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Abstract: Salmonella is the leading cause of food-borne zoonotic disease worldwide. Non-typhoidal
Salmonella serotypes are the primary etiological agents associated with salmonellosis in poultry.
Contaminated poultry eggs and meat products are the major sources of human Salmonella infection.
Horizontal and vertical transmission are the primary routes of infection in chickens. The principal
virulence genes linked to Salmonella pathogenesis in poultry are located in Salmonella pathogenicity
islands 1 and 2 (SPI-1 and SPI-2). Cell-mediated and humoral immune responses are involved in the
defense against Salmonella invasion in poultry. Vaccination of chickens and supplementation of feed
additives like prebiotics, probiotics, postbiotics, synbiotics, and bacteriophages are currently being
used to mitigate the Salmonella load in poultry. Despite the existence of various control measures,
there is still a need for a broad, safe, and well-defined strategy that can confer long-term protection
from Salmonella in poultry flocks. This review examines the current knowledge on the etiology,
transmission, cell wall structure, nomenclature, pathogenesis, immune response, and efficacy of
preventative approaches to Salmonella.
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1. Introduction

Salmonella is the leading cause of foodborne diseases worldwide that infects the gas-
trointestinal tract and causes diarrhea, nausea, and cramps in humans [1]. The Center for
Disease Control and Prevention (CDC) estimates that approximately 1.35 million infec-
tions and 420 deaths are reported annually in the United States. Salmonella enterica ser.
Enteritidis (S. Enteritidis), and Salmonella enterica ser. Typhimurium (S. Typhimurium),
belonging to the non-typhoidal Salmonella group (NTS), is responsible for the majority of
human salmonellosis. Globally, non-typhoidal Salmonella is responsible for approximately
93 million cases of gastroenteritis and 155,000 fatalities annually. The severity of human
salmonellosis varies depending on factors such as the specific strain causing the infection,
health conditions, and host age. It has been reported that the infective dose in a human
infant is reported to be 100 bacterial cells, and even fewer cells are required to cause an
infection in an immunocompromised individual [2–4].

Poultry serves as the main reservoir for various non-typhoidal Salmonella (NTS)
serotypes among food-producing animals. Epidemiologically significant NTS serotypes
include S. Typhimurium, S. Enteritidis, S. Heidelberg, and S. Newport. In North America
and Europe, S. Enteritidis dominates the egg-borne transmission of infection to humans,
whereas S. Typhimurium was the primary serovar associated with external egg contamina-
tion in Australia [5–7]. Between 1998 and 2008, poultry accounted for 17.9% of foodborne
illnesses in the United States, with Salmonella ser. Enteritidis and Typhimurium are re-
sponsible for 17.4% and 34% of poultry-related foodborne illnesses, respectively [8]. In
2016, a national outbreak of multidrug-resistant S. Heidelberg linked to chicken products
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produced by a single poultry company was reported in California and Washington, leading
to high hospitalization rates and indicating high virulence strains of Salmonella [9].

Society pays significant health costs and economic burdens caused by nontyphoidal
Salmonella associated with chickens, estimated at 2.79 billion annually. This concern is
growing as the global demand for ready-to-eat food products continues to rise [10]. Given
the emergence of multi-drug-resistant bacteria and the associated public health crisis,
alternatives to antibiotics are gaining more importance in the poultry sector, as antibiotic
residues are known to contaminate consumed meat [11]. Several preharvest and postharvest
intervention strategies have been developed to ensure the safety and hygiene of poultry
products. Preharvest interventions include farm-level management, including the use of
feed additives and biosecurity measures. Post-harvest methods include activities during
carcass slaughter and meat processing, including the implementation of Hazard Analysis
Critical Control Point (HACCP) plans [4].

Furthermore, with the FDA’s decision to abate the use of antibiotics in animal agricul-
ture and consumer demand for antibiotic-free chicken, alternative control strategies that
include vaccination programs are routinely followed by producers to combat pathogenic
bacteria. Ensuring the sustainable production of poultry products is critical to meeting
the future global demand for poultry products. However, annual Salmonella outbreaks
can significantly impact production efficiency and food safety. To eradicate pathogens like
Salmonella, which has multiple infectious serotypes, more powerful vaccines that confer
cross-protection against multiple serotypes, including emerging serotypes, and induce
long-term immunity are needed.

This review article focuses on the current understanding of Salmonella as a pathogen,
its pathogenesis, and control strategies against Salmonella in poultry.

2. Etiology and Transmission

Salmonella spp. is a Gram-negative, oxidase-negative, non-spore-forming bacillus
member of the Enterobacteriaceae family. Salmonella is a facultative anaerobic intracellular
bacillus with a cell length between 2–5 µm. They are non-fastidious, motile, and have
peritrichous flagella, except Salmonella enterica serovar Gallinarum and Pullorum. Most
Salmonella serovars, except S. Typhimurium, are aerogenic. Salmonella is capable of produc-
ing hydrogen sulfide and converting nitrates to nitrites. Most Salmonella typically grows at
temperatures ranging from 5–45 ◦C, with the ideal temperature being between 35–37 ◦C
and at the optimum pH range of 6.5 and 7.5. Some strains can even grow at a pH as low
as 3.7. Salmonella is sensitive to salt concentrations ranging from 0.5% to 5% and survives
in environments with higher water activity (aw) ranging from 0.96 to 0.99. They can also
survive in low-moisture food products for a long duration [12]. The severity of Salmonella
infection varies according to many factors, including host age, host immunity, the presence
of coinfections, environmental stress, managerial characteristics, and infective dose. Older
birds, for instance, tend to be less susceptible to Salmonellosis even with concentrations of
106 CFU/mL of S. Typhimurium [13].

Salmonella is distributed worldwide and is endemic to areas where animal husbandry
is practiced. Serovars also vary in their distribution across the world, with ST and SE being
prevalent everywhere. Some serovars are host-specific, like Salmonella ser. Abortusovis in
sheep, Salmonella ser. Choleraesuis in pigs, and Salmonella ser. Dublin in cattle. Typhoidal
Salmonella serovars like S. Typhi and S. Paratyphi are human pathogens transmitted via
the fecal-oral route. In contrast, NTS is zoonotic and can infect a wide range of animal
reservoirs, including birds, reptiles, dogs, cats, and rodents [14].

The primary reservoir for Salmonella in animals, particularly poultry, is the primary
source of food-borne human salmonellosis. Transmission occurs mainly through the
consumption of contaminated egg and meat products [12]. During the production cycle,
poultry can become infected with Salmonella through various routes, including contact with
carrier animals like rodents, cats, and insects. Contaminated poultry feed, litter, water, and
aerosol transmission also contribute to the transmission of Salmonella [15].
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Salmonella contamination of eggs can occur via two routes, namely horizontal and
vertical, particularly by the serovar S. Enteritidis. In vertical or transovarial transmission,
the infection occurs directly in the yolk, vitelline membrane, and albumen before the egg
is laid. The infection originates in reproductive organs such as the ovary and oviduct
with S. Enteritidis. As a result, bacteria enter the egg even before the eggshell is formed
in the oviduct [16]. In horizontal or fecal-oral transmission, eggs become contaminated
by eggshell penetration from the colonized gastrointestinal tract (GIT). Additionally, con-
taminated feces transfer the pathogen to eggs during or after oviposition. Feces serve as
nutrient reservoirs for Salmonella’s growth, contaminating the environment and potentially
infecting the rest of the flock in the same enclosure. The bacterial penetration of the egg is
more rapid during the first few minutes post-oviposition, as some cuticles are immature
and few pores are open [17]. Outer shell contamination by Salmonella is evident in eggs
collected from contaminated nests and hatchery environments. Some studies reported that
there is no direct relationship between eggshell thickness and Salmonella Typhimurium
penetration, but eggs with high specific gravity shells tend to offer more resistance against
S. Enteritidis penetration [16].

