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Abstract: Two strains, designated NL03-T5T and NL03-T5-1, were isolated from a soil sample collected
from the Nanling National Forests, Guangdong Province, PR China. The two strains were Gram-stain-
positive, aerobic, rod-shaped and had lophotrichous flagellation. Strain NL03-T5T could secrete extracel-
lular mucus whereas NL03-T5-1 could not. Phylogenetic analysis based on 16S rRNA gene sequences
revealed that the two strains belong to the genus Cohnella, were most closely related to Cohnella lupini
LMG 27416T (95.9% and 96.1% similarities), and both showed 94.0% similarity with Cohnella arctica NRRL
B-59459T, respectively. The two strains showed 99.8% 16S rRNA gene sequence similarity between them.
The draft genome size of strain NL03-T5T was 7.44 Mbp with a DNA G+C content of 49.2 mol%. The
average nucleotide identities (ANI) and the digital DNA–DNA hybridization (dDDH) values between
NL03-T5T and NL03-T5-1 were 99.98% and 100%, indicating the two strains were of the same species.
Additionally, the ANI and dDDH values between NL03-T5T and C. lupini LMG 27416T were 76.1% and
20.4%, respectively. The major cellular fatty acids of strain NL03-T5T included anteiso-C15:0 and iso-C16:0.
The major polar lipids and predominant respiratory quinone were diphosphatidylglycerol (DPG) and
menaquinone-7 (MK-7). Based on phylogenetic analysis, phenotypic and chemotaxonomic characteriza-
tion, genomic DNA G+C content, and ANI and dDDH values, strains NL03-T5T and NL03-T5-1 represent
novel species in the genus Cohnella, for which the name Cohnella silvisoli is proposed. The type strain
is NL03-T5T (=GDMCC 1.2294T = JCM 34999T). Furthermore, comparative genomics revealed that
the genus Cohnella had an open pan-genome. The pan-genome of 29 Cohnella strains contained
41,356 gene families, and the number of strain-specific genes ranged from 6 to 1649. The results may
explain the good adaptability of the Cohnella strains to different habitats at the genetic level.

Keywords: isolation; Cohnella silvisoli; taxonomic studies; pan-genome

1. Introduction

The genus Cohnella, which lies within the family Paenibacillaceae of the order Bacillales,
was first proposed by Kämpfer et al. with the description of Cohnella thermotolerans as
the type species [1]. The genus Cohnella currently comprised 45 species with valid names
listed in the LPSN database (https://www.bacterio.net/-allnamesac.html, accessed on
1 August 2023). Cells were characterized as Gram-stain-positive, spore-forming or non-
spore-forming, aerobic or facultatively anaerobic, rods, and motile or non-motile. The
major respiratory quinone is menaquinone-7 (MK-7), the predominant polar lipids contain
diphosphatidylglycerol (DPG) and phosphatidylethanolamine (PE), and the main fatty
acid profiles include iso-C16:0, anteiso-C15:0 and C16:0 [2]. Species of the genus Cohnella
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are widely distributed in various environments such as soil [3,4], rhizosphere or root
nodules [5], water [6], green algae [7], animal faeces [8], Siberian permafrost [9] and
preserved vegetables [10]. The Cohnella species are thought to play an important role
in recycling plant biomass within soil, with multiple members of the genus possessing
genes for degradation of chitinase, xylan, hemicellulose and cellulose [11–13]. During
an investigation on the diversity and novelty study of bacterium in soils of the Nanling
National Forests, Guangdong Province, PR China, two strains, designated NL03-T5T

and NL03-T5-1, were isolated and described as a novel species of the genus Cohnella
using polyphasic taxonomic studies including phylogenetic analysis, physiological and
biochemical characterization, and genomic analysis. Furthermore, comparative genomics
of the Cohnella strains were used to define the pan-genome, core genome, and unique genes
and to assess genetic diversity to understand their adaptability to different habitats.

