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Abstract: The aim of this review was to assess the efficacy and safety of Lacticaseibacillus rhamnosus GG
(LGG) (previously known as Lactobacillus rhamnosus GG) for the eradication of vancomycin-resistant
Enterococcus faecium (VREfm) in colonized carriers. We searched Cochrane Central, EMBASE, and
the PubMed Library from inception to 21 August 2023, for randomized controlled trials (RCTs)
investigating the effectiveness of LGG for the eradication of gastrointestinal carriage of VREfm. An
initial screening was performed followed by a full-text evaluation of the papers. Out of 4076 articles
in the original screening, six RCTs (167 participants) were included in the review. All were placebo-
controlled RCTs. The meta-analysis was inconclusive with regard to the effect of LGG for clearing
VREfm colonization. The overall quality of the evidence was low due to inconsistency and the small
number of patients in the trials. We found insufficient evidence to support the use of LGG for the
eradication of VREfm in colonized carriers. There is a need for larger RCTs with a standardized
formulation and dosage of LGG in future trials.
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1. Introduction

Antimicrobial resistance is a growing public health concern, and effective antibiotics
are needed to prevent and treat bacterial infections. Antimicrobial resistance may cause
treatment failure leading to prolonged illness, mortality, and increased health-care costs [1].

Enterococcus faecium has emerged from a commensal of the gastrointestinal tract to
the second- or third-leading cause of hospital-acquired infections in the United States
and in Europe [2,3]. Enterococcus faecium exhibits decreased susceptibility to penicillin and
ampicillin, and resistance to most cephalosporins. Additionally, during the last two decades,
acquired resistance to vancomycin has been observed [4,5]. This rise in antibiotic resistance
seriously limits therapeutic options, when infections occur. Recently, Cassini and colleagues
reported 15,917 infections and 1065 attributable deaths caused by vancomycin-resistant
Enterococcus faecium (VREfm) in Europe in 2015, which is a doubling compared to 2007 [6].
The 30-day mortality of Enterococcus faecium bacteremia is high, above 30% for vancomycin-
susceptible isolates and 40% for resistant isolates [4,7,8].

Molecular epidemiological analyses revealed the existence of a subpopulation of
Enterococcus faecium that was associated with hospital-acquired Enterococcus faecium isolates.
The successful establishment of this Enterococcus faecium subpopulation is most likely
related to the acquisition of adaptive mechanisms such as antimicrobial resistance genes,
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virulence determinants, and the ability to survive in the harsh hospital environment [9].
Vancomycin resistance is mediated through different genotypes located on plasmids or
in the chromosome of a gene cluster, vanA to vanN [10]. A variety of different VREfm
genotypes have emerged as the bacterium has a high plasticity and acquires plasmids
and mobile genetic elements rapidly [11]. Through this genome plasticity and by forming
selective adaptive traits, successful clones readily expand within the hospital. VREfm also
causes hospital outbreaks, where it spreads between patients, or through the hospital staff
and the hospital environment [12].

Previous trials have reported that for each patient with invasive VREfm infection,
there are two to ten fecal carriers [13–15]. We know that patients colonized with VREfm
are at high risk of invasive infections with this bacterium compared to non-colonized
patients [16].

In humans, intestinal colonization with hospital-acquired VREfm is thought to be
facilitated through disruption of the commensal microbiota of the gastrointestinal tract. A
healthy microbiota is assumed to protect against overgrowth with opportunistic pathogens
such as VREfm. Previous studies have demonstrated that antibiotic treatment leads to an
overgrowth of VREfm [16–18].

Antibiotics provoke depletion of the commensal microbiota and are considered the key
factor in the disruption of the microbiota [19]. Colonization pressure and environmental
contamination are other important factors for VREfm colonization [20,21]. We know that
predisposing factors for VREfm invasive infection include VREfm colonization, prior
treatment with antibiotics, severe underlying disease, and length of hospital stay [22].