Insects can act as vectors for Salmonella on poultry farms. Cockroaches, for example,
have the potential to introduce foodborne pathogens like Salmonella into poultry production
facilities due to their ability to cross-contaminate and transmit the pathogen to uninfected
individuals within their group. Studies have indicated that cockroaches infected with
S. Typhimurium can transfer the bacteria to the surface of the table egg [18]. Flies captured
in poultry establishments have been shown to harbor Salmonella. The poultry mite (Der-
manyssus gallinae) has been implicated as a biological vector of Salmonella Enteritidis and
has been reported to carry the bacteria within poultry premises. It is suggested that the
primary source of infection could be oral ingestion of crushed contaminated mites by the
chicks, as well as the mite’s blood meal [19]. Alphitobius diaperinus, also known as the litter
beetle, has been found to transmit Salmonella to poultry in an experimental infection [20].
According to Bastiaan and Aize, rodents such as mice can act as carriers of Salmonella in
layer flocks [21]. Feral mice present in poultry farms may serve as a rich source of multiple
phenotypes and genotypes of S. Enteritidis [21]. In African countries, S. Kentucky and
S. Enteritidis were the major serovars isolated from lizards and rodents inhabiting the
poultry houses. It is hypothesized that the feces of lizards and rodents could contaminate
the feed and litter, posing a biosecurity threat [22].

Salmonella can colonize the intestines of wild birds, turning them into asymptomatic
reservoirs. Hughes et al. reported the isolation of different Salmonella serovars from wild
birds, mainly passerine birds, in northern England [23]. S. Typhimurium strain DT160
caused significant mortality in wild birds and gastrointestinal illness in humans in New
Zealand in 2000, indicating a zoonotic risk [24]. Wild birds like one buff-necked ibis, red-
legged seriema, and eared dove captured near poultry facilities had Salmonella infection.
Moreover, S. Typhimurium dominated the serotype isolated from wild pigeons [25]. It
is hypothesized these birds play a vital role in the transmission of Salmonella serotypes
to poultry and humans during migration, seasonal movements, and feeding [26]. Olga
et al. found that 32.3% of the bacterial pathogens identified in the wild bird population in a
national park in Ukraine tested positive for S. Enteritidis. These birds migrate to various
parts of the world, contributing to the distribution of the pathogen to locations far from
its source [27]. Furthermore, a shift in the poultry Salmonella serotypes linked with the
spread of clones has been identified as a contributing factor to the increase in human cases
of S. Infantis between 2011 and 2013 across Europe [28]. Likewise, S. Heidelberg, with its
multiple clones in the US, is one of the top poultry and human serotypes associated with
multistate outbreaks [9]. Figure 1 summarizes the overview of the transmission routes and
vectors of Salmonella in poultry.
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3. Cell Wall and Nomenclature

The cell wall of Salmonella consists of lipids, lipopolysaccharides (LPS), proteins,
and lipoproteins [29]. The complex polysaccharide moiety with the Lipid A portion
serves as an endotoxin and is responsible for bacterial virulence [29]. The LPS complex
comprises three regions: (1) an outer O polysaccharide-specific side chain, (2) a middle
core portion, and (3) an inner lipid A. The somatic O antigen is the central component
of the endotoxin, composed of various monosaccharides and polysaccharides [29]. The
Somatic O antigen is the polysaccharide portion on the bacterial surface that contains
multiple [5–8] monosaccharides. The O-specific side chains determine the immunological
specificities of the respective O-antigens [30]. Furthermore, all Salmonella O antigens
share five common sugars: heptose, ketodeoxyoctonic acid, D-glucose, D-galactose, and
D-glucosamine. It has been hypothesized that all-specific Salmonella polysaccharides have
a common core composed of these sugars, with attached chains made of sugars unique
to the specific serotype [31]. In summary, variations in the LPS structure exist in the O-
polysaccharide chain, and these variations are responsible for the antigenic factors that
confer serotype specificity.

Genotypic analysis indicated that Salmonella has about 60 somatic antigens using gene
transfer [32]. Based on these antigens and specific antisera, Salmonella can be grouped
into different serotypes. In brief, Salmonella has three cell surface antigens: an O antigen
(cell-wall somatic), an H antigen (flagellar), and a K antigen (capsular). The flagellar antigen
is a thermolabile protein, while the somatic O antigen is thermostable [4]. Some serovars
of Salmonella also have a K antigen, which is a heat-sensitive carbohydrate. Among the
Enterobacteriaceae, Salmonella is unique for having two distinct H antigens: phase 1 (specific)
and phase 2 (non-specific) flagella antigens [31].

Salmonella was initially isolated in 1885 by Theobald Smith and Daniel Elmer Salmon
from pigs infected with classical swine fever [33]. Currently, the nomenclature system
recommended by the World Health Organization (WHO), namely supplement 2001 (no. 45)
to the Kauffmann-White scheme, is followed for research on Salmonella. According to this

Biorender.com
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terminology, the genus Salmonella includes two species, Salmonella enterica and Salmonella
bongori, that belong to it based on the differences in 16-sRNA sequence analysis. Historically,
the two species are further subdivided into six subspecies based on biochemical and
phylogenetic properties and denoted by Roman numerals: enterica (I), salamae (II), arizonae
(IIIa), diarizonae (IIIb), houtenae (IV), and indica (VI) [32,34–36]. Among the subspecies of
Salmonella, S. enterica subsp. enterica is the one most commonly associated with human and
animal infections [32].

However, the serovars within the subspecies are named according to the Kauffman
and White classification system, which is based on the immunoreactivity of the major
Salmonella cell surface antigens. Each Salmonella serovar possesses a unique antigenic
combination, and a serovar (or serotype) name is assigned to each individual combination
of the O:H1:H2 antigenic formula [37]. The Kauffman-White Scheme was first published
in 1934 with 44 serovars. The latest one, released in 2007, has over 2500 serovars [38].
According to this classification system, the Salmonella serovars are formed by different
combinations of 46 O antigens and 114 H antigens.

S. enterica serovars are the etiological agents of typhoidal and non-typhoidal Salmonella
infection, with the former being host-restricted to humans and the latter zoonotic with a
broad homeothermic host range [34]. S. enterica comprises over 2400 serotypes. Among
the 100 serovars of epidemiological importance in the S. enterica species, S. Enteritidis and
S. Typhimurium are the most prevalent serovars [39].

Salmonella serotypes are characterized and identified using various methods, including
phage typing, PCR ribotyping, pulsed-field gel electrophoresis analysis, multi-locus DNA
sequencing, and antimicrobial resistance patterns [40–45]. Recently, alternative molecular
methods like the Check and Trace Salmonella assay (a microarray method using molecular
markers) and whole-genome sequencing (WGS)-based serotype prediction tools have been
used to characterize Salmonella isolates [46,47]. Compared to traditional serotyping, these
methods are claimed to be easy, requiring only a short turn-around time. Traditional
serotyping based on phenotypes can be challenging due to the complexity of typing sera,
antigen preparation, and antisera required for testing [23,48].

4. Pathogenesis

Salmonella pathogenesis can be divided into several stages, including adhesion and
invasion of gut epithelial cells, survival, multiplication within the host cells, and extraintesti-
nal spread. Salmonella, being an enteric pathogen, reaches the intestine via oral ingestion
(horizontal transmission) from contaminated environments, feed, and water. Even a very
low infective dose of Salmonella Enteritidis, as low as 1–5 bacteria cells, can lead to infection
in day-old chicks. The incubation period for Salmonella is usually 7 to 14 days [4]. The
bacterium’s ability to withstand a pH of 3.7 in the stomach helps the bacteria pass through
the acidic stomach environment [4].

Upon reaching the small intestine, Salmonella invades and adheres to the intestinal
epithelial cells using fimbrial adhesins. Salmonella’s entry into the intestinal mucosa is
facilitated mainly through M cells located over the Peyer’s patches (mucosal-associated
lymphoid tissues). Other routes include internalization by dendritic cells and uptake
by enterocytes mediated by effector proteins associated with virulence genes in SPI-1-
TTSS [49,50].