2. Materials and Methods
2.1. Strain Isolation and Cultivation

Strains NL03-T5T and NL03-T5-1 were isolated from a soil sample (24◦56′16′′ N;
113◦00′09′′ E) collected on 6 October 2020 from the Nanling National Forests, Guangdong
Province, China. The two strains were obtained using a standard dilution and plating
method. More specifically, a 1 g air-dried soil sample was added to 9 mL of sterile phys-
iological saline. The mixtures were placed in shaker at 160 rpm for 2 h at 30 ◦C. Then,
10× series (10−2, 10−3, 10−4 and 10−5) dilutions were performed separately and spread
onto Reasoner’s 2A (R2A; Haibo, Qingdao, China) medium. After cultivation at 30 ◦C for
a week, colonies were picked out and a pure aerobic culture was obtained by repeated
subculture of cells from the edge of the colony. Upon purification, strains were stored at
−80 ◦C as a suspension containing 25% glycerol.

2.2. 16S rRNA Gene Sequence and Phylogenetic Analysis

Genomic DNAs of strains NL03-T5T and NL03-T5-1 were extracted from fresh cells
grown on R2A agar using a HiPure Bacterial DNA kit (Magen Biotech Co., Ltd., Guangzhou,
China) following the manufacturer’s instructions. The 16S rRNA genes of NL03-T5T and
NL03-T5-1 were amplified using the extracted genomic DNAs as a template with the uni-
versal primers 27F and 1492R [14]. PCR products were sequenced in Majorbio, China. The
16S rRNA genes were aligned in the EzBioCloud (https://eztaxon-e.ezbiocloud.net/) and
GenBank (www.ncbi.nlm.nih.gov) databases accessed on 1 August 2023. The 16S rRNA
gene sequences were submitted to the National Center for Biotechnology Information
(NCBI) database (https://www.ncbi.nlm.nih.gov/genome, accessed on 1 August 2023)
under the accession numbers MZ955418 and OQ913505. Phylogenetic trees based on 16S
rRNA genes were reconstructed using methods including maximum-likelihood (ML) [15],
neighbor-joining (NJ) [16] and minimum-evolution (ME) [17] using MEGA 7.0 software [18].
The topology in each phylogenetic tree was calculated based on 1000 replications and evolu-
tionary distances were calculated using Kimura’s two-parameter model [19]. Based on the
phylogenetic analysis, the type strains Cohnella abietis HS21T, Cohnella lupini LMG 27416T,
and Cohnella arctica NRRL B-59459T obtained from the Belgian Co-ordinated Collections of
Micro-organisms and the Agricultural Research Service Culture Collection were used as
experiment control strains and cultured under optimum conditions.

2.3. Morphological, Physiological, and Biochemical Characteristics

The morphological features of strains NL03-T5T and NL03-T5-1 were observed by light
microscope (DM6/MC190, Leica, Wetzlar, Germany) and transmission electron microscope
(H7650, Hitachi, Tokyo, Japan) with cell growth on R2A agar for 4 d at 30 ◦C. The growth
test was performed on nutrient agar (NA), trypticase soy agar (TSA), MacConkey (Mac)
and MD1 agar (6 g of casein peptone, 2 g of soluble starch, 2 g of MgSO4·7H2O, 0.4 g of
CaCl2·2H2O, 1 L of distilled water, pH 7.2). Growth at different temperatures (10, 15, 20, 25,
30, 35, 37, 40 ◦C) was tested on R2A agar for 3–4 d. Sodium chloride tolerance was tested
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at 0, 0.1, 0.2, 0.5, 1.0 and 1.5%, and pH tolerance was performed from 5.0 to 9.5 at intervals
of 0.5 pH units according to the method described in [20] on R2A medium for 3–4 d. The
Gram-staining reaction was performed by using a bioMérieux Gram stain kit (bioMérieux,
Tokyo, Japan) according to the manufacturer’s instructions. Oxidase activity was tested using
oxidase test strips [1% (w/v) tetramethyl-p-phe-nylenediamine, HKM], and catalase activity
was determined by bubble production after mixing cells with 3% H2O2. Gliding motility
was checked by observing the edges of colonies formed on 1:6-diluted R2A and using the
hanging drop technique as described by Bernardet et al. (2002) [21]. Hydrolyses of casein
(1%, w/v), CM-cellulose (1%, w/v), Tween 20 (1%, w/v) and 40 (1%, w/v) were examined as
described by Son et al. [22]. Other physiological properties were examined using API 20NE
and API ZYM kits (bioMérieux) according to the manufacturer’s instructions.

