). The fluorescence of the colonies was measured under UV light illumination at
360 nm (UV transilluminator, INILAB, and TFP-M/WL) after overnight incubation at 30 ◦C.
E. coli CFT073 and E. coli ATCC 25922 were positive and negative controls, respectively [61].

2.4. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 9.4.1 (GraphPad Software,
San Diego, CA, USA). A comparison between the patient characteristics (gender and age)
and those of the strains (virulence factors, virulence score, phylogroup, and antimicrobial
resistance) in hospital- and community-acquired UTIs was performed using the chi-square
or Fisher exact test as categorical variables. Mann–Witney U test, two-tailed, was used to
compare biofilm formation among hospital- and community-acquired infections as well as
non-susceptible vs. susceptible strains as continuous variables. A comparison among the
optical densities of strong, moderate, and weak biofilm-producing strains was performed
using the non-parametric one-way analysis of variance (ANOVA) with Dunn’s multiple
comparison test. p values of <0.05 were considered significant. The virulence factor (VF)
scores of the strains were reported as the mean ± SD (standard deviation) of the virulence
markers the strains possessed.

3. Results
3.1. Demographic Characteristics of Patients with UTI Infection and the Relationship between
Antimicrobial Susceptibility and Virulence Genes on E. coli Isolates Strains

Table 1 shows the characteristics of Escherichia coli isolates from urinary tract infections.
A total of 74 urine samples comprised 18 (24.3%) samples from males and 56 (75.7%)
samples from females. The prevalence of UTIs was higher in females than in males.
Community-acquired infections (68.9%, 51 isolates) were more commonly detected in
comparison to hospital-acquired infections (31.1%, 23 isolates) as well, and they were more
frequent in children (60.8%, 45 isolates) than in adults (39.2%, 29 isolates). Adult isolates
mainly belonged to hospital-acquired infections (56.5%, 16 isolates), in contrast to child
isolates, mainly community-acquired infections (68.6%, 35 isolates, p = 0.0402, Table 1).
The highest prevalence of UTI was found in children (0–12 years group) of female patients
(66.1%, 37 isolates), followed by the same age group of males (44.4%, 8 isolates).
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Table 1. Comparison among virulence genes, phylogenetic groups, and antimicrobial resistance
patterns of Escherichia coli isolates from urinary tract infections.

Category Total
n = 74 (%)

Hospital-Acquired
n = 23 (%)

Community-
Acquired
n = 51 (%)

* p-Value

Gender
Female 56 (75.7) 15 (65.2) 41 (80.4)
Male 18 (24.3) 8 (34.8) 10 (19.6)

Age Children 45 (60.8) 10 (43.5) 35 (68.3) 0.0402
Adults 29 (39.2) 13 (56.5) 16 (31.4)

Antimicrobial
resistance

Ceftazidime resistance 19 (25.7) 10 (43.5) 9 (17.6) 0.0355
Susceptible 7 (9.5) 2 (8.7) 5 (9.8)
Resistant 67 (90.5) 21 (91.3) 46 (90.2)

Multidrug-resistant 47 (63.5) 14 (60.9) 33 (64.7)

Virulence gene

fimH 65 (87.8) 20 (87.9) 45 (88.2)
papC 40 (54.1) 14 (16.9) 26 (51.0)
sfaS 10 (13.5) 2 (8.7) 8 (15.7)

afa/Dr 9 (12.2) 2 (8.7) 7 (13.7)
yfcV 21 (28.4) 8 (34.8) 13 (24.5)

agn43 53 (71.6) 15 (65.2) 38 (74.5) 0.0220
vat 21 (28.4) 5 (21.7) 16 (31.4)
cnf1 3 (4.1) 1 (4.3) 2 (3.9)
hlyA 9 (12.2) 3 (13.0) 6 (11.8)
fyuA 59 (79.7) 19 (82.6) 40 (78.4)
chuA 49 (66.2) 14 (60.9) 35 (68.6)

kpsMTII 38 (51.4) 16 (69.6) 22 (43.1) 0.0341

Virulence score 5.09 ± 1.58 5.17 ± 1.66 5.06 ± 1.55

Phylogenetic
group

A 4 (5.4) 1 (4.5) 3 (5.9)
B1 9 (12.2) 5 (21.7) 4 (7.8)
B2 12 (16.2) 3 (13.0) 9 (17.6)
C 9 (12.2) 3 (13.0) 6 (11.8)
D 22 (29.7) 4 (17.4) 18 (35.3)
E 1 (1.4) 1 (4.3) 0 (0.0)
F 11 (14.9) 4 (17.4) 7 (13.7)

Clades 6 (8.1) 2 (8.7) 4 (7.8)

* Only significant p values are shown (p < 0.05). Categorical variables were tested by chi-squared and Fisher
exact test. Mann–Witney U test, two-tailed, was used to compare continuous variables among hospital- and
community-acquired infections.