M cells, specialized antigen sampling cells of the intestinal epithelium, play a critical
role in the uptake and active transportation (transcytosis) of Salmonella to the underlying
lymphoid follicles. This uptake of bacterial antigen by M-cells is vital in the develop-
ment of mucosal and systemic immune responses, as Salmonella antigens are delivered to
mononuclear phagocytes like dendritic cells (DCs) and macrophages [51].

Macrophages can internalize Salmonella but are unable to kill them as the bacteria
can inhibit the fusion of phagosomes with secondary lysosomes, the mechanism used by
macrophages to destroy intracellular pathogens. This enhances the intracellular survivabil-
ity of the bacteria [52]. Salmonella proliferates inside the macrophages within a structure
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called the Salmonella-containing vacuole (SCV) and eventually translocates widely to the
draining mesenteric lymph nodes, leading to bacteremia and invasion of systemic organs
such as the liver, spleen, ovary, and gallbladder [52].

Both young and adult birds are infected by the invasive S. Enteritidis. Young birds
tend to develop a systemic disease with high mortality rates, whereas adult birds can
remain asymptomatic carriers post-colonization by the bacterial pathogen. The infection
dose plays a critical role in developing clinical signs, with clinical salmonellosis being more
likely to develop in young birds infected with high doses of S. Enteritidis [53].

Typhoid fever is caused by the bloodstream dissemination of S. enterica serotype Ty-
phi [54]. Non-invasive serotypes of NTS are confined to the gastrointestinal tract, where
they induce significant inflammation, including focal and diffuse mononuclear cell infiltra-
tion, necrosis of epithelial cells, edema, and eventually enterocolitis [55]. In brief, Salmonella
has orchestrated mechanisms to co-evolve with their hosts by altering cellular processes
that favor bacterial survival and intracellular proliferation.

Salmonella pathogenic factors are controlled by virulence genes and plasmids, which
are located within Salmonella pathogenicity islands (SPIs). SPIs are a group of genes located
in specific areas of the bacterial chromosomes that encompass multiple virulence factors,
including invasins, adhesins, and toxins. Salmonella contains a total of twenty-three SPIs,
with SPI-1 and SPI-2 being the two critical ones. Both of these SPIs encode a molecular
apparatus called the type III secretion system (TTSS) or molecular syringe. This TTSS is
responsible for injecting effector proteins produced by Salmonella into the host cell, thereby
establishing the intracellular survival and propagation of Salmonella inside the host [55].

Salmonella has two types of type III secretion systems, T3SS-1 and T3SS-2, found
in SPI-1 and SPI-2, respectively. Briefly, T3SS-1 is responsible for transferring effector
proteins needed for bacterial invasion, SCV (Salmonella containing vacuoles) biogenesis,
and inflammation. On the other hand, T3SS-2 facilitates the transport of effector proteins
that favor SCV maturation, SIF (Salmonella-induced filaments) biogenesis, intracellular
survival of the pathogen, and its movement inside Salmonella-containing vacuoles [56].

The effectors of SPI2-T3SS involved in SCV maturation and SIF biogenesis are SifA,
SseJ, SopD2, PipB2, SseF, SseG, SpvB, and SteA. These effectors are essential for convert-
ing early SCV (endosomes) to late SCV, where bacterial replication occurs. Salmonella-
containing vacuoles (SCVs) are specialized structures expressed by TTSS on the SPI-2 used
by the bacteria to reside inside epithelial cells and macrophages to escape from killing by
macrophages through the inhibition of lysosomal fusion [49].

Salmonella-induced filaments (SIFs) are specialized endosomal tubule projections that
extend from the SCV. They are characterized by lysosomal glycoproteins and endocytic
markers such as Rab4, Rab9, Rab11, and Rab5, among others. These SIFs inside the host cell
cytoplasm form a complex replicative niche. The exact role of SIFs in Salmonella infection is
still unknown [57]. It has been reported that the SifA-SKIP-Rab9 complex decreased M6PR
(late endosomal/lysosomal markers) recruitment to the SCV membrane and reduced the
movement of lysosomal enzymes to the SCV. This reduction in the movement of lysosome
enzymes, expanding the SCV population, helps protect intracellular Salmonella from host
defense mechanisms [58].

Further, studies have reported that Salmonella Typhimurium infection causes entero-
cytes to become M-cells, thereby exacerbating inflammation and the immune response
associated with enhanced translocation of bacteria across the submucosa. This differen-
tiation of the primed intestinal cells into M cells promotes Salmonella colonization and
host invasion. The mechanism is controlled by the type III effector protein SopB via the
Wnt/β-catenin signaling pathway [59].

A previous study reported by Yakhya et al. found that the deletion of SPI1 led to a
decreased colonization of Salmonella Typhimurium in the cecum and spleen of chickens.
They also reported that the deletion of SPI2-T3SS did not significantly affect the cecal
colonization by S. Typhimurium. However, the SPI2 mutation reduced the ability of
S. Typhimurium’s ability to invade the spleen in one-week-old chicks [60]. In addition, the
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Michael et al. study revealed that the disruption of spaS, an essential component of the SPI-1
T3SS, had little influence on cecal colonization in day-old chicks. In contrast, the mutant
spaS strain was shown to reduce cecal colonization and decrease liver invasion during an
experimental S. Typhimurium infection in one-week-old birds [61]. Moreover, the same
study illustrates that the deletion of another gene, ssaU, that encodes major components of
SPI-2 T3SS did not affect bacterial colonization of the intestine but exhibited a significant
reduction in S. Typhimurium dissemination to the liver throughout the study [61]. A recent
study with the S. Typhimurium challenge model showed that the deletion of SPI-1 and
SPI-2 genes had a negative impact on the mutant strain’s ability to colonize and cause
systemic lesions in the cecum and liver in one-day-old chickens [62].

Salmonella spp. has the ability to form biofilms at room temperature on surfaces in
poultry environments and food processing plants. These biofilm cells are highly resistant to
antimicrobials and contribute to the increased virulence of the bacteria, thereby establishing
a chronic infection. The ability of Salmonella to survive in biofilm poses challenges for
disinfection procedures in poultry environments [63]. Figure 2 summarizes Salmonella
pathogenesis.
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5. Immune Response to Salmonella

The interaction between humoral and cell-mediated immune systems plays a critical
role in clearing Salmonella infection in poultry. The complex immune response against
Salmonella depends on multiple factors, including host species, host age, gut microbiota
composition, bacterial load, and Salmonella serotype associated with the infection [64,65].

5.1. Innate Immune System

The innate and adaptive immune components are the two main classifications of the
avian immune system. The innate immune system serves as the first line of defense against
pathogens, and it has several key components, including (1) chemical and physical barriers
such as skin, mucosal epithelia, mucus, and antimicrobial molecules; (2) blood proteins
such as complement, lectins, and agglutinins; (3) phagocytic effector cells (macrophages,
neutrophils, monocytes), dendritic cells, heterophils, and natural killer cells; (4) cytokines;
(5) cellular receptors (pathogen recognition receptors) such as Toll-like receptors, NOD-
like receptors, and RIG-like receptors; (6) antimicrobial peptides such as defensins and
cathelicidins [66].

Biorender.com
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The avian immune organs can be divided into bone marrow, bursa of Fabricius and
thymus, and peripheral lymphoid organs such as the spleen and cecal tonsils [67,68].
MALT (mucosa-associated lymphoid tissue) comprises components of the immune system
linked to the gastrointestinal and bronchial mucosa, providing the first line of protection
against pathogens that enter the body through these mucosal surfaces. GALT, a major
component of MALT, contains an isolated or group of lymphoid follicles disseminated in
the lamina propria of the gastrointestinal tract, such as the bursa of Fabricius, cecal tonsils
(CT), Meckel’s diverticulum, Peyer’s patches (PP), and intraepithelial lymphocytes. GALT
lymphoid structures are the major secondary lymphoid organs since chickens lack other
peripheral encapsulated lymph nodes [69,70].