Regarding the natural history of VREfm colonization, results from the literature vary
greatly. In a systematic review by Shenoy et al., using logistic regression, 50% of subjects
cleared VREfm colonization at 25 weeks after initial colonization [23]. In the study by
Roghmann et al., they showed a natural VREfm clearance of only 33% over a three-year
study period [24]. An RCT by our group found that almost 60% of patients in the placebo
arm cleared VREfm after four weeks, thus constituting the spontaneous clearance [25].

With the rise in the number of VREfm infected/colonized patients and the increasing
prevalence of resistance, it is evident that new non-antibiotic options are needed to reduce
the number of VREfm cases [4,5]. Probiotics are “live microorganisms which, when ad-
ministered in adequate amounts confer a health benefit on the host” [26]. Lacticaseibacillus
rhamnosus (LGG) is a genus of lactic acid-producing Gram-positive bacteria. LGG is one
of the world’s most prevalent probiotic strains and has been used in food and dietary
supplements since 1990 [27,28].

The LGG strain is usually provided in capsules, sachets, powders, or added to yogurts.
Treatment of VREfm-colonized patients with LGG for two to four weeks may reduce
the number of VREfm carriers and could be a potential treatment for the eradication of
colonization [29–32]. It has been hypothesized that probiotics in general may help maintain
the diversity of the gut microbiota, and that they are important for the restoration of the
gut microbiota after antibiotic therapy [26]. Several mechanisms have been proposed to
explain the possible specific effects of LGG in clearing VREfm intestinal carriage, as this
probiotic has been tested both in humans and in mouse models. Tytgat and colleagues have
shown how mucus-binding pili of LGG can prevent the binding of VREfm to the intestinal
mucosa [33]. Regarding lactic acid bacteria in general, they use fermentable carbohydrates
to produce lactic acid. Lactic acid in turn has been described to acidify the cytosol for
most bacteria, eventually leading to cell death [34]. Suggested general mechanisms of
how probiotics might work include the improvement in the intestinal barrier function
through the production of anti-microbial substances, effects on the epithelium and mucus
lining, competitive exclusion, and possibly immune interaction [33,35]. Probiotics are also
proposed to have direct bacteriostatic and bactericidal effects against infectious agents [33].

The primary outcome of this systematic review was whether LGG can eradicate VREfm
in intestinal carriers. Secondary outcomes were the effects on the health-related change
in quality of life, proportion of people colonized with LGG measured through culture
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or PCR, the proportion of patients with non-serious adverse events and serious adverse
events according to International Conference on Harmonization-Good Clinical Practice,
and dropouts due to adverse events.

2. Materials and Methods
2.1. Protocol

The review protocol was registered on PROSPERO Identifier: CRD42023444735 (https:
//www.crd.york.ac.uk/prospero/ (accessed on 28 July 2023)).

2.2. Search Strategy

We searched Cochrane Central, EMBASE, and the PubMed Library from inception
to 21 August 2023. Lacticaseibacillus rhamnosus was defined as “Lacticaseibacillus rham-
nosus” [Mesh]) or “Probiotics” [Mesh]) or “Lacticaseibacillus rhamnosus” [Text word] or
Probiotic*[Text word] or “lactobacillus rhamnosus” [Text Word]. Vancomycin-resistant
Enterococcus faecium was defined as “Vancomycin Resistance” [Mesh] or “Vancomycin-
Resistant Enterococci” [Mesh]) or “Enterococcus faecium” [Mesh] or Vancomycin resis-
tan*[Text Word] or Antibiotic resistan*[Text Word] or “Enterococcus faecium” [Text Word]
or “E faecium” [Text Word] or Enterococci [Text Word]. For the full search strategy, please
refer to supplementary document 1.

2.3. Data Collection and Analysis

Two authors independently selected the studies in a two-stage process; first, a screen-
ing of titles and abstracts was performed; secondly, a final decision of inclusion was
performed after a full-text evaluation (MJSK and IMCR). Any disagreements were settled
by a third author (AMP).