2.4. Chemotaxonomic Properties

For cellular fatty acids, polar lipids, and respiratory quinones analysis, strain NL03-
T5T and its related species were harvested from R2A agar after being incubated for 4 d at
30 °C. Fatty acid methyl esters were extracted using the Sherlock Microbial Identification
System (MIDI) protocol version 6.1 and analyzed by gas chromatography (model 7890A,
Hewlett Packard, Palo Alto, CA, USA) as previously described [23]. The polar lipids
were extracted and determined according to the protocol of Tindall et al. [24]. Respiratory
quinones were extracted and purified using the method of Minnikin et al. [25] and analyzed
using HPLC (UltiMate 3000, 205 Dionex, Thermo Fisher Scientific, Waltham, MA, USA).

2.5. Genome Sequencing, Annotation, and Pan-Genomic Analysis

The genomic DNAs of strains NL03-T5T and NL03-T5-1 were sequenced on the Illu-
mina HiSeq platform at Shanghai Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai,
China). Sequencing reads were assembled into contigs and scaffolds by applying SPAdes
version 3.11.1 with default parameters [26], and the sequences were submitted to the NCBI
database under the accession numbers JAIOAP000000000 and JASKHM000000000. Ge-
nomic annotation was performed using the software Rapid Annotation using Subsystem
Technology (RAST) pipeline (http://rast.nmpdr.org/, accessed on 1 August 2023) with
default parameters. The genes encoding carbohydrate active enzymes (CAZymes) were
identified using the dbCAN2 meta server (http://cys.bios.niu.edu/dbCAN2, accessed on
1 August 2023) with HMMER annotation (E-Value < 1 × 10−15, coverage > 0.35), and
biosynthetic gene clusters (BGCs) were annotated using antiSMASH bacterial version 6.1.1
(https://antismash.secondarymetabolites.org, accessed on 1 August 2023) with default
parameters, respectively. All 27 reference genomes of the genus Cohnella were down-
loaded from the NCBI database. A pan-genome analysis was performed using the bac-
terial pan-genome analyses tool (BPGA) pipeline [27] with default parameters. Ortholo-
gous genes were identified with the USEARCH algorithm using a threshold of 0.5. Core,
accessory, and unique genes were functionally annotated using the eggNOG mapper
v2 [28]. The data of the pan-genomes were visualized using the ImageGP online database
(https://www.bic.ac.cn/ImageGP/, accessed on 1 August 2023).

2.6. OGRI Calculation and Phylogenomic Analysis

Overall genome relatedness indices (OGRI) including the digital DNA–DNA hy-
bridization (dDDH) and average nucleotide identity (ANI) values were calculated using
the Genome-to-Genome Distance Calculator (GGDC) (https://ggdc.dsmz.de/, accessed on
1 August 2023) [29] and OrthANIu (www.ezbiocloud.net/tools/ani, accessed on 1 August
2023) [30], respectively. The whole-genome phylogenetic analysis of the genus Cohnella was
reconstructed based on 92 up-to-date core genes using the software UBCG version 3.0 [31]
with a maximum-likelihood algorithm.

http://rast.nmpdr.org/
http://cys.bios.niu.edu/dbCAN2
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3. Results
3.1. Phylogenetic Analysis Based on 16S rRNA Genes and Genomic Sequences

Strains NL03-T5T and NL03-T5-1 showed 99.8% 16S rRNA gene sequence similarity.
In the EzBiocloud and NCBI databases, the two strains were closely related to the species
of the genus Cohnella and showed the highest similarities with C. lupini LMG 27416T (95.9%
and 96.1%), and they both exhibited 95.3% and 94.0% similarities with C. abietis HS21T

and C. arctica NRRL B-59459T, respectively. The 16S rRNA gene phylogenetic trees based
on the ML, NJ, and ME methods (Figures 1a, S1 and S2) all showed that strain NL03-T5T

and NL03-T5-1 formed an independent cluster with C. lupini LMG 27416T and C. arctica
NRRL B-59459T. Furthermore, the phylogenomic tree indicated that strains NL03-T5T

and NL03-T5-1 formed an independent cluster with Cohnella abietis HS21T (Figure 1b).
Therefore, we further selected C. lupini LMG 27416T, C. abietis HS21T, and C. arctica NRRL
B-59459T as reference type strains for taxonomic studies.
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Figure 1. Phylogenetic relationship among species of the genus Cohnella. (a) Maximum-likelihood
phylogenetic tree based on 16S rRNA gene sequences generated by MEGA 7.0 software. Bootstrap
values (represented percentages of 1000 replication) > 50% are shown at nodes. Bar, 0.01 substitutions
per nucleotide position. (b) The UBCG phylogenetic tree based on 92 up-to-date bacterial core genes
sequences is constructed using the ML algorithm. Bar, 0.05 substitutions per nucleotide position.
GenBank accession numbers are shown in parentheses.