All seven phylogroups and cryptic clades were found in the 74 E. coli urinary isolates.
The phylogroups D (29.7%), B2 (16.2%), and F (14.9%) were the most common, followed
by B1 (12.2%), C (12.2%), A (5.4%), E (1.4%), and cryptic clades (8.2%, Table 1). Different
phylogroups and cryptic clades were distributed in hospital and community settings,
except for phylogroup E, which was only distributed in isolates from hospital-acquired
infections. Most of the strains isolated from females belonged to phylogroup D (37.9%),
compared to the isolates from males that mainly belonged to phylogroup B2 (27.8%). The
majority of the strains isolated from the community (35.3%) and hospital (21.7%) acquired
infections belonged to phylogroups D and B1, respectively (Table 1). E. coli isolated from
children was predominantly distributed in phylogroup D (37.77%) and isolated from adults
in phylogroups B1, B2, and D (17.24% in each phylogroup). Interestingly, phylogroup D
comprised most of the multidrug-resistant and highly resistant isolates detected (21.3%
and 28.4%, respectively).

Furthermore, isolates from hospital-acquired infections showed a higher percentage of
resistance to ceftazidime than isolates from community-acquired infections
(52.6%/10 isolates vs. 20.5%/9 isolates, p = 0.0355, Table 1). Only three strains were con-
sidered extensively drug-resistant (XDR) because they were exclusively susceptible to car-
bapenems. Interestingly, all strains were resistant to nitrofurantoin, unlike non-XDR strains.
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Among antimicrobial susceptibility, more than half of the strains tested in hospital- and
community-acquired infections presented multidrug-resistant patterns (60.9%, 14 isolates,
and 64.7%, 33 isolates, respectively; Table 1). Sixty-seven isolates (90.5%) were resistant to
at least one antimicrobial agent, and forty-seven isolates (63.5%) were multidrug-resistant.
Among the 20 different antibiotics evaluated, all 74 E. coli isolates were susceptible to the
carbapenems tested (ertapenem and imipenem). Many strains were resistant to ampicillin
(84.7%) and trimethoprim-sulfamethoxazole (75.7%). High frequencies of resistance were
observed to ampicillin-sulbactam (59.5%), amoxicillin-clavulanic acid (57.6%), levofloxacin
(54.2%), cefazolin (49.2%), ciprofloxacin (44.6%), and tobramycin (40.9%). Some isolates
were resistant to ceftazidime (30.2%), cefotaxime (19.2%), nitrofurantoin (13.5%), netilmicin
(9.7%), and amikacin (8.2%) (Figure 1).

Microorganisms 2023, 11, x FOR PEER REVIEW 6 of 19 
 

 

Furthermore, isolates from hospital-acquired infections showed a higher percentage 
of resistance to ceftazidime than isolates from community-acquired infections (52.6%/10 
isolates vs. 20.5%/9 isolates, p = 0.0355, Table 1). Only three strains were considered exten-
sively drug-resistant (XDR) because they were exclusively susceptible to carbapenems. 
Interestingly, all strains were resistant to nitrofurantoin, unlike non-XDR strains.  

Among antimicrobial susceptibility, more than half of the strains tested in hospital- 
and community-acquired infections presented multidrug-resistant patterns (60.9%, 14 iso-
lates, and 64.7%, 33 isolates, respectively; Table 1). Sixty-seven isolates (90.5%) were re-
sistant to at least one antimicrobial agent, and forty-seven isolates (63.5%) were multi-
drug-resistant. Among the 20 different antibiotics evaluated, all 74 E. coli isolates were 
susceptible to the carbapenems tested (ertapenem and imipenem). Many strains were re-
sistant to ampicillin (84.7%) and trimethoprim-sulfamethoxazole (75.7%). High frequen-
cies of resistance were observed to ampicillin-sulbactam (59.5%), amoxicillin-clavulanic 
acid (57.6%), levofloxacin (54.2%), cefazolin (49.2%), ciprofloxacin (44.6%), and tobramy-
cin (40.9%). Some isolates were resistant to ceftazidime (30.2%), cefotaxime (19.2%), nitro-
furantoin (13.5%), netilmicin (9.7%), and amikacin (8.2%) (Figure 1).  

 
Figure 1. Antimicrobial resistance pattern of strains isolates from UTI patients (N = 74). AMK, ami-
kacin; GEN, gentamicin; TOB, tobramycin; NET, netilmicin; AMP, ampicillin; FAM, ampicillin-sulb-
actam; AMC, amoxicillin-clavulanic acid; PIP/TZB, piperacillin-tazobactam; CZO, cefazolin; CTX, 
cefotaxime; CAZ, ceftriaxone; CEF, cefepime; SXT, trimethoprim-sulfamethoxazole; CIP, ciproflox-
acin; LEV, levofloxacin; NOR, norfloxacin; NIT, nitrofurantoin; ERT, ertapenem; IMP, imipenem.  
Netilmicin (NIT) antimicrobial resistance was tested only on thirty-one samples. 