A data extraction protocol from the computer program Covidence (https://www.
covidence.org (accessed on 28 July 2023)) was used and the following information was
extracted from each trial: (1) Author, year of publication, trial design, and country of study;
(2) VREfm clearance at the end of the trial; (3) treatment description (including formulation,
duration, and route of administration); (4) reported non-serious adverse events and serious
adverse events; and (5) dropouts.

2.4. Inclusion/Exclusion of Studies

We included randomized controlled clinical trials (RCTs). The RCT ought to clearly
state the efficacy of LGG as a treatment in one of the study arms, and the studies needed to
be placebo-controlled.

During the initial screening of records, we excluded reviews, guidance/recommendations,
case reports, non-English articles, retrospective/prospective cohort studies, and records
unrelated to study subject. Furthermore, studies with a mixture of probiotics including
LGG were excluded. The remaining records were included if they met the inclusion criteria
during the full-text eligibility assessment. An overview of the screening and inclusion of
records can be found in Figure 1 adapted from the PRISMA statement [36].

https://www.crd.york.ac.uk/prospero/
https://www.crd.york.ac.uk/prospero/
https://www.covidence.org
https://www.covidence.org
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PRISMA 2009 Checklist statement: The authors have read the PRISMA 2009 Checklist,
and the manuscript was prepared and revised according to the PRISMA 2009 Checklist.

2.5. Quality Assessment

We adapted the Quality Assessment Tool of the National Institutes of Health for RCTs
to assess the risk of bias of the individual studies with 12 different criteria. Criteria 9, 13, and
14 were adapted to include compliancy, no subgroup analysis, and intention-to-treat analy-
sis. Additional criteria 15 and 16 were included to assess specification of dosage and dura-
tion of treatment (https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-
tools (accessed on 28 July 2023)). For each study and criterion, the bias was reported as
high risk, low risk, or unclear risk based on the assessment by two authors (IMCR and
MJSK). Again, any disagreement was settled by a third author (AMP). The table used in
the bias assessment process is found in supplementary document 2.

2.6. Statistical Analyses

Meta-analysis was performed using R (v. 4.2.2) [37] to assess the risk difference (RD)
associated with VRE probiotic treatment across the six included studies. We employed
the Mantel–Haenszel method with both fixed- and random-effects models. Given the
significant heterogeneity observed (I2 = 89.8%, p < 0.001), the results from the random-
effects model were prioritized. The model was evaluated by performing a funnel plot.

3. Results
3.1. Study Design and Selection

From the literature search, we identified a total of 5368 articles, which were imported
for screening into the computer program Covidence. After removal of duplicates, we
identified 4076 articles for the initial screening. Out of these articles, 23 were retrieved
for eligibility screening. Of these, 17 were excluded based on the following: five were

https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
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conference abstracts, two were clinical trial protocols, two were not placebo-controlled trials,
one used another probiotic strain, five were not RCTs, and two used a mixture of probiotics.
Therefore, a total of six articles, published between 2007 and 2022, met the inclusion criteria
and were included in this review. The trials were conducted in Australia [29], the United
States [31,38], Denmark [25], Poland [30], and France [39]. An overview of the screening
and inclusion of records can be found in Figure 1 adapted from the PRISMA statement [36].

3.2. Description of the Studies

All included studies were two-armed RCTs. Five out of the six studies evaluated the
effect of LGG on the eradication of VREfm as the primary outcome. One study evaluated the
effect of LGG on the prevention of the acquisition of antibiotic-resistant organisms (AROs)
(of which VREfm was one) with the eradication of AROs as a secondary outcome. A total
number of 167 patients were included in the six studies. Regarding study demographics,
five of the studies included an older patient population, with the mean age ranging from 68
to 77 years. Only the study by Szachta et al. included a population of children [30]. Most
studies reported a predominance of men [29–31,38]. For a full description of the studies,
refer to Table 1.