3.2. Physiological Characterization

The cells of strains NL03-T5T and NL03-T5-1 were Gram-stain-positive, aerobic,
lophotrichous flagellation, rod-shaped, and 1.2–2.0 µm long and 0.4–0.6 µm in diame-
ter after incubation on R2A agar for 4 d at 30 ◦C (Figure 2c–f). Colonies were white-cream
colored and strain NL03-T5T could secrete extracellular mucus whereas NL03-T5-1 could
not (Figure 2a,b). The two strains could grow on R2A, but not on NA, TSA, Mac and MD1
agar. Physiological analyses indicated that strains NL03-T5T and NL03-T5-1 were able to
grow at 10–37 ◦C, pH 5.0–8.5 and cells could tolerate 0.5% (w/v) NaCl (Table 1). Strains
NL03-T5T and NL03-T5-1 were negative for oxidase activity whereas their closely related
species C. abietis HS21T, C. lupini LMG 27416T, and C. arctica NRRL B-59459T were posi-
tive. In addition, strain NL03-T5T was positive for hydrolysis of Tween 20 and utilization
of a-mannosidase whereas its related species C. lupini LMG 27416T and C. arctica NRRL
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B-59459T were negative. Additional differences between strain NL03-T5T and its closely
related species are shown in Table 1.
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Figure 2. Morphologies of NL03-T5T and NL03-T5-1. (a,b) Photographs of strains NL03-T5T and
NL03-T5-1 grown on R2A for 4 d at 30 ◦C. (c,d) Light micrographs of NL03-T5T and NL03-T5-1, cells
were stained by crystal violet. Scale: 5 µm. (e,f) Transmission electronic micrographs of NL03-T5T.
Scale: 500 nm.

Table 1. Differential phenotypic characteristics of strains NL03-T5T, NL03-T5-1 and their closely
related species of the genus Cohnella.

Characteristics NL03-T5T NL03-T5-1 C. abietis HS21T

[32]
C. lupini LMG

27416T
C. arctica NRRL

B-59459T

Isolation source soil soil soil root nodules of
Lupinus albus soil

Colony colour white-cream white-cream white orange white-cream
Oxidase − − + + +
Catalase − − − + +

Growth at 37 ◦C w + − − −
Temperature range 10–37 10–37 4–30 10–35 10–35

pH range 5.0–8.5 5.0–8.5 6–8 5.5–8.5 5.0–9.0
Growth on media:

Reasoner’s 2A + + + − +
NA − − + + −

Hydrolysis of:
Gelatin + + − + +

Tweens 20 + + ND − −
Assimilation of:

Mannitol + + + − +
N-Acetyl-D-glucosamine + + + − +

Gluconate + + − − +
Capric acid − + − − +

Enzyme activities:
Esterase (C8) + + ND − +
β-Glucosidase + − ND + +

α-Mannosidase + + ND − −
GC content (mol%) 49.2 49.2 44.8 50.7 50.3

All data are from this study unless indicated otherwise. +, positive; −, negative; w, weakly positive reaction;
ND, no data available.