Interestingly, male isolates presented higher resistance to all antimicrobial classes ex-
cept for carbapenems (Figure 2), with an increased percentage rate higher to 60% on anti-
biotics such as ceftriaxone (18.8% vs. 66.7%, females vs. males, respectively), ceftriaxone 
(21.3% vs. 70.6%), cefepime (21.4% vs. 70.6%), tobramycin (22.2% vs. 64.3%), ciprofloxacin 
(33.9% vs. 77.8%), and levofloxacin (42.9% vs. 82.4%). Overall, multidrug resistance rates 
(including XDR strains) to antibiotics tested were higher in males than in females (94.4% 
vs. 53.57%, p = 0.0017, Table 2). 

Regarding the virulence profile (Table 1), the most common virulence factors found 
were fimH (87.8%), fyuA (79.9%), agn43 (71.6%), chuA (66.2%), papC (54.1%), and kpsMTII 
(51.4%). Other virulence genes, including vat (28.4%), yfcV (28.4%), sfa (13.5%), afa/dra 
(12.2%), hlyA (12.2%), and cnf1 (4.1%), were also found. When isolates from hospital- and 
community-acquired infections were compared, the virulence gene agn43 was prevalent 
in isolates from community-acquired infections (65.2%, 15 isolates vs. 74.51%, 38 isolates, 
p = 0.022). In contrast, kpsMTII was prevalently detected in isolates from hospital-acquired 
infections (69.6%; 16 isolates vs. 43.1%; 22 isolates; p = 0.0341; Table 1). Moreover, a high 
prevalence of strains isolated from male patients harboring yfcV was found (Table 2, p = 
0.0193). 

Figure 1. Antimicrobial resistance pattern of strains isolates from UTI patients (N = 74). AMK,
amikacin; GEN, gentamicin; TOB, tobramycin; NET, netilmicin; AMP, ampicillin; FAM, ampicillin-
sulbactam; AMC, amoxicillin-clavulanic acid; PIP/TZB, piperacillin-tazobactam; CZO, cefazolin; CTX,
cefotaxime; CAZ, ceftriaxone; CEF, cefepime; SXT, trimethoprim-sulfamethoxazole; CIP, ciprofloxacin;
LEV, levofloxacin; NOR, norfloxacin; NIT, nitrofurantoin; ERT, ertapenem; IMP, imipenem. Netilmicin
(NIT) antimicrobial resistance was tested only on thirty-one samples.
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Figure 2. Antimicrobial resistance pattern of strains isolates from female (n =56) and male (n =18) UTI
patients (N = 74). AMK, amikacin; GEN, gentamicin; TOB, tobramycin; NET, netilmicin; AMP, ampicillin;
FAM, ampicillin-sulbactam; AMC, amoxicillin-clavulanic acid; PIP/TZB, piperacillin-tazobactam; CZO,
cefazolin; CTX, cefotaxime; CAZ, ceftriaxone; CEF, cefepime; SXT, trimethoprim-sulfamethoxazole; CIP,
ciprofloxacin; LEV, levofloxacin; NOR, norfloxacin; NIT, nitrofurantoin; ERT, ertapenem; IMP, imipenem.
Netilmicin (NIT) antimicrobial resistance was tested only on thirty-one samples.
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Table 2. Comparison among virulence genes, phylogenetic groups, and antimicrobial resistance
patterns of Escherichia coli isolates from female and male urinary tract infections.

Category Total
n = 74 (%)

Female Patients
n = 56 (%)

Male
Patients

n = 18 (%)
* p-Value

Age Children 45 (60.8) 37 (66.07) 8 (44.44)
Adults 29 (39.2) 8 (14.28) 10 (55.55)

Antimicrobial
resistance

XDR and MDR 47 (63.5) 30 (53.6) 17 (94.4) 0.0017
XDR 3 (5.1) 1 (1.8) 2 (11.1)
MDR 44 (59.5) 29 (51.8) 15 (83.3) 0.0261

R 20 (27) 19 (33.9) 1 (56.6) 0.0297
Susceptible 7 (9.5) 7 (12.5) 0 (0.0)

Virulence gene

fimH 65 (87.8) 47 (83.9) 18 (100)
papC 40 (54.1) 29 (51.8) 11 (61.1)
sfaS 10 (13.5) 8 (14.3) 2 (11.1)

afa/Dr 9 (12.2) 9 (16.1) 0 (0.0)
yfcV 21 (28.4) 12 (21.4) 9 (50.0) 0.0193

agn43 53 (71.6) 40 (71.4) 13 (72.2)
vat 21 (28.4) 14 (25) 7 (38.9)
cnf1 3 (4.1) 2 (3.6) 1 (5.6)
hlyA 9 (12.2) 6 (10.7) 3 (16.7)
fyuA 59 (79.7) 47 (83.9) 12 (66.7)
chuA 49 (66.2) 39 (69.6) 10 (55.6)

kpsMTII 38 (51.4) 31 (55.4) 7 (38.9)

Virulence score 5.09 ± 1.58 5.07 ± 1.52 5.17 ± 1.79

Phylogenetic group

A 4 (5.4) 2 (3.6) 2 (11.1)
B1 9 (12.2) 6 (10.7) 3 (16.7)
B2 12 (16.2) 7 (12.5) 5 (27.8)
C 9 (12.2) 6 (10.7) 3 (16.7)
D 22 (29.7) 21 (37.5) 1 (5.6) 0.0087
E 1 (1.4) 1 (1.8) 0 (0.0)
F 11 (14.9) 9 (16.1) 2 (11.1)

Clades 6 (8.1) 4 (7.1) 2 (11.1)

* Only significant p values are shown (p < 0.05). Categorical variables were tested by chi-squared and Fisher
exact test. Mann–Witney U test, two-tailed, was used to compare continuous variables among female and
male infections.