Pathogen-associated molecular patterns (PAMPs) are microbial molecular structures
that stimulate the innate and eventually adaptive immune systems. Some examples of
PAMPs include nucleic acids such as single-stranded RNA (ssRNA) and double-stranded
RNA (dsRNA); proteins such as flagellin; cell wall lipids such as lipopolysaccharide (LPS)
and lipoteichoic acids; and carbohydrates like mannans found in fungi [66]. Cellular re-
ceptors of the innate immune system that recognize PAMPs in pathogens are known as
pathogen recognition receptors (PRRs). PRRs are present in various immune cells, like
phagocytes, dendritic cells, heterophils, and barrier epithelial cells. Toll-like receptors,
NOD-like receptors, and RIG-like receptors are examples of PRRs. Studies have iden-
tified 10 Toll-like receptors in chickens [71]. The binding of PAMP to the specific TLRs
results in the production of reactive nitrogen and oxygen intermediates, cytokines, and
co-stimulatory molecules, initiating the adaptive immune response [72]. The outer mem-
brane lipopolysaccharide (LPS) of Gram-negative bacteria is the ligand for TLR4, while
TLR5 recognizes bacterial flagellin [66].

Okamura et al. reported that when birds were vaccinated with recombinant Salmonella
flagellin (rFliC) and challenged with Salmonella Enteritidis, there was a significant reduction
in bacterial load in the liver and cecum [73]. A transcriptome analysis study on the
cecal mucosal immune system of layer chicks challenged with Salmonella Typhimurium
demonstrated upregulation of TLR15, TLR1A, TLR2B, and TLR7 pathways on days 3, 5,
and 7 post-infections with S. Typhimurium [74]. There was a measurable variation in
TLR expression in multiple regions of the intestinal tract in 2-day-old broiler birds at 24 h
post-challenge with S. Enteritidis. The infection upregulated the expression of TLR 1LA
from the ceca to the ileum, TLR2A from the duodenum to the ceca, and TLR 15, which is
unique to avians. However, there was a three-fold downregulation in the expression of
TLR 5 compared to uninfected birds [75]. These findings emphasize the critical role of TLRs
in the innate immune response of avians against Salmonella.

It has been reported that heterophils are integral cells of the avian innate immune sys-
tem. They are granulocytic white blood cells that are equivalent to mammalian neutrophils
and act as the first line of defense against pathogens in the avian immune system [76].
The functions of heterophils include phagocytosis of both opsonized and non-opsonized
pathogens like Salmonella, degranulation of granular content, and the initiation of oxidative
burst (ROS) [76]. Ferro et al. demonstrated upregulation of proinflammatory cytokines IL-6,
IL-1, and IL-8 in heterophils of Salmonella Enteritidis-resistant one-day-old chicks compared
to infected chicks [77]. Toll-like receptors, including TLR1, TLR 2, TLR 3, TLR 4, TLR 5, TLR
6, TLR 7, and TLR 10 mRNA, are associated with antipathogenic defense pathways in avian
heterophils [78], and upregulation of TLR4, TLR15, and TLR 21 in heterophils following
Salmonella Enteritidis stimulation [79]. A transcriptome analysis study has shown that the
heterophil/ lymphocyte (H/L) ratio is a critical factor that determines the robustness of
the immune response in birds [80]. A recent study reported that the number of goblet
cells, IL-1, IL-8, and IFN-γ ileal expressions were all inversely linked with the H/L ratio,
suggesting that birds with low H/L ratios had improved intestinal immunity and barrier
functions [81]. In conclusion, these findings indicate the critical role of heterophils in de-
fense against Salmonella and facilitate its clearance. However, further research is needed to
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determine whether the H/L ratio could serve as a biomarker to identify chickens resistant
to Salmonella.

5.2. Adaptive Immunity
5.2.1. CD4+ T-Cells, CD8+ T-Cells

Adaptive immunity plays a critical role in defense against intracellular pathogens like
Salmonella. In brief, T cells are key immune cells in the cell-mediated immune response.
Helper T-cells (CD4+ T-cells), cytotoxic/killer T-cells (CD8+ T-cells), and regulatory T-cells
(Tregs) are functionally distinct populations of T lymphocytes [66]. CD4+ T cells orchestrate
cytokine production and initiate the immune response by activating other immune cells.
Their release of IL-2 and IFNγ by CD4 T cells stimulates NK cells, macrophages, and
CD8-T cells and aids B cell differentiation into plasma cells. CD8+ T cells, also known as
killer/cytotoxic T cells, cause the lysis or apoptotic cell death of intracellular pathogens [66].

Withanage et al. reported that a Th1-mediated decrease in the bacterial load was
correlated with an upregulation in the number of CD4+ and CD8+ T cells in the spleen
and liver of one-week-old Rhode Island Red chickens infected with S. Typhimurium [82].
Infection with Salmonella Enteritidis in laying hens has been shown to increase the numbers
of both CD4+ and CD8+ T cells along with macrophages in the ovaries and oviduct around
7–14 days post-inoculation, which was followed by peak upregulation in B cells. The
reduction in the bacterial recovery rate from the ovary and oviduct around the peak
lymphocyte period indicated the involvement of cell-mediated immunity [83].

Moreover, Saenz et al. recently reported that an increased CD4+/CD8+ ratio in vacci-
nated birds challenged with three different Salmonella serovars was linked to a reduction
in cecal bacterial load [84]. At one week post-Salmonella Enteritidis inoculation, CD4+
and CD8+ T cells significantly increased in the intestines of vaccinated birds compared
to unvaccinated and non-challenged birds [85]. In addition, another study reported an
increase in intraepithelial cytotoxic CD8+ T cells in SE-infected birds during multiple time
points during the study. However, the number of splenic cytotoxic CD8+ T-cells and splenic
helper CD4+ T-cells was comparable between the infected and uninfected birds across the
course of infection. Thus, prevention of systemic clearance of pathogens from the spleen
alone may be insufficient [86]. Research has shown that at seven days post-infection with
SE, the CD11+ MRC1LB+ macrophage level increased in the spleen, where the bacterial
load was the highest [86]. The results are supported by a transgenic chicken study that
showed increased MHC-II expression levels in MRC1LB+ macrophages. This altogether
suggests the importance of increased levels of macrophages and CD4+ and CD8+ immune
cells in clearing Salmonella infection in chickens [87].

5.2.2. Regulatory T-Cells

Regulatory T cells, or T-regs, are a subset of Th cells. Chicken T-regs (CD4+ CD25+)
develop in the thymus and serve to maintain tolerance and suppress the immune response
by producing the anti-inflammatory cytokine IL-10 [66]. IL-10 functions by inhibiting
the production of IL-2 by effector T cells, which in turn suppresses the development of
an IFNγ-driven proinflammatory response against pathogens. A study with Salmonella-
challenged broiler chickens reported a significant increase in the number of T-regs and
IL-10 mRNA expression throughout the study [88]. They also found that the T-regs from
infected birds suppressed T cell proliferation on days 7 and 14 post-inoculation. Moreover,
Tregs from uninfected control birds did not suppress T cell proliferation [88]. In conclusion,
an increase in the Treg percentage was associated with persistent S. Enteritidis infection in
the cecal tonsils of broiler birds [88]. Persistent S. Enteritidis and S. Heidelberg infections
were reported in chickens by the induction of CD4+CD25+ cells and by the variation in
IL-10 mRNA transcription, resulting in an asymptomatic carrier state in birds 18 days after
infection [89]. In vaccinated birds post-challenge with S. Enteritidis, there was a decrease
in the cellular immune response, explained by the significantly higher levels of IL-10 at
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the same time point [90]. Overall, these findings indicate that Tregs have an impact on
Salmonella infection in chickens.

5.2.3. Cytokines

The cells can be classified into Th1 and Th2 cells based on the types of cytokines
they produce. Th1 cells promote the proinflammatory cell-mediated immune response
against intracellular pathogens like Salmonella by producing interferon-gamma (IFNγ),
IL-12, and tumor necrosis factor (TNF). Th2 cytokines, mainly IL-10, are anti-inflammatory,
suppressing the Th1 response, and are associated with immune resistance to Salmonella and
Salmonella carrier states in chickens [91].