In four studies [25,31,38,39], LGG and placebo were administered as orally taken
capsules or capsules dissolved and given via a nasogastric tube [38]. In the remaining
two studies, LGG and placebo were provided to the patients as a yogurt in one study [29],
as capsules in four studies [25,30,31,38,39], or as a sachet dissolved in water or milk in
another study [30]. Five studies specified the daily dose of LGG ranging from 1 billion
CFUs to 60 billion CFUs [25,30,31,38,39]. The duration of intervention ranged from 5.8 days
to 5 weeks.

Four studies used culture-based methods with susceptibility testing of stool samples
or rectal swabs to determine VREfm intestinal carriage. Doron et al. used a decline in
colony count to evaluate the clearance of VREfm from the stool [31]. Rubin et al. used a
specific PCR for vanA followed by a confirmatory culture [25], while Vidal et al. did not
specify their methods for the determination of VREfm carriage [39].
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Table 1. Summary results of all included papers.

Paper Study Design Intervention
and Duration

Number of
Individuals

(LGG:Placebo)

Male:Female
Ratio

Mean Age in
Years

(Range)
Follow-Up

Dose and
Formulation

of LGG

Number of
Cleared

Individuals at
the End of

Intervention

Number of
Cleared

Individuals at
the End of
Follow-Up

Adverse
Events Conclusion

Manley et al.
Australia

(2007)
[29]

Double-blinded,
randomized and

placebo-controlled
trial with two arms.

1. LGG
yoghurt 2.
Placebo; 4

weeks

23 (11:12) 10:4 68 (46–84) 8 weeks

100 g of
yoghurt,

unknown LGG
dose

11/11 in
treatment
group and

1/12 in
placebo group

8/11 in
treatment

group and 0/8
in placebo

group

Not reported
Significant

effect of VRE
eradication

Vidal et al.
France (2010)

[39]

Double-blinded,
randomized and

placebo-controlled
pilot trial with two

arms.

1. LGG 2.
Placebo; 5

weeks
8 (6:2) not reported 77 (66–92)

11 weeks or
until negative
VRE culture

1 × 109 CFU
of LGG daily
as capsules

3/6 in
treatment arm

and 2/2 in
placebo arm

2/4 in
treatment

group
Not reported

No effect on
VRE

clearance

Szachta et al.
Poland
(2011)
[30]

Double-blinded,
randomized and

placebo-controlled
trial with two arms.

1. LGG 2.
Placebo; 3

weeks
61 (32:29) 40:21 2.5

(unknown) 4 weeks

3 × 109 CFU
of LGG daily

as a sachet
dissolved in

water or milk

20/32 in
treatment arm

and 7/29 in
placebo group

10/19 in
treatment arm

and 9/20 in
placebo group

Not reported
Temporary

effect of VRE
eradication

Doron et al.
USA (2015)

[31]

Double-blinded,
randomized and

placebo-controlled
trial with two arms.

1. LGG 2.
Placebo; 2

weeks
11 (5:6) 7:4 70 (53–90) 2 weeks

2 × 1010 CFU
of LGG as

capsules daily

0/5 in
treatment arm

and 0/6 in
placebo arm

0/4 in
treatment arm

and 0/5 in
placebo arm

No adverse
events related
to LGG were

seen

No effect on
VRE

clearance

Rauseo et al.
USA (2021)

[38]

Double-blinded,
randomized, and

controlled pilot trial
with two arms. (VRE

clearance =
secondary outcome)

1. LGG 2.
Placebo;
median

duration of
intervention

was 5.8 and 6.5
days for LGG
and placebo
respectively

16 (7:9)

Not reported
for the

subgroup of
VREfm
carriers

Not reported
for the

subgroup of
VREfm
carriers

Every 3 days
after

enrollment
and at

discharge

2 × 1010 CFU
of LGG as
capsules or
nasogastric

administration

2/7 in
treatment arm

and 1/9 in
placebo arm

Same as end of
intervention

No safety
concerns and
no difference

in Bristol
stool types

between arms

No effect on
VRE

clearance

Rubin et al.
Denmark

(2022)
[25]

Double-blinded,
randomized and

placebo-controlled
trial with two arms.