Regarding the virulence profile (Table 1), the most common virulence factors found
were fimH (87.8%), fyuA (79.9%), agn43 (71.6%), chuA (66.2%), papC (54.1%), and kpsMTII
(51.4%). Other virulence genes, including vat (28.4%), yfcV (28.4%), sfa (13.5%), afa/dra
(12.2%), hlyA (12.2%), and cnf1 (4.1%), were also found. When isolates from hospital- and
community-acquired infections were compared, the virulence gene agn43 was prevalent
in isolates from community-acquired infections (65.2%, 15 isolates vs. 74.51%, 38 isolates,
p = 0.022). In contrast, kpsMTII was prevalently detected in isolates from hospital-acquired
infections (69.6%; 16 isolates vs. 43.1%; 22 isolates; p = 0.0341; Table 1). Moreover, a
high prevalence of strains isolated from male patients harboring yfcV was found (Table 2,
p = 0.0193).

3.2. Biofilm-Forming Abilities

Biofilm formation by E. coli isolates was assessed using a crystal violet assay (Figure 2).
All the strains tested were able to form biofilms either at strong (17.6%, 13 isolates), moder-
ate (73.0%, 54 isolates), or weak biofilm-producing way (9.4%, 7 isolates, Figure 3a). Most
isolates from hospital-acquired infections were classified as moderate biofilm-producing
strains (69.6%, 16 isolates) and community-acquired infections (74.5%, 38 isolates). Hospital-
acquired infection isolates showed a higher ability to produce biofilms (OD 0.401 ± 0.045,
mean ± SD, Figure 3b) than community-acquired infection isolates (OD 0.366 ± 0.044);
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however, no statistically significant differences were found. No significant differences were
found in comparing biofilm production by strains coming from adults versus those isolated
from children (OD 0.378 ± 0.018 and 0.377 ± 0.014, respectively, Figure 3c). In addition, the
strains isolated from children were mainly strong biofilm-producing. Similarly, strains iso-
lated from males (OD 0.382 ± 0.030) showed slightly higher biofilm production than those
isolated from females (OD 0.375 ± 0.016). Male and female isolates produced moderated
biofilms (77.8%, 14/18 isolates; 71.4%, 40/56 isolates, respectively, Figure 3d).
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Figure 3. Distribution of biofilm formation among characteristics of the patients. Biofilm forma-
tion was determined by crystal violet assay for E. coli isolated from urinary tract infections (UTIs).
(a) Optical density (595 nm) among strong, moderate, and weak biofilm formation; (b) biofilm for-
mation among hospital (n = 23) and community-acquired infection (n = 51); (c) female (n = 56) and
males (n = 18); and (d) children (n = 45) and adults (n = 29). A higher optical density (OD) for
each box plot indicates higher adhesion and biofilm formation. The data are presented as box plots,
and the whiskers extend to the minimum and maximum values. A higher optical density (OD) for
each box plot indicates higher adhesion and biofilm formation. Only significant p-values are shown
(**** p < 0.0001), ns: non-statistical significance. Mann–Witney U test, two-tailed, was used to compare
optical density mean (OD) among characteristics of the patients.

Among antibiotic resistance, stronger biofilm-producing bacteria were more resistant
to ampicillin (100%), ampicillin-sulbactam (77%), and amoxicillin-clavulanic acid (80%)
antibiotics. Meanwhile, moderate and weak biofilm production presented a higher resis-
tance range to ampicillin (84% and 67%, respectively) and trimethoprim-sulfamethoxazole
(78% and 71%, respectively). Furthermore, all XDR isolates were moderately biofilm-
producing (Figure 4a). Strong and moderate biofilm-producing strains were mainly MDR
strains (69.2% and 61.1%, respectively). In general, weak biofilm-forming strains were
more susceptible (28.6%) to different antibiotics than strong (7.7%) and moderate (7.4%)
biofilm-producing strains (Figure 4b).