In brief, exposure of ligands to PRRs on antigen-presenting effector cells like macrophages,
dendritic cells, and B-cells causes the activation of APC, which in turn activates the naïve
T-cells. The activated T-cells differentiate into various subsets of T-helper cells [66]. In addition,
the production of IL-12 by activated macrophages, known as classical activation, induces the
production of IFNγ by T cells. The production of IFNγ further induces the differentiation of
T cells into Th1-type cells, marking the initiation of a cell-mediated immune response [66].
Earlier studies have shown that splenic IFNγ mRNA expression was higher in day-old chicks
exposed to Salmonella [92]. The clearance of Salmonella enterica serovar Typhimurium from
the spleen is associated with an increase in T-cell proliferation and IFNγ expression [93].
Another pro-inflammatory cytokine, IL-1β, was related to an acute immune response against
Salmonella in young chicks [94]. A study demonstrated that IL-1β mRNA expression was
increased in the ilea and cecal tonsils of S. Typhimurium-inoculated birds [92]. Furthermore, a
transcriptome analysis study on the cecal mucosal immune system of layer chicks challenged
with S. Typhimurium found a steady upregulation in the differentially expressed genes where
IL-6 played a key role [74]. A study on the effects of killed S. Enteritidis vaccination in chickens
showed increased IFNγ and IL-2 production by spleenocytes on antigen recall responses
post-vaccination [95]. In birds immunized with a killed chitosan nanoparticle vaccine, the
mRNA expression of TNF-α in cecal tonsils increased 0.5-fold when birds were inoculated
with Salmonella. They also reported an increase in the expression of IL-17 in the cecal tonsils
of immunized-challenged birds [96]. However, to date, no studies have reported the specific
function of Th-17 cells in the defense against Salmonella in poultry.

Chausse et al. reported that genes linked to IFN alpha/beta were inhibited in birds re-
sistant to Salmonella. In addition, they found that both carrier-state-resistant and susceptible
birds had decreased IFNγ gene expression, suggesting suppression of the Th1 response [91].
Salmonella has developed a “unique survival strategy” for long-term colonization of the
chicken intestine, resulting in persistent Salmonella infection and the development of a cecal
carrier state. It was suggested that carrier status could be associated with a Th2 response, as
indicated by the upregulation of cytokines like IL-4, IL-5, and IL-13 mRNA expression [91].

5.2.4. B-Cells and Immunoglobulins

B cells play a crucial role in the humoral immune response by producing antibodies.
These B cells differentiate into antibody-secreting plasma cells, which produce various Ig
isotypes depending on the cytokine present. For instance, IgA serves as the first line of
defense against mucosal infections in MALT and is the most prevalent antibody on mucosal
surfaces [66]. The exact role of antibodies in controlling Salmonella remains unclear [97].
However, recent studies have identified that humoral immunity is also important in that
the enteric pathogen decreases the production of serum IgG by B cells as a mechanism to
escape from the humoral immune response. Manne et al. demonstrated that Salmonella
uses the protein SiiE to specifically decrease the number of IgG-producing plasma cells in
bone marrow, which in turn reduces serum IgG titer [98]. In addition, they also observed
that the SiiE-depleted strain of Salmonella had increased serum anti-Salmonella IgG [98].
There have been reports of a steady increase in the antigen-specific serum IgG and IgM
antibodies in birds inoculated with Salmonella Typhimurium [99]. In a study on chickens
looking at the impact of chemically induced B cell depletion on immunological response,
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it was found that the birds with B cell deficiency had higher rates of intestinal Salmonella
Enteritidis shedding [100]. Other studies claim that the clearance of Salmonella enterica
serovar Typhimurium infection in birds is independent of the humoral immune response.
They showed that B-cell-depleted birds had the same response as control birds to clearing
the Salmonella infection [101]. Withanage et al. reported that intravenous inoculation of
SE in layer birds led to peak production of IgG, IgM, and IgA antibodies around 14 days
post-inoculation, correlating with the decrease in Salmonella recovery rates during the same
period [94]. However, further research on the role of the humoral immune response in the
chicken immune system is needed to get a clear understanding of the efficiency of B-cell
and Ig repertoires in controlling Salmonella infection.

6. Salmonella Control Strategies in Poultry
6.1. Biosecurity

Implementing good biosecurity measures plays a key role in combating the transmis-
sion of Salmonella and improving food safety [102]. Biosecurity controls include entry-level
and site cleanliness, immunization, boot dips, and the hand hygiene of employees. In
addition, better rodent and fly control, red mite control, and disinfection in between flocks
are recommended to reduce the incidence of Salmonella and to halt the disease cycle in
farms [103]. To reduce the prevalence of D. gallinae, a biological vector of Salmonella,
appropriate biosecurity measures should be used [104].

Proper litter management has been associated with a decreased risk of Salmonella
detection in poultry houses. Moreover, higher Salmonella contamination was linked to the
use of fresh wood shavings than older litter [105]. Hence, proper recycling of litter using
methods like composting is crucial in reducing the Salmonella count in poultry litter [106].
Additionally, the use of proper disinfectants is vital in limiting the introduction and dissem-
ination of disease in birds [107]. Furthermore, the seroprevalence of Salmonella increased
during the summer compared to the winter season [108]. Hence, strict biosecurity measures
are required to combat the seasonal prevalence of Salmonella among poultry flocks.

6.2. Antibiotics

Antibiotics have been used in poultry feed since the 1940s, mainly due to their ben-
efits on birds’ feed efficiency, enhanced growth performance, and inhibition of enteric
pathogens [109]. The list of antibiotics used as feed additives to combat enteric pathogens
includes small quantities of penicillin, tetracycline, and chloramphenicol [110]. However,
the subtherapeutic use of antibiotics in poultry feed is being reconsidered because of the
growing concern about antibiotic resistance in the human food chain [111]. Resistant
Salmonella serotypes have been reported against antibiotics such as quinolones, chloram-
phenicol, and cephalosporins worldwide [112]. Moreover, control strategies like probiotics
are given importance as a viable substitute for antibiotics in light of the European Union’s
(EU) ban on their usage and the US’s restricted use of them in the production of chickens.
Additionally, the use of antibiotics is associated with the destruction of beneficial gut bacte-
ria that help fight enteric pathogens [113]. Hence, alternatives to antibiotics like probiotics,
prebiotics, synbiotics, postbiotics, etc., are given more importance in the post-antibiotic era.

6.3. Prebiotics

Prebiotics and probiotics play important roles in promoting gut health and supporting
the balance of beneficial intestinal flora in poultry. According to the International Scientific
Association for Probiotics and Prebiotics, prebiotics can be defined as “a substrate that is
selectively utilized by host microorganisms conferring a health benefit” [114]. The Food
and Agricultural Organization (FAO) of the United Nations (UN) defined probiotics as
a “non-viable food component that confers a health benefit on the host associated with
modulation of the microbiota” [115].

The prerequisite for a potential prebiotic includes the ability to withstand hydrolysis by
gastric acids and enzymes and resist absorption in the upper gastrointestinal tract [116]. An
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ideal prebiotic should also be metabolizable by the gut microbiota, be a selective compound
that promotes the growth of beneficial intestinal flora, and have the capacity to regulate the
immune response in favor of the host while suppressing pathogens, thereby improving the
host’s health and performance [117].

Prebiotics like non-digestible oligosaccharides and polysaccharides have been shown
to inhibit the survival and colonization of pathogens like Salmonella by producing SCFA like
butyrate and acetate in the ceca, which helps lower the gut pH [118]. Yeast cell wall-derived
mannan oligosaccharides (MOS) [119], fructo-oligosaccharides (FOS), inulin [120], and
xylo-oligosaccharides [121] are some examples of prebiotics used in poultry production
systems to control various pathogens, including Salmonella.