3.3. Chemotaxonomic Analysis

The cellular fatty acid compositions of strain NL03-T5T and its reference species
C. abietis HS21T, C. lupini LMG 27416T, and C. arctica NRRL B-59459T are given in Table 2.
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The whole-cell fatty acids of strain NL03-T5T contained a large amount of anteiso-C15:0
(50.7%) and iso-C16:0 (21.2%), and small amounts of C16:0 (7.2%), iso-C15:0 (5.5%), anteiso-
C17:0 (4.0%), iso-C14:0 (3.7%), iso-C14:0 (1.9%), anteiso-C13:0 (1.6%) and C14:0 (1.3%). The
prominent fatty acids were similar to other species of the genus Cohnella, indicating that
strain NL03-T5T is a member of the genus Cohnella. However, strain NL03-T5T contained a
higher amount of iso-C16:0 than its closely related species C. abietis HS21T, and it contained
a lower amount of C16:0 and a higher amount of iso-C15:0 and iso-C16:0 than C. lupini
LMG 27416T and C. arctica NRRL B-59459T. Moreover, strain NL03-T5T did not contain
alcohol-C16:1 ω7c (6.5%) or C16:1 ω11c (7.0%) whereas C. lupini LMG 27416T did. These
significant differences in the fatty acids clearly distinguished strain NL03-T5T from other
related species. The major polar lipids of strain NL03-T5T were DPG and PE, which were in
common with its closely related species. Otherwise, four unidentified amino phospholipids
(APLs) were also detected in strain NL03-T5T (Figure S3). The predominant menaquinone
of strain NL03-T5T was MK-7, which was found in all members of the genus Cohnella [2].

Table 2. Cellular fatty acids of strain NL03-T5T and its closely related species of the genus Cohnella.
Strains: 1, NL03-T5T; 2, C. abietis HS21T [32]; 3, C. lupini LMG 27416T; 4, C. arctica NRRL B-59459T.
Data of strain 1, 3 and 4 were from this study. All strains were incubated on R2A agar for 4 d at
30 ◦C. Values are percentages of the total fatty acids. Fatty acids that make up <1.0% of the total are
not shown. -, not detected or <1.0%.

Fatty Acid 1 2 3 4

anteiso-C13:0 1.6 4.3 - 2.1
iso-C14:0 3.7 2.7 1.1 2.6

C14:0 1.3 1.6 2.3 3.3
iso-C15:0 5.5 6.0 2.1 2.1

anteiso-C15:0 50.7 50.9 42.2 44.7
C16:0 7.2 9.9 22.0 14.5

alcohol-C16:1 ω7c - - 6.5 -
C16:1 ω11c - - 7.0 -
iso-C16:0 21.2 13.7 6.9 18.0
iso-C17:0 1.9 2.4 1.2 -

anteiso-C17:0 4.0 3.2 5.2 4.1
C17:0 - - - 2.1
C18:0 - - - 1.4

Summed feature 8 - - - 1.4
Summed features are fatty acids that cannot be resolved reliably from another fatty acid using the chromatographic
conditions chosen. The MIDI system groups these fatty acids together as one feature with a single percentage of
the total. Summed feature 8, C18:1 ω7c and/or C18:1 ω6c.

3.4. Genomic Characteristics and OGRI Values

The draft genome size of strain NL03-T5T was 7.44 Mbp with 43 contigs and an N50
value of 310,309 bp. In addition, the draft genome size of strain NL03-T5-1 was 7.44 Mbp
with 41 contigs and an N50 value of 310,325. The two genomics DNA G+C contents were
both 49.2 mol%, which were lower than the G+C contents of C. lupini LMG 27416T and
C. arctica NRRL B-59459T (50.7 and 50.3 mol%), and higher than C. abietis HS21T (44.8%)
(Table 1). The distribution of genes into functional categories of strain NL03-T5T using
RAST revealed that the highest percentages of genes were assigned to carbohydrates
(18.5%), amino acids and derivatives (17.3%), protein metabolism (9.3%) and cofactors,
vitamins, prosthetic groups, and pigments (8.9%) (Table S1). In addition, strains NL03-
T5T and NL03-T5-1 showed 20 gene differences in the functional category of amino acids
and derivatives, which probably cause phenotypic differences between the two strains
(Table S1). The antiSMASH tool identified four complete BGCs and four BGCs on the contig
edge that might be fragments of BGCs. The four complete BGCs include a resorcinol, a
terpene, a RiPP-like and a phosphonate. The dbCAN2 analysis of the NL03-T5T genome
predicted 513 CAZymes which were distributed across 114 different CAZymes families,
with glycoside hydrolases (GHs) and carbohydrate-binding modules (CBMs) constituting
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the most abundant families (Figure S4). Additionally, the ANI and dDDH values of strain
NL03-T5T and NL03-T5-1 were 99.98% and 100%, indicating the two strains were of the
same species. The ANI values among NL03-T5T and its closely related species C. abietis
HS21T and C. lupini LMG 27416T were 75.7% and 76.0%, respectively. The dDDH values
among them both were 20.4%. These values were lower than the threshold values of 95–96%
and 70% for species discrimination [33], indicating that strains NL03-T5T and NL03-T5-1
represent a novel species.