In addition, when we compared optical densities (ODs) among non-susceptible vs.
susceptible isolates (Figure 5), we found a higher OD mean among non-susceptible isolates
to ampicillin (0.381 vs. 0.2891, p = 0.0450, Figure 5a), ampicillin-sulbactam (0.4021 vs. 0.3397,
p = 0.0317, Figure 5b), piperacillin-tazobactam (0.4364 vs. 0.3651, p = 0.0117, Figure 4c),
cefazolin (0.3862 vs. 0.2813, p = 0.0395, Figure 5e), ceftazidime (0.4119 vs. 0.2911, p = 0.0302,
Figure 5g), and cefepime (0.4054 vs. 0.2813, p = 0.0420, Figure 5i). Moreover, there was a
significant difference between strong and moderate biofilm production and resistance to
ampicillin-sulbactam (p = 0.0072), cefazolin (p = 0.0163), norfloxacin (p = 0.0479), ceftriaxone
(p = 0.0424), and cefepime (p < 0.001). The highest percentage of strains producing a
strong biofilm was observed in phylogenetic group D (30.8%) versus the other phylogenetic
groups, even when more than half of weak biofilm-producing strains also belonged to
phylogroup D (57.1%, Table 3). Phylogroup B1 also showed a higher frequency in strong
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(7.7%) and moderate (14.8%) biofilm-producing bacteria compared with weak-producing
bacteria (0%) (Table 3).
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Table 3. Phylogroups and virulence genes profile distribution among strong, moderate, and weak
biofilm-producing E. coli isolates from urinary tract infections.

Virulence Genes and Phylogroups
Biofilm-Producing Abilities

Total
n = 74 (%)

Strong
n = 13 (%)

Moderate
n = 54 (%)

Weak
n = 7 (%)

Virulence gene fimH 65 (87.8) 11 (84.6) 47 (87.0) 7 (100)
papC 40 (54.1) 10 (76.9) 26 (48.1) 4 (57.1)
sfaS 10 (13.5) 2 (15.4) 7 (12.9) 1 (14.3)

afa/Dr 9 (12.2) 2 (15.4) 6 (11.1) 1 (14.3)
yfcV 21 (28.4) 5 (38.5) 14 (25.9) 2 (28.6)

agn43 53 (71.6) 9 (69.2) 39 (72.2) 5 (71.4)
vat 21 (28.4) 3 (23.1) 16 (29.6) 2 (28.6)
cnf1 3 (4.1) 1 (7.7) 1 (1.9) 1 (14.3)
hlyA 9 (12.2) 2 (15.4) 7 (12.9) 0 (0.0)
fyuA 59 (79.7) 9 (69.2) 44 (81.5) 6 (85.7)
chuA 49 (66.2) 9 (69.2) 34 (62.9) 6 (85.7)

kpsMTII 38 (51.4) 5 (35.5) 29 (53.7) 4 (57.1)

Virulence score 5.09 ± 1.58 5.23 ± 1.79 5.00 ± 1.57 5.57 ± 1.40

Phylogenetic
group

A 4 (5.4) 1 (7.7) 3 (5.6) 0 (0.0)
B1 9 (12.2) 1 (7.7) 8 (14.8) 0 (0.0)
B2 12 (16.2) 1 (7.7) 9 (16.7) 2 (28.6)
C 9 (12.2) 1 (7.7) 7 (12.9) 1 (14.3)
D 22 (1.4) 4 (30.8) 14 (25.7) 4 (57.1)
E 1 (1.4) 0 (0.0) 1 (1.9) 0 (0.0)
F 11 (14.9) 3 (23.1) 8 (14.8) 0 (0.0)

Clades 6 (8.2) 2 (15.4) 4 (7.4) 0 (0.0)

Non-significant p values were found among categories. Comparison among strong, moderate, and weak biofilms
was performed by a non-parametrical one-way ANOVA with Dunn´s multiple comparisons test.

Strong biofilm-producing strains presented a higher prevalence of the genes fimH
(84.6%, 11 isolates) and papC (76.9%, 10 strains; Table 3). Among moderate biofilm-forming
strains, fimH (87.0%, 47 isolates), fyuA (81.5%, 44 isolates), and agn43 (72.2%, 39 isolates)
were the most prevalent virulence factors. All weak biofilm-producing strains possessed
the fimH gene (100%, 7 isolates) and had a higher frequency of fyuA (85.7%, 6 isolates) and
agn43 (71.4%, 5 isolates) genes. The virulence genes papC (76.9%), yfcV (38.5%), and hlyA
(15.5%) were higher in moderate biofilm-producing strains than in weak biofilm-producing
strains. However, non-significant differences were found (Table 3). Furthermore, when
we compare the optical densities among strong, moderate, and weak biofilm-producing
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strains with virulence genes, positives versus negative, within a two-way ANOVA with
multiple comparisons, we find significant differences among the optical density (OD)
of the sfaS gene (OD mean, 0.5928 vs. 0.5108, strong vs. weak, respectively, p = 0.0042,
Supplemental Figure S1a). In addition, phylogroup B1 also showed higher levels of OD
compared with other groups (OD mean, 0.6428 vs. 0.5135, phylogroup B1 vs. others,
respectively, p = 0.0006, Supplemental Figure S1b).