1. LGG 2.
Placebo; 4

weeks
48 (21:27) 18:30 75 (64.5–82.5) 24 weeks

6 × 1010 CFU
of LGG as

capsules daily

12/21 in
treatment
group and
15/27 in

placebo group

7/8 in
treatment
group and

9/10 in
placebo group

No adverse
events related
to LGG were

seen

No effect on
VRE

clearance
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3.3. Primary Outcome
Meta-Analysis and Efficacy of LGG on Eradication of VREfm from the GI-Tract

The result of the meta-analysis is presented in Figure 2, and the result of the funnel
plot is shown in Figure S1. The funnel plot analysis revealed potential bias, as some studies
were situated outside the funnel. This confirmed that the meta-analysis could not be used
as evidence to assess the effect of LGG on the eradication of VREfm. This could be due to
publication bias, or the fact that the studies were significant in opposing results. Thus, the
meta-analysis was inconclusive for LGG on the eradication of VREfm in intestinal carriers.
We found a risk difference of 0.20 with a wide 95% CI of −0.17–0.57.
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Figure 2. The forest plot presents a meta-analysis of six studies evaluating the risk difference (RD)
using the Mantel–Haenszel weighting method. The analysis reveals a high degree of heterogeneity
among the studies (I2 = 89.8%, p < 0.001). A total of 167 observations were included, with 74 events
recorded [25,29–31,38,39].

Out of the six studies, only the study by Manley et al. presented persisting significant
results with regard to LGG on VREfm clearance. In their treatment group, 11/11 patients
cleared VREfm after eight weeks, compared to only 1/12 in the placebo group (p value not
specified in this study) [29].

Szachta et al. reported a temporary effect on VREfm clearance in a population of
hospitalized children. At the end of the intervention (three weeks), there was a significantly
higher number of children with VREfm clearance in the treatment group (62.5%) than in the
placebo group (24%) (p = 0.002). However, this difference did not persist at the seven-week
follow-up [30].

The other four studies reported no effect of LGG on clearing VREfm.

3.4. Secondary Outcomes

Statistical analyses for the secondary outcomes were not deemed possible, due to the
lack of data and lack of heterogeneity.

3.4.1. Health-Related Change in the Quality of Life

The health-related change in the quality of life was measured by none of the studies.

3.4.2. LGG Colonization at the End of Intervention

The studies by Doron et al. [31], Szachta et al. [30], and Rubin et al. [25] looked at the
LGG or Lactobacillus spp. content in stool either by using culture or PCR. All these studies
detected LGG or Lactobacillus spp. in the stool samples, suggesting they used sufficient
doses of LGG. Please refer to Table 1 for a summary of the results.

3.4.3. Tolerability and Safety

Half of the studies [29,30,39] did not report adverse events, and the other half reported
neither adverse nor serious adverse events related to the treatment [25,31,38].
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3.4.4. Heading

Regarding all-cause mortality, only two studies reported on this. In the study by our
group (Rubin et al.), five patients died during the intervention. None of these deaths were
related to the LGG treatment [25]. In the study by Manley et al., one patient in the treatment
arm died during the intervention [29]. This is not further described in this article. In general,
the intervention with the probiotic strain, LGG, was considered safe and well tolerated.