The composition of the yeast cell wall includes MOS (40%), β-glucan (60%), and chitin
(2%) [122]. Studies have demonstrated the benefits of yeast cell product supplementation in
poultry diets. Shanmugasundaram et al. reported that yeast cell wall product supplementa-
tion in layer birds reduced fecal and intestinal oocyst count, up-regulated anti-inflammatory
cytokine IL-10 production, and increased proliferation of beneficial bacteria like LAB and
their by-products of fermentation in the cecal tonsils during post-coccidial challenge [123].
Another study found that whole yeast cell prebiotic supplementation in the diet of broiler
birds modulates the immune response by increasing the percentage of Tregs, improving
IL-10 (anti-inflammatory) mRNA expression, and reducing the pro-inflammatory cytokine
(IL-1) mRNA expression in the cecal tonsils of broiler birds [124]. Supplementing broilers
with MOS (0.05%) and FOS (0.25%) significantly improved overall body weight gains [125].
Dietary FOS supplementation at 1% revealed a reduction in the cecal load of Salmonella
Enteritidis, an upregulated ileal IgA cell titer, and increased expression of TLR-4 mRNA
in layer birds challenged with SE [126]. Broiler birds supplemented with 5% trehalose
and inoculated with Salmonella Typhimurium improved feed conversion ratio, favored
the growth of lactobacilli in jejunum and duodenum, decreased the cecal load of ST, and
decreased inflammation in GIT [127]. These results highlight the potential benefits of sup-
plementing poultry diets with prebiotics as an alternative to antibiotic growth promoters for
controlling harmful bacteria like Salmonella, ultimately improving production performance
and gut health.

6.4. Probiotics

Probiotics, also known as direct-fed microbial (DFM), are defined by FAO as “live
microorganisms, when administered in adequate amounts, confer a health benefit on the
host” [128]. Lilly and Stillwell first used the term and defined probiotics as “growth-
promoting factors produced by microorganisms” [129]. In this context, probiotics confer
their beneficial effects on the host through competitive exclusion, improving barrier health
and function, immunomodulation, and digestion and absorption, thereby promoting
growth and performance. The qualities of potential probiotic candidates are (1) host origin;
(2) non-pathogenic and beneficial to the host by adhering to the gut mucosa (biofilm forma-
tion); (3) tolerate of gastric acid and bile salts; (4) antimicrobial properties against pathogens;
and (5) survive post-processing and storage stress [130,131]. Probiotic microorganisms
used for poultry supplementation include spore-forming Bacillus spp. Saccharomyces yeast,
Enterococcus spp. [132], Streptococcus spp. Lactobacillus spp. and Bifidobacterium spp. [133].
The available probiotics on the market include either single-species or multispecies prepa-
rations, with the latter preferred due to its ability to act on multiple sites to bring out an
overall synergistic effect [134].

The administration of probiotics to layers of birds improved egg production, egg
weight, and egg quality [135]. Colonization by the Bacillus subtilis CSL2 probiotic strain
normalized the level of fecal microbiota and increased Lactobacillus in Salmonella-challenged
Hy-line Brown laying hens [136]. Supplementation of probiotics containing Lactobacillus
fermentum and Saccharomyces cerevisiae in broilers improved feed efficiency and the per-
centage of intestinal T-lymphocytes (CD4+ and CD8+) [137]. Continuous supplementation
of Bacillus-based probiotics restored the gut microbiota, decreased Salmonella load in the
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internal organs, and increased the level of butyrate in free-laying birds challenged with
S. Typhimurium infection [138]. Probiotic supplementation has also been associated with
increased anti-Salmonella bile IgA in birds challenged with Salmonella, indicating improved
humoral immunity [139]. It has been shown that feed supplementation with Lactobacillus
spp. and Bifidobacterium spp. has been shown to increase the production of proinflamma-
tory cytokines IFN-γ and TNF-α that favor the clearance of Salmonella from the gut [140].
Moreover, studies have shown that probiotic bacteria play a role in maintaining a bal-
ance between pro-inflammatory cytokines and anti-inflammatory cytokines [141]. Recent
studies have reported that the combination of probiotics (Lactobacillus spp., Pediococcus
spp., Saccharomyces spp., and Bacillus spp.) with the live SE vaccine enhanced the growth
performance, decreased mortality rate, and reduced fecal shedding of bacteria in Salmonella-
challenged broilers, thereby limiting the bacterial colonization of birds [142]. These findings
suggest that probiotics could be a potential alternative to antibiotics in poultry infected
with Salmonella since they positively modulate the gut microbial population and enhance
the immune response against the pathogen.

However, more research needs to be performed to determine the appropriate storage
and packaging conditions for probiotics and to investigate the development of antimicrobial
resistance in the gut microbial community. Some studies suggest that probiotics may
deteriorate when exposed to temperatures higher than room temperature [143].

6.5. Synbiotics

Synbiotics refers to the synergistic combination of prebiotics and prebiotics, a concept
first used by Gibson and Roberfroid in 1995 [144]. In synbiotics, prebiotics are used
to support and sustain the probiotic microorganisms by modifying the gut microflora,
ultimately enhancing the ability of probiotics to survive and inhibiting colonization of the
gut epithelium by pathogens. The supplementation of synbiotics has shown significant
benefits to host animals compared to using prebiotics and probiotics separately [145]. The
Food and Agriculture Organization (FAO) recommends using the term synbiotics only if
the combined health effect is synergistic [115]. Examples of synbiotics include combinations
like fructo-oligosaccharides with bifidobacteria and lactitol with lactobacilli [146].

Synbiotic supplementation has been documented to improve the production perfor-
mance and alleviate the heat stress of broiler breeders. Birds fed synbiotics showed less heat
stress behaviors than birds fed a regular diet [147]. Supplementation of synbiotic prepara-
tions containing Lactobacillus spp., Saccharomyces cerevisiae yeast, and inulin has shown a
positive effect on the proliferation of beneficial intestinal bacteria like Bifidobacterium spp.
and Lactobacillus spp. in broiler birds [148]. Shanmugasundaram et al. investigated the ef-
fect of synbiotic supplementation on the production performance, immune parameters, and
cecal Salmonella load of Salmonella-challenged layer birds. They reported improved body
weight gain, higher hen-day egg production both with and without a Salmonella challenge,
decreased cecal Salmonella colonization, and increased bile anti-Salmonella IgA [149]. In ad-
dition, synbiotics may help to modulate lymphoid organs (bursa, spleen), increase the size
of bursal follicles, and stimulate the immunoglobulins, thereby improving immunocompe-
tence against Salmonella Typhimurium infection in broilers [150]. These findings suggest
that synbiotics have promising effects and could serve as potential growth promoters in
poultry production.

6.6. Postbiotics

Postbiotics are non-viable bacterial products or metabolic byproducts, either secreted
by live bacteria or derived after cell lysis from probiotic microorganisms, that confer bene-
ficial functions on the host. In general, postbiotics range from SCFA to enzymes, organic
acids (propionic and 3-phenylacetic acid), peptides, plasmalogens, vitamins, teichoic acids,
and muropeptides. Postbiotics mimic probiotics in their mode of action, except that they
are not alive [151]. The soluble factors are obtained from probiotic microorganisms in the
cell walls and cytoplasm, such as Lactobacillus spp., Bifidobacterium spp., Bacillus spp., and
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Saccharomyces cerevisiae. Postbiotics benefit the host by producing immunomodulatory
effects, decreasing gut pH, inhibiting pathogenic bacteria in the gut (pathogen antagonism),
enhancing antioxidant properties, enhancing gut health, protecting intestinal barrier in-
tegrity, and improving production performance [152]. The most common postbiotics used
are metabolites and their combinations produced by strains of Lactobacillus plantarum [153].