3.5. Pan-Genome Analysis of the Genus Cohnella

The pan-genome of the 29 Cohnella strains comprised 41,356 gene families. The core
genes were present in all 29 genomes, accessory genes were present in 2–28 genomes, and
unique genes were present only in one genome. The numbers of core genes, accessory
genes, and unique genes were 492 (1.2%), 19,166 (46.3%), and 21,698 (52.5%), respectively
(Figure 3a). The numbers of strain-specific genes ranged from 6 to 1649 (Figure 3b),
suggesting there is an obvious difference among the genomes of the 29 Cohnella strains. The
size of the pan-genome increased with the increasing number of genomes. Correspondingly,
the core-genome size decreased with the addition of genomes (Figure 3c). The curves of
pan-genome and core-genome sizes indicated an open pan-genome of the genus Cohnella,
which was supported by the parameter b value (0.567477, between zero and one) in the
power-law regression function. New gene distribution and gene family distribution of the
29 Cohnella strains are shown in Figures 3d and 3e, respectively. Functional characterization
from core, accessory, and unique genes was conducted using the COGs annotation. As
shown in Figure 3f, many core, accessory, and unique genes were assigned to the category
“S”, indicating their functions await to be studied further. Except for poorly characterized
categories, the largest proportion of core genes belonged to the categories “translation,
ribosomal structure and biogenesis (J)”, followed by “amino acid transport and metabolism
(E)”. In contrast, the highest percentage of accessory genes and unique genes was related
to carbohydrate transport and metabolism (G), followed by transcription (K). The results
above may explain the good adaptability of the Cohnella strains to different habitats through
gene gains or losses during frequent evolutionary changes at the genetic level.
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strain of the Cohnella strains. (c) Boxplots of the pan-genome (blue) and core genome (red) of
the 29 analyzed genomes. (d) Number of new genes represented within the numbers of Cohnella
genomes. (e) Number of gene families represented within the numbers of Cohnella genomes.
(f) The proportions of COGs functional categories of core genes, accessory genes, and unique genes. J,
translation, ribosomal structure and biogenesis; K, transcription; L, replication, recombination, and
repair; D, cell cycle control, cell division, and chromosome partitioning; V, defense mechanisms; T,
signal transduction mechanisms; M, cell wall/membrane/envelope biogenesis; N, cell motility; U,
intracellular trafficking, secretion, and vesicular transport; O, posttranslational modification, protein
turnover, and chaperones; H, coenzyme transport and metabolism; I, lipid transport and metabolism;
P, inorganic ion transport and metabolism; Q, secondary metabolite biosynthesis, transport, and
catabolism; C, energy production and conversion; G, carbohydrate transport and metabolism; E,
amino acid transport and metabolism; F, nucleotide transport and metabolism; S, function unknown;
-, general function prediction only.

4. Discussion

In this study, we isolated two bacterial strains, designated NL03-T5T and NL03-T5-1,
from a soil sample collected from the Nanling National Forests, PR China. The two strains
showed 99.8% 16S rRNA gene sequence similarity. The ANI and dDDH values between them
are 99.98% and 100%. These results indicate the two strains are of the same species. However,
strain NL03-T5T could secrete extracellular mucus whereas NL03-T5-1 could not (Figure 2a,b).
Furthermore, the distribution of genes into functional categories using RAST revealed
20 gene differences in the functional category of amino acids and derivatives between them
(Table S1). These different genes probably cause phenotypic differences. Based on phyloge-
netic analysis, genomic DNA G+C content, ANI and dDDH values, physiological characteri-
zation and chemotaxonomic analysis, strain NL03-T5T was identified as a novel species in
the genus Cohnella, for which the name Cohnella silvisoli sp. nov. is proposed.