Hemolysis and hemagglutination were used to confirm the production of the virulence
factors α-hemolysin, type 1 fimbriae (MSHA), and P fimbriae (MRHA). It was found that
67 strains (91%) were hemolytic, including alpha-hemolysis (53 strains/71.6%) and beta-
hemolysis (14 strains/18.9%), and a significant association was found between the presence
of hlyA and hemolysin production (Spearman rank, r = 0.2342, p = 0.0446). Hemolysis
was found more on moderate biofilm-producing strains (72.2%) versus strong (69.2%) and
weak biofilm-producing strains (71.4%, Table 4). Type 1 fimbriae were more prevalent in
strong biofilm-producing strains than in weak biofilm-producing strains (84.6% vs. 57.1%,
p = 0.0349), and P fimbriae were more frequently found among weak biofilm-producing
strains versus strong biofilm-producer strains (42.9% vs. 15.4%, Table 4). While the fimH
gene was detected in 87.8% of the investigated strains, only 74.3% exhibited MSHA. In
contrast, MRHA activity was mediated by P fimbriae, S, F1C, and Dr fimbriae. The MRHA
phenotype was observed in 25.7% of the strains (Table 4). Of the nineteen strains exhibiting
MRHA, nine harbored papC, four sfaS, and only one afa/Dr gene.

Table 4. Phenotypically expressed surface virulence factors and multidrug-resistant patterns among
strong, moderate, and weak biofilm-producing E. coli isolates from urinary tract infections.

Phenotypically Expressed
Virulence Factors

Biofilm-Producing Abilities

Total
n = 74 (%)

Strong
n =13 (%)

Moderate
n = 54 (%)

Weak
n = 7 (%) * p-Value

Type 1 fimbriae (MSHA) a 55 (74.3) 11 (84.6) 40 (74.1) 4 (57.1) 0.0349
P fimbriae (MRHA) b 19 (25.7) 2 (15.4) 14 (25.9) 3 (42.9)

α-Hemolysis 53 (71.6) 9 (69.2) 39 (72.2) 5 (71.4)
Curli fimbriae 48 (64.9) 8 (61.5) 37 (68.5) 3 (42.9) 0.0477

Cellulose 41 (55.4) 9 (69.2) 30 (55.5) 2 (25.7) 0.0253

* Only significant p values are shown (p < 0.05). a MSHA—mannose-sensitive hemagglutination; b MRHA—
mannose-resistant hemagglutination. Curli production as estimated by calcofluor binding.

The production of curli-, cellulose-, and cellulose-like extracellular materials was ana-
lyzed. Curliated bacteria bind the amyloid dye Congo red (CR), which indicates curli and
cellulose production [60]. Calcofluor white (CF) is a fluorochrome that binds to polysaccha-
rides with β-1,3 and β-1,4 linkages, such as cellulose, chitin, and succinoglycans [60,61]. In
the CR binding assay, 48/74 strains (64.9%) were Congo red positive. The ability to bind CF
was less frequent than CR because 41/74 strains (55.4%) were calcofluor-positive, indicating
that bacteria produced curli and cellulose (Table 4). Cellulose and curli production were
observed simultaneously. Curli fimbriae were more frequently found among moderate
biofilm-producing strains when we compared them to strong and weak biofilm-producing
strains (Table 4), and significant differences were found among moderate vs. weak produc-
ing strains (68.5% vs. 42.9%, respectively, p = 0.0477). Additionally, cellulose was higher in
strong (69.2%) and moderate (55.5%) biofilm-producing strains compared to weak (25.7%)
biofilm-producing strains (55.5% vs. 25.7%, p = 0.0253, Table 4).
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Figure 5. Distribution of biofilm formation among the different antibiotic resistance profiles.
(a) Ampicillin; (b) ampicillin-sulbactam; (c) piperacillin-tazobactam; (d) amoxicillin-clavulanic
acid; (e) cefazolin; (f) cefotaxime; (g) ceftazidime; (h) ceftriaxone; (i) cefepime; (j) amikacin;
(k) gentamicin; (l) tobramycin; (m) netilmicin; (n) trimethoprim-sulfamethoxazole; (o) nitrofurantoin;
(p) ciprofloxacin; (q) levofloxacin; (r) norfloxacin; (s) ertapenem; (t) imipenem. The data are presented
as box plots, and the whiskers extend to the minimum and maximum values. A higher optical density
(OD) for each box plot indicates higher adhesion and biofilm formation. Netilmicin susceptibility
was tested only on thirty-one samples. Mann–Witney U test, two-tailed, was used to compare optical
density mean (OD) among non-susceptible vs. susceptible strains to different antimicrobial agents.
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4. Discussion

In this study, the incidence of UTIs was higher in females than in males, as previously
observed [1,3,62–64]. Remarkably, the incidence was higher in females from 0 to 12 years,
suggesting that in this geographical area, children are more likely to develop UTIs than in
other age groups. Moreover, E. coli isolated from children was predominantly distributed
in phylogroup D (37.77%). This phylogroup comprises multidrug-resistant and highly
resistant isolates. Overall, rates of multidrug-resistant strains were higher in males than
females and were mainly acquired through the community (55.5%, 10/18 isolates). These
observations were like those of Tabasi et al., 2015 [62] and Jombo et al., 2011 [64].