In the context of poultry, research has shown positive effects of postbiotics on various
aspects of health and performance. In broiler birds exposed to heat stress, the postbiotic
supplementation obtained from L. plantarum RI11 at 0.6% (v/w) showed positive effects
on genes related to gut barrier health and reduced the expression of heat shock protein
70 genes as well as the acute phase protein genes, indicating the antioxidant function
of postbiotics [154]. These birds also exhibited increased growth performance, intestinal
histomorphology, a higher number of cecal microflora, and a negative effect on the cecal
Salmonella population following the addition of postbiotics produced by L. plantarum in
broiler birds maintained under heat stress conditions [155]. Dietary inclusion of postbiotics
RG14 (0.15% and 0.45%) along with prebiotics (inulin) at a concentration of 1% exhibited
improved body weight gain, a higher proportion of Bifidobacterium in the cecum accompa-
nied by decreased mRNA expression of interleukins LITAF (Lipopolysaccharide-induced
tumor necrosis factor-alpha factor) and IFN and reduced pathogenic bacteria like E. coli
in broilers. Nevertheless, the diet did not affect the Salmonella population [156]. Choe
et al. reported that supplementing layer birds with soluble metabolite combinations of
L. plantarum strains improved egg production performance, fecal population of LAB, and
intestinal villi height and crypt depth [157]. Additionally, postbiotics derived from Saccha-
romyces cerevisiae fermentation reduced the cecal colonization of Salmonella in broilers and
layer pullets, making them a potential preharvest intervention to enhance food safety and
improve production performance [158,159].

As antibiotic resistance becomes a growing concern, postbiotics are a potential alter-
native for combating enteric pathogens like Salmonella. They can play a valuable role in
preharvest intervention to enhance food safety practices and improve production perfor-
mance in poultry. However, further research is needed to better understand the mechanism
of action and safety of postbiotics in the poultry sector.

6.7. Phytobiotics

Phytobiotics, also known as phytogenics or phytochemicals, are biologically active
compounds obtained from plants used in animal production as feed additives because they
offer health benefits and promote growth in animal production, including poultry. The
bioactive substances derived from plants include saponins, flavonoids, terpenoids, and
alkaloids [160]. These compounds are reported to have antioxidant, antiviral, antimicro-
bial, anticoccidial, anti-parasitic, immunomodulatory, anti-inflammatory, and endocrine
stimulatory activities [161,162]. Dietary supplementation of poultry feed with garlic pow-
der [163], clove and cinnamon [164], peppermint powder [165], and ginger [166] has been
shown to improve overall production performance, feed conversion ratio, and body weight
gain. Other examples of plants used as phytobiotics include black cumin, turmeric [167],
calendula, oregano, green tea, and fennel, among others [168].

Supplementing a phytobiotic named Intebio in the diet of growing birds challenged
with S. Enteritidis was reported to decrease the earlier inflammatory response via the
downregulation of IL6, IL8L2, CASP6, and IRF7 at day 23, thereby limiting the colonization
of the pathogen [169]. Ziheng et al. found that oregano essential oil (OEO) supplementation
in drinking water could inhibit and treat infection by S. Pullorum and S. Gallinarum in
commercial yellow-chicken breeders. Additionally, they reported that OEO was more
effective in preventing infection than the treatment [170]. A diet containing 40 mgmL−1 to
80 mgmL−1 of garlic extract revealed antimicrobial properties in broiler chicks challenged
with S. Typhimurium by reducing mortality and improving body weight [171]. Phytogenic
compounds like trans-cinnamaldehyde and eugenol have decreased S. Enteritidis growth
and cecal colonization in challenged broiler birds after ten days of infection [172]. Moreover,
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natural capsaicin derived from chili pepper has been reported to control the internal organ
(liver, spleen) invasion by S. Enteritidis in challenged layer birds [173]. All these studies
indicate the great potential of phytobiotics as an antimicrobial substitute against Salmonella
in poultry and its application in commercial farms.

6.8. Bacteriophages

Bacteriophages are viruses that infect bacteria and use the host machinery to proliferate
inside the host cell. These phages penetrate their DNA into the host cell (lysogenic) and
undergo multiplication, followed by the release of a large number of new bacteriophages,
eventually leading to the lysis of the bacterium to release the progeny bacteriophages.
In the lysogenic cycle, phage DNA integrates into the bacterial chromosome and can
remain dormant for some time without causing cell lysis [174]. Bacteriophages are used
as alternatives to antibiotics due to their promising target specificity, less allergic side
effects, and harmlessness to the host’s normal flora [175]. The treatment of S. Enteritidis-
contaminated poultry carcass with a higher number of bacteriophages was able to reduce
the percentage of recoverable bacteria by 93% [176].

The application of phage cocktail (F1055S, F12013S) as an aerosol spray on fertile eggs
challenged with S. Enteritidis during their transfer from incubators to hatchers reduced
Salmonella’s horizontal transfer [177]. The inoculation bacteriophage cocktail made from
phages isolated from chickens (UAB_Phi20, UAB_Phi87) and pigs (UAB_Phi78) decreased
the Salmonella load in the cecum and mortality rate of white leghorn birds challenged with
S. Typhimurium [178]. The administration of CTCBIO phage significantly reduced the
S. Enteritidis load in the cloacal swab, liver, and spleen in broilers that are challenged with
S. Enteritidis [179]. Broad-host-range phage (STP4-a) is beneficial over specific phages
since they can inhibit multiple serovars of Salmonella with their polyvalent adsorption
sites [180]. Additionally, oral inoculation of S. Enteritidis and S. Typhimurium phages
reduced depression, loss of appetite, and diarrhea in a Salmonella challenge model. There is
a significant decrease in the cecal colonization of Salmonella 7–15 days post-administration
of phages in infected chicks [181]. In pandrug-resistant S. Typhimurium infected chicks, a
phage combination (virulent and non-productive) enhanced the survival rate of chicks by
100%. It decreased the bacterial load in internal organs but did not improve body weight
gain, alleviate splenomegaly, or re-establish the intestinal microbiota [182]. These data
suggest that bacteriophage treatment could improve the survival rate of Salmonella-infected
chickens and reduce the bacterial colonization of internal organs. The poor efficacy of
phage to withstand the acidic gastric pH of the birds on oral delivery is overcome by the
encapsulation technique [183]. However, the main disadvantage of phage therapy is the
emergence of phage resistance [184].

6.9. Vaccination against Salmonella in Poultry
6.9.1. Live-Attenuated Vaccine

Live attenuated vaccines, as the term suggests, are vaccines with living bacterial
pathogens that have been rendered inactive or avirulent using attenuation methods such
as chemical and genetically engineered mutagenesis [185,186]. These vaccines mimic
natural infection as they adhere to the intestinal mucosa when administered orally, eliciting
potent humoral and cell-mediated immune responses [185]. In newly hatched chicks
with immature immune systems, Salmonella live vaccines promote resistance to infection,
inhibiting gut colonization or competitive exclusion [187].

In a study by Lin et al., a live attenuated bivalently lyophilized vaccine containing a
final concentration of 6 × 108 CFU and 1 × 108 CFU ST and SE strains, respectively, was
inoculated into commercial layers at day 5, week 8, and week 18 of age [188]. The birds in
different treatment groups were separately challenged with SE and ST at 25 weeks of age,
and the birds were humanely euthanized on day 14 post-challenge. Both vaccines success-
fully eliminated cloacal Salmonella shedding, as observed from cloacal swabs collected on
days 7 and 14 post-challenge. Triple vaccination with the ST vaccine significantly reduced
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the invasion of Salmonella into the internal organs like the liver, spleen, and cecum in 90%
of vaccinated birds [188].

Groves et al. showed that oral administration of a live-attenuated aroA deletion mutant
S. Typhimurium vaccine (Vaxsafe ST) at a concentration of 108 CFU/250 µL decreased
Salmonella load only for a temporary duration over a period of 17–25 weeks. However,
the dual administration of the same vaccine through the parenteral (subcutaneous) route
enhanced the cecal clearance of the bacteria [189]. In a study performed on the aroA mutant
Salmonella Typhimurium live vaccine, there were no reductions in the fecal shedding of
ST [190].