3.5. Risk of Bias

The result of the bias assessment is presented in Figure 3. Overall, the studies repre-
sented a low risk of bias on most criteria that could be assessed. Criteria with a high risk of
bias in all studies were power and sample size.
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4. Discussion

In this meta-analysis, we could not determine the effect of LGG on the clearing of
VREfm from the gastrointestinal tract. The included studies in our systematic review have
shown significant and opposing results, or the inconclusiveness could be due to publication
bias. Another limitation to our systematic review is that we could only include six studies,
and four of these were underpowered. Also, heterogeneity was high as the formulations,
dose, and duration of the LGG strain differed, as well as the follow-up time.

Manley et al. presented the only truly positive study [29]. A limitation to their
study was that the dose of LGG in the yogurt was not specified. Interestingly, their study
was the only study using a yogurt formulation. As has been speculated by others, the
formulation of the probiotic strain might indeed impact its effect [31]. However, four
of our included studies measured LGG or Lactobacillus spp. count from the stool after
the intervention, thereby showing that the probiotic did indeed reach the colon. In the
population of VREfm-colonized children, Szachta et al. concluded that VREfm clearance
was perhaps just suppressed temporarily, as it was not sustained after the intervention was
withdrawn [30]. A limitation to their study was a lack of adhesion to the protocol, with a
high loss to follow-up of 37%. None of the patients in the study by Doron et al. cleared
the VREfm [31]. As the authors point out, their intervention had a duration of only two
weeks, and the study by Szachta et al. [30] only saw an effect of LGG by week three. This
suggests that the duration of intervention could play a role in clearance. In the study by
our group (Rubin et al. [25]), we showed no significance between the placebo group and
the control group, and in both groups, almost 60% of the patients had cleared VREfm after
the 4-week intervention. At the 24-week follow-up, almost 90% had cleared VREfm in both
groups, thus implying a higher natural decolonization than previously shown. Szachta
et al. [30] showed a natural clearance of VREfm of 33% in the placebo group, which is in
line with previous studies [24]. This leads us to suspect that discharge from the hospital
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itself could play a role in the decolonization of VREfm, as it will revert the dysbiosis of the
gut microbiome (discussed further down).

Interestingly, during the screening process, we found a study by Buyukeren et al.,
showing a positive effect of 1 × 109 CFU/g of LGG in VREfm-colonized neonates. Their
study showed a significant difference in decolonization between the arms, as 21/22 neonates
cleared VREfm in the LGG arm vs. 12/23 in the control arm (p < 0.05) [40]. They also
performed a six-month follow-up, where 11 patients in the placebo arm remained VREfm-
colonized vs. only one in the LGG arm. However, their study was not placebo-controlled,
and it could be biased in that parents with more critically ill neonates opted out of the study,
making the arms non-comparable. Furthermore, the duration of treatment varied as it was
withdrawn after three consecutive negative results. The planned treatment was six months.
Also, it is difficult to compare a study of neonates with adults or even children, as their
microbiota is vastly different and dramatically changes during the first year of life [41].

A mini-review by Crouzet et al. investigated various probiotic strains or mixtures
thereof on their anti-VREfm effect [42]. They concluded that some strains, including LGG,
might reduce the intensity of VREfm colonization, but some bacterial reservoirs might
remain, and their conclusion was that the eradication of VREfm with only probiotics might
be difficult to achieve.

In future studies with probiotics for the eradication of VREfm, a prospective cohort
study design might be favorable over the RCTs. Carriers of VREfm in general, and most
participants in these studies, appear to be recruited from a geriatric population and, thus,
presumably a comorbid population. Both the study by Doron et al. and the study by our
group (Rubin et al. [25]) had difficulties in recruiting the required number of participants.
In the latter, the most common criterion for exclusion was the inability to sign informed
consent, e.g., suffering from dementia. We believe that a prospective cohort study design
such as the study by Rauseo et al. [38] would overcome these recruitment challenges. The
primary outcome of a prospective cohort study design would be the incidence of VREfm
acquisition during hospitalization. Here, a set-up with a comparison of different wards
with equal VREfm burden could be investigated.