Furthermore, the prevalence of the yfcV gene was higher in male infections. This gene
encodes the major subunit of a putative chaperone, usher fimbria, associated with UPEC
strains with a better ability to colonize the bladder and are considered highly pathogenic
strains [46]. In our study, isolates from male patients also had higher levels of antimicrobial
resistance to almost all antibiotics tested than female patients. This is in accordance with
the study of Gu et al., 2022 [65], where higher susceptibility rates were shown in female
infections caused by E. coli. This suggests that male infections are challenging to eradicate
and advises that local studies must focus on male gender infections to contain UTIs and
the spread of antibiotic resistance in UPEC.

The incidence of antimicrobial resistance among E. coli strains that cause UTIs is
increasing. In this study, most strains were resistant to ampicillin (84.7%) and trimethoprim-
sulfamethoxazole (75.7%). These results are similar to those of previous studies [29,31,63].
The increasing resistance of E. coli to trimethoprim-sulfamethoxazole can be explicated
by the frequent use of this antimicrobial agent, which is recommended as the first-line
antibiotic for empirical therapy of uncomplicated acute cystitis [66].

In our study, resistance to cephalosporin antibiotics ranged from 19.2% to 49.2%. Simi-
lar results were reported by Yilmaz et al. (2016) [67]. In addition, ceftazidime resistance
was significantly higher in hospital-acquired infections. Because of the high antimicrobial
resistance recorded in the present study, the choice of drugs for prophylaxis of UTIs, such
as cephalosporins, mainly in hospital-acquired infections, should be carefully considered.
Among fluoroquinolones such as levofloxacin (54.2%) and ciprofloxacin (44.6%), moderate
resistance was found. Thus, this might also be due to the abuse of fluoroquinolones on un-
complicated UTI infections, mainly in the community; however, we did not find differences
across the hospital and community, neither in ciprofloxacin (52.17% vs. 41.2%, hospital
and community, respectively) or levofloxacin (55% vs. 53%, hospital and community, re-
spectively). Precautions need to be taken against using these drugs due to the widespread
resistance to antibiotic classes on UPEC. Nitrofurantoin, netilmicin, and amikacin may be
better alternatives for treating urinary tract infections in this area. In the present study,
13.5% of the strains were nitrofurantoin resistant, which is concerning because this finding
showed increased nitrofurantoin resistance through UTIs. Furthermore, 4.05% (3/74 iso-
lates) of the strains were categorized as XDR isolates; remarkably, all the strains presented
a nitrofurantoin-resistant pattern. This is consistent with Khamari et al. (2021) [68], who re-
ported that resistance to nitrofurantoin indicates the underlying extensively drug-resistant
(XDR) phenotype in Enterobacteriaceae, which could complicate the treatment of UTIs.

Previous studies have shown that E. coli strains causing UTIs predominantly belong
to phylogroup B2 and, to a lesser extent, phylogroup D [53], and common commensal
strains belong to phylogroup A or B1 [45,69]. In a study by Iranpour et al. (2015) [69] and
Mirzahosseini et al. (2023) [70], approximately 25% of the E. coli isolates from UTIs belonged
to the new phylogroups E, F, and cryptic clades; however, they found that phylogroup F
had a prevalence of 2.9% of the cases. Another study developed by Ballén et al. (2021) [29]
found a prevalence of 6.9% in the phylogroup F and 1.3% in the unknown phylogroup. This
is in contrast to our study, where the F group was one of the most prevalent phylogroups
(14.9%). These differences in the prevalence of the phylogenetic groups reported in different
studies may be explained by differences in sampling location, health status, dietary and
host genetic factors, and host social conditions [68,69].
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Regarding biofilm formation, all the strains tested were able to form biofilms, which is
consistent with Ponnusamy et al., 2012 [18] and Dossouvi et al., 2023 [21], who reported
a 100% prevalence of biofilm formation in UPEC. Other studies have reported a preva-
lence of 78% [71], 80% [31,72], and 84.3% [73]. Most strains were able to form moderate
biofilms, which is consistent with previous work [21,29,30,73]. Several studies have shown
a lower frequency of moderate biofilm-forming strains and a higher prevalence of weak
biofilm-producing strains [18,73,74]. These differences may be due to methodological
differences, such as environmental conditions that may influence biofilm capacity and
experimental settings [75], differences in geographical areas, study times, or the source of
sample isolation [71–76].

Similar to previous work [77], strong and moderate biofilm-producing bacteria pre-
sented higher resistance to different antimicrobial agents, including ampicillin (100–83.7%),
trimethoprim/sulfamethoxazole (69.2–77.8%), ampicillin-sulbactam (76.9–61.1%), cefazolin
(60–53.2%), and ceftazidime (45.5–30.4%) compared to weak biofilm-producing bacteria.
Tabasi et al. (2015) [62] observed ampicillin resistance rates of 77.6%, while Atray et al.
(2015) [71] observed higher rates of resistance to cephalosporins (92.8–100%). In our study,
although resistance to various antibiotics was generally high, biofilm-forming organisms
were more MDR (69.2%) compared to weak biofilm-producing bacteria (28.6%). This is
similar to the results of the study by Katongole et al., 2020 [78].