Many live attenuated vaccines are produced by mutating genes involved in crucial
virus survival and metabolism [191]. A previous study explored the potential of an O-
antigen-deficient live attenuated Salmonella Typhimurium vaccine, created by the deletion
of the rfaL, lon, and cpxR genes, on the level of protection from systemic colonization and
immune response. The vaccine induced significant ST-specific IgY and rapid clearance of
mutant bacterial strains from the spleen and liver in about seven days [191].

Venessa et al. immunized day-old laying–type chicks with a live Salmonella Enteri-
tidis/Typhimurium bivalent oral vaccine, followed by two booster immunizations at six
weeks and 16 weeks of age. The birds immunized with the bivalent vaccine (Salmonella Duo)
decreased the spleen colonization of a heterologous strain of bacteria when the birds were
challenged with 4.6 × 108 CFU of Salmonella Infantis (a heterologous strain). Hence, this
study has been shown to confer cross-protection against S. Infantis (serotype C strains) [192].
However, despite the ability of live-attenuated vaccines to stimulate both cell-mediated and
mucosal immune responses, the biosecurity risk of virulence reversal of the live vaccine
strain is the major drawback of live-attenuated vaccines [193].

6.9.2. Killed or Inactivated Vaccine

Killed bacterin vaccines made from inactivated whole-cell preparations of bacteria
have been extensively used to control poultry Salmonella infection [194]. Commonly used
inactivation agents for the preparation of killed vaccines include heat (60 ◦C for 1 h),
formaldehyde, acetone, ethylene oxide, beta-propiolactone, and radiation (ultraviolet or
gamma) [195]. The available Salmonella-killed vaccines are serovar-specific. Studies have
shown that killed vaccines confer humoral immunity mostly and do not elicit strong cell-
mediated immune responses. Therefore, booster vaccination is required for long-term
protection [196,197]. Despite the absence of robust cell-mediated immunity, killed vaccines
are preferred over live vaccines due to biosecurity and safety reasons [198]. Additionally,
multivalent inactivated vaccines are required to contain the spread of a wide range of
Salmonella serovars present in poultry [199,200].

An inactivated aluminum hydroxide-gel adjuvanted trivalent Salmonella enterica vac-
cine was shown to reduce the load of Salmonella Enteritidis in challenged birds by four
log CFU/g, as well as demonstrate a complete reduction in bacterial dissemination to
the liver when inoculated with Salmonella Infantis in vaccinated birds [194]. It has been
shown that greater levels of IgA and IgY antibodies were produced in the bile and serum
following the simultaneous use of live attenuated and killed Salmonella vaccines in broil-
ers [201]. The combined use of both live and killed vaccination programs successfully
reduced S. Typhimurium and S. Infantis colonization in young layers, providing broad
protection [199].

6.9.3. Subunit Vaccine

Subunit vaccines, made of defined antigens, are used in poultry and are claimed
to be safer than live-attenuated or inactivated vaccines [193]. Vaccines derived from the
outer membrane proteins (OMPs) and flagella proteins (FliC protein) of Salmonella enterica
serovar Enteritidis with adjuvants have been used to decrease bacterial shedding in poultry
and to induce a significant antigen-specific immune response against Salmonella [202].
Additionally, a trivalent subunit cochleate system-based vaccine has been evaluated against
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three serovars of Salmonella in layers. This vaccine increased serum IgY and improved
production performance [84].

Desin et al. showed the efficacy of a subunit vaccine based on the Type 3 secretion
system encoded on a type 1 pathogenicity island, which showed an increased titer of IgG
antibodies in birds. Bacterial colonization in the liver was reduced but not in the spleen or
cecum [203]. Renu et al. experimentally designed an oral mucosal adhesive biodegradable
chitosan Salmonella subunit nanoparticle (CNP) vaccine for broilers, which successfully
elicited mucosal IgA production, lymphocyte recall assays, serum IgY antibody levels, and
conferred cross-protection against other Salmonella enterica serovars. Further, there was a
significant reduction in Salmonella Enteritidis load in the ceca and spleen of CNP-vaccinated
birds at 21 days post-inoculation [204].

In an experimental vaccine challenge study performed to study the protective effect of
the vaccine on Salmonella serotypes, it was shown that a direct correlation exists between the
increase in serum antibodies and a decrease in bacterial loads in the intestines of vaccinated
birds [84]. The vaccine in the study did not affect the production performance of the
vaccinated birds. Nevertheless, the duration of the protective response and the ability of
these vaccines to confer cross-protective immunity are still unclear. However, not many
vaccine studies on layer performance post-vaccination are available.

6.9.4. Ghost Vaccine

In the past, Salmonella ghost vaccines have been extensively tested in rat models [205].
Bacterial ghosts are dead bacterial cell structures retaining surface antigenic LPS com-
ponents without cytoplasmic contents made from Gram-negative bacteria. The lysis of
Gram-negative bacteria mediated by the phage protein E produces bacterial ghosts [206].
A S. Enteritidis ghosts (SEGs) vaccine made by chemically mediated lysis was tested in
rats challenged with virulent S. Enteritidis to assess its efficacy and capability to confer
immune protection. They reported a significant increase in serum IgG antibody levels in
SEGs-vaccinated rats [205].

Moreover, further studies have studied the safety of the ghost vaccines, as the E-
gene-mediated lysis process, driven by the osmotic pressure-led bacterial cell emptying,
is reportedly inefficient [207]. Chetan et al. studied the efficacy of the S. Enteritidis (SE)
ghost vaccine, SE-LTB ghost, and a commercial vaccine. They found rapid clearance of the
bacterial load in all groups post-SE challenge and an absence of local tissue reactions at
the injection site. They also observed an increased level of IgG titer in SE-LTB-immunized
birds [208].

More recently, S. Enteritidis ghost vaccines have been produced and adjuvanted with
ST flagellin antigen (ST FliC). Birds immunized with the ghost vaccine demonstrated sig-
nificant clearance of the SE wild-type challenge strain from the spleen and liver, increased
serum IgY antibody levels, and an improved cell-mediated immune response [209]. To-
gether, the above data indicate the paramount importance of further research into ghost
vaccines as potential Salmonella vaccine candidates. However, it is important to note that
since they are non-living cells, they cannot penetrate the gut epithelium and trigger a potent
mucosal immune response, which could be a potential challenge when using the ghost
vaccine to control Salmonella in chickens.

Salmonella, an intra-phagosomal enteropathogenic bacterium, has been used as a
carrier for poultry DNA vaccines. DNA vaccines are considered safer than live vaccines
because they are based on genes of antigenic proteins ligated to a plasmid, which is then
transformed into attenuated S. Typhimurium and administered to birds [210]. The capacity
of attenuated S. Typhimurium to elicit strong mucosal and systemic immune responses
within the host is a beneficial feature for using it as a live carrier to combat a range of
poultry viral infections [211,212]. Some advantages of DNA vaccines include no risk of
infection and minimal interference with passive maternal antibodies [213]. DNA vaccines
can be administered by intramuscular, oral, and in ovo routes in poultry [214]. Despite all
its benefits, concerns about integrating DNA into the host genome and the development of
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anti-DNA antibodies are the central claims raised against DNA vaccines [213]. Figure 3
summarizes the control strategies against Salmonella in poultry.
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7. Conclusions

With the increasing global demand for poultry meat and egg products, ensuring safe
and hygienic poultry management is critical. A multi-intervention strategy that reduces
the Salmonella bacterial load in birds and ultimately prevents carcass contamination in
processing plants should be given more importance in the current era of multi-drug-
resistant Salmonella. At present, there are a plethora of options claiming to reduce Salmonella
in poultry rearing, but it is critical to exercise caution before implementing any of those
approaches on a large scale. Additionally, continuous research should be performed to
ensure the safety of all available novel control strategies. Further efforts should be made
to study alternative vaccination strategies that can promote long-lasting immunity and
understand the various virulence mechanisms of the zoonotic bacteria that can impair the
effectiveness of the immune response induced in the birds.
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