Multiple studies have investigated the effect of probiotics on preventing the acqui-
sition of multidrug-resistant organisms in hospitalized patients. In a prospective cohort
study by de Regt and colleagues, they screened all patients in their ward for ampicillin-
resistant Enterococcus faecium (AREfm) twice weekly [43]. They administered a mix of
probiotics to all included patients twice daily. The mix consisted of Bifidobacterium bifidum,
Bifidobacterium lactis, Enterococcus faecium, Lactobacillus acidophilus, Lactobacillus paracasei,
Lactobacillus plantarum, Lacticaseibacillus rhamnosus, and Lactobacillus salivarius with a total
concentration of 109 CFU/g. At the end of the study a with cross-over design, the authors
had not observed a reduction in acquisition of AREfm. In a different study by Borgmann
and colleagues, they administered two probiotics to all patients receiving antibiotics in an
early rehabilitation ward [44]. In this ward, patients with stroke and trauma injuries were
hospitalized. The two probiotics were Saccharomyces boulardii in a dose of 375 mg daily
and Escherichia coli Nissle in a dose of 2.5–25 billion bacteria per capsule twice daily. The
intervention followed the closure of the ward due to an outbreak of carbapenem-resistant
Klebsiella pneumoniae. Patients were screened for methicillin-resistant Staphylococcus aureus
(MRSA), extended-spectrum beta-lactamase (ESBL)-producing Gram-negative bacteria, and
VREfm. The authors observed a decrease in acquisition of VREfm- and ESBL-producing
Gram-negative bacteria other than Escherichia coli during the intervention period. The
prevalence of MRSA- and ESBL-producing Escherichia coli did not decrease. In another
four-armed placebo-controlled study by Toh and colleagues, they investigated the effect
of different probiotics on the prevention or clearance of VREfm [45]. The prevention and
clearance of VREfm were secondary outcomes in this study, as the primary outcome was
the time interval from randomization to the first symptomatic urinary tract infection in a
population of patients with spinal cord injury. They found no effect of probiotics on the
prevention or clearance of VREfm.
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A further point to be made is that a single bacteria probiotic might not have a sufficient
effect to revert the dysbiosis of the gut microbiota. In the study by our group, we did
not detect any difference in the microbial diversity in terms of alpha-diversity between
the treatment and the placebo arm [25]. The negative effects on the gut microbiota by
hospitalization and antibiotics have been observed in many previous studies [46–49]. In a
study by Chanderraj et al., they demonstrated that only 21% of the microbiota remained
unchanged at 24 h after hospitalization vs. at admission [46]. Thus, any attempt at reversing
the gut dysbiosis through treatment with a single probiotic strain, or even a mixture of
strains, might prove inadequate considering the overwhelming changes taking place during
hospitalization. The negative effect of antibiotics on the microbiota was highlighted in a
study by Donskey et al. where they demonstrated that patients previously colonized with
VREfm and who had had three negative rounds of VREfm were, in most cases, re-colonized
with VREfm after a new antibiotic regimen [50].

New treatment options for the eradication of VREfm need to be explored in future
studies. A study by Dinh and colleagues investigated the effect of fecal microbiota trans-
plantation (FMT) on the eradication of VREfm in intestinal carriers [51]. At the eight-week
follow-up, 6/9 patients had eradicated VREfm after FMT. This study had no control group,
and the hypothesis needs to be further evaluated in future RCTs.

5. Conclusions

We did not find evidence to support the use of LGG for the eradication of VREfm
gastrointestinal carriage, although LGG proved to be safe and well tolerated. The meta-
analysis was inconclusive. There is a need for a standardized formulation and dosage of
LGG in future trials. New treatment options including FMT for the eradication of VREfm
in intestinal carriers should be evaluated in future studies.

Supplementary Materials: The following supporting information can be downloaded at https:
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and Search Details from PubMed, Embase and Cochrane Library) and Supplementary document 2
(Quality Assessment tool).
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