In agreement with Neupane et al., 2016 [74], and Qian et al., 2022 [79], we observed a
significant increase in levels of resistance to cephalosporin antibiotics on strong biofilm-
producing strains, including cefazolin, ceftazidime, and cefepime, whereas moderate
biofilm-producing strains showed increased levels of resistance to ampicillin, ampicillin-
sulbactam, and piperacillin-tazobactam, suggesting that the biofilm formed by these
UPEC isolates provides the ability to survive when exposed to these antibiotics [3,80].
As hospital-acquired UTIs are caused by cephalosporin-resistant strains, it is crucial to
regulate antibiotic overuse to limit the spread of cephalosporin-resistant microorganisms
in hospital settings. Our findings suggest that strong biofilm-producing bacteria are as-
sociated with increased antibiotic resistance to beta-lactam antibiotics such as ampicillin
and cephalosporins.

The presence of virulence factors (genes) with the ability of UPEC to form biofilms
in vitro has been reported [27,28,30,35,69,73]; nevertheless, the quantitative correlation
between biofilm and virulence factors has yielded different results. In agreement with
previous studies [21,29,30,69,74,76,80–82], strong biofilm-producing strains presented a
higher prevalence of fimH and papC genes. Indeed, fimH, the gene coding for the α-D-
mannose-specific tip adhesin of type 1 fimbriae, was present in almost all the strains,
denoting their important role in adhesion and biofilm formation in UPEC. More than half of
the strains presented papC, which is a colonization factor mainly expressed in pyelonephritis
and has been previously correlated with strong biofilm formation [30]. In accordance with
previous studies, type 1 fimbriae expression was prevalent among strong and moderate
biofilm-producing strains [28,61,83], as well as curli fimbriae and cellulose. Type 1 pili
is considered to be an essential virulence determinant of cystitis-causing UPEC, and it is
also necessary for the intracellular aggregation of the bacteria into the IBC biofilm-like
mass in the initiation and maturation process [7,43,84]. Indeed, it has been found that
not-produced type 1 fimbriae by UPEC fail to form IBC in vivo, and UPEC presented
attenuated virulence [84]. Curli promotes adherence of UPEC to epithelial cells derived
from human bladder and kidneys [85], is an essential component of the biofilm matrix, and
enhances biofilm formation by facilitating initial cell-surface and cell–cell interactions in
E. coli [40,86]. In addition, Samet et al. [87] showed that most isolates expressing curli could
produce biofilms. In our study, curli and cellulose production were more frequent among
strong and moderate biofilm-producing strains isolated from hospital-acquired infections.
Indeed, we found important cellulose production and curli fimbriae among strong biofilm
production. Thus, these findings suggest a better ability of the strains to produce biofilm
in vitro and in vivo, as well as a better capacity to produce a lower urinary tract.
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There are non-significant differences between the prevalence of virulence genes tested
by PCR on strong versus weak biofilm-producing bacteria. Regardless, when we com-
pared optical densities of biofilm formation, there was a significant difference between
sfaS-positive versus sfaS-negative strains and phylogroup B1 versus other phylogroups
among high biofilm producers, suggesting their role in biofilm production. S fimbriae are
mannose-resistant adhesins that bind to glycoproteins of urothelial tissues in the bladder
and kidneys and have been commonly detected in strains that form strong-producing
biofilms in vitro [27,31,40]. Additionally, the association between biofilm formation and
several virulence genes has been reported as a variable since they have an enormous and
variable genetic repertoire [27,83,88–90]. Indeed, the variation in virulence genes of E. coli
is due to differences in the isolation of ExPEC strains in different geographical regions [76].
However, resistance to beta-lactam antimicrobials and cephalosporins is highly prevalent
among strains with better biofilm-forming abilities.

In this study, the strain collection is limited to a population from a specific geographic
region (Aguascalientes). Although the association between resistance to beta-lactamases
and biofilm formation was established, it may not reflect the actual situation of UPEC
strains within the population. Further studies involving larger clinical strains are required
to determine the influence of biofilm-forming ability and antimicrobial resistance patterns
on UPEC strains.

Our results suggest that a better ability to form biofilm is associated with type
1 fimbriae expression, curly, and cellulose. Other virulence genes that encode fimbriae
adhesins, such as fimH, papC, and sfaS seem to contribute to better biofilm formation.
Moreover, E. coli isolated from urinary tract infections that was strong biofilm-producing
presented higher resistance rates to the antimicrobials ampicillin, ampicillin-sulbactam,
cefazolin, ceftazidime, and cefepime.

The relationship between strong biofilm-producing strains and high resistance to
beta-lactam antimicrobials and cephalosporin in the third and fourth generations and
the high ability of UPEC strains to produce biofilm provided sensitive information. This
should be considered during UTI treatment. Biofilm production by E. coli may promote
colonization, increasing UTI rates. Such infections may be challenging to treat because they
are associated with multidrug resistance, especially UTIs isolated from males, which have
higher resistance rates to almost all antibiotics tested.
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(ANOVA) with a Tukey´s multiple comparisons post-hoc test; Table S1: Oligonucleotides and PCR
conditions used in this study; Table S2: Function of virulence markers for UPEC tested in this study.
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