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Abstract: Bacterial biofilms are formed by communities, which are encased in a matrix of extracellular
polymeric substances (EPS). Notably, bacteria in biofilms display a set of ‘emergent properties’ that
vary considerably from free-living bacterial cells. Biofilms help bacteria to survive under multiple
stressful conditions such as providing immunity against antibiotics. Apart from the provision of
multi-layered defense for enabling poor antibiotic absorption and adaptive persistor cells, biofilms
utilize their extracellular components, e.g., extracellular DNA (eDNA), chemical-like catalase, various
genes and their regulators to combat antibiotics. The response of biofilms depends on the type of
antibiotic that comes into contact with biofilms. For example, excessive production of eDNA exerts
resistance against cell wall and DNA targeting antibiotics and the release of antagonist chemicals
neutralizes cell membrane inhibitors, whereas the induction of protein and folic acid antibiotics
inside cells is lowered by mutating genes and their regulators. Here, we review the current state of
knowledge of biofilm-based resistance to various antibiotic classes in bacteria and genes responsible
for biofilm development, and the key role of quorum sensing in developing biofilms and antibiotic
resistance is also discussed. In this review, we also highlight new and modified techniques such
as CRISPR/Cas, nanotechnology and bacteriophage therapy. These technologies might be useful
to eliminate pathogens residing in biofilms by combating biofilm-induced antibiotic resistance and
making this world free of antibiotic resistance.

Keywords: antibiotic resistance; biofilms; CRISPR/Cas; eDNA; exopolysaccharides; nanoparticle;
quorum sensing; phages

1. Introduction

Biofilms are defined as immobile microbial (e.g., bacteria) communities, which have
an innate ability to grow and colonize on various surfaces including medical implants,
catheters, and sutures [1]. Bacteria are either live in free-living planktonic mode or attached
to the surface within biofilms, enclosed by a polymeric matrix. Therefore, bacteria exhibit
two modes of growth: the free-living planktonic mode or the sessile, surface-attached mode
within biofilms, which are structured communities encased in a self-produced polymeric
matrix [2,3]. The forming ability of biofilms provides a dominant mode of growth for
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bacteria in nature [4]. Biofilms provide complex systems comprised of many species and
possessing high cell densities ranging from 108 to 1011 cells g–1 wet weight [5]. Biofilms can
self-produce extracellular polymeric substances, which contribute to intensive infections,
leading to extensive and expensive treatments [6]. The architecture of biofilms comprises
microbial aggregate surrounded by an extracellular matrix, consisting of