The genus Cohnella strains are widely distributed in different environments. This to a
certain extent can be explained by the nature of Cohnella which allows it to acclimatize itself
to many environments. Comparative genomics indicated that the genus Cohnella had an
open pan-genome and exhibited broad genetic diversity. In general, an open pan-genome
is predominant in bacteria that are susceptible to horizontal gene transfer (HGT) [34]. The
pan-genome of 29 Cohnella strains contained 41,356 gene families, and the numbers of
core genes, accessory genes, and unique genes were 492, 19,166, and 21,698, respectively
(Figure 3a,c). Tettelin et al. (2008) has illustrated that the core genome is essential for
the basic lifestyle of bacteria, whereas the accessory genome and unique genes provide
some characteristics such species diversity and environmental adaptability [35]. Therefore,
we preliminarily inferred that the genomic differences in the Cohnella strains might be
associated with their colonized environments.

5. Description of Cohnella silvisoli sp. nov.

Cohnella silvisoli (sil.vi.so′li. L. fem. n. silva forest; L. neut. n. solum soil; N.L. gen. n.
silvisoli of forest soil, the source of isolation of the type strain).

Cells are aerobic, Gram-stain-positive, lophotrichous flagellation, rod-shaped, 1.2–2.0 µm
long and 0.4–0.6 µm in diameter after incubation on R2A agar for 4 d. Colonies on R2A
agar are white-cream, circular, convex with extracellular secretions or not. Growth occurs at
15–37 °C and at a pH range from 5.0 to 8.5 (optimum, pH 7.0). Cells can tolerate 0.5% (w/v)
NaCl. Oxidase and catalase are -negative. It can hydrolyze Tween 20, but not Tween 40,
casein, or CM-cellulose. Additionally, it can hydrolyze gelatin or not. The major fatty acids
(>10%) include anteiso-C15:0 (50.7%) and iso-C16:0 (21.2%). The predominant polar lipid
is DPG. The main respiratory quinone is MK-7. The API ZYM test result was positive for
alkaline phosphatase, esterase, lipase, leucine arylamidase, acid phosphatase, naphthol-AS-
BI-phosphohydrolase, α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase, N-
acetyl-β-glucosaminidase and α-mannosidase; but negative for valine arylamidase, cystine
arylamidase, trypsin, α-chymotrypsin and α-fucosidase. The API 20NE test results were
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positive for gelatin hydrolysis, 4-nitrophenyl-β-D-galactopyranosidase and β-glucosidase
or not; but negative for nitrate reduction, indole production, glucose fermentation, arginine
dihydrolase and urease. It can assimilate glucose, L-arabinose, mannose, mannitol, N-
acetyl-D-glucosamine, maltose, gluconate, adipate, malic acid, citric acid, phenylacetic acid
and capric acid or not.

The type strain is NL03-T5T (=GDMCC 1.2294T = JCM 34999T), which was isolated
from a soil sample collected from the Nanling National Forests, Guangdong Province, PR
China. The genomic DNA G+C content of the type strain is 49.2 mol%.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms11112726/s1, Figure S1: The neighbor-joining
tree based on 16S rRNA gene sequences constructed revealing the phylogenetic position of strain
NL03-T5T, NL03-T5-1 and its closely related species of the genus Cohnella. Only the bootstrap values
(represented percentages of 1000 replication) >50% are shown. GeneBank accession numbers are
shown in parentheses. Bar, 0.005 substitutions per nucleotide position; Figure S2: The minimum
evolution tree based on 16S rRNA gene sequences constructed indicating the relationship of strain
NL03-T5T, NL03-T5-1 and its closely related species of the genus Cohnella. Bootstrap values (repre-
sented percentages of 1000 replication) >50% are shown at nodes. GenBank accession numbers are
shown in parentheses. Bar, 0.005 substitutions per nucleotide position; Figure S3: Two-dimensional
thin-layer chromatograms of the polar lipids of strain NL03-T5T and its closely related species,
C. lupini LMG 27416T and C. arctica NRRL B-59459T, by spraying with 5% ethanolic molybdatophos-
phoric acid and heating them at 140 ◦C for 15 min. Abbreviations: DPG, diphosphatidylglycerol;
PE, phosphatidylethanolamine; PG, phosphatidylglycerol; APL, unidentified aminophospholipid;
Figure S4: Total CAZymes in the various families, predicted in NL03-T5T genome; Table S1: Genome
characteristics of Cohnella silvisoli NL03-T5T and NL03-T5-1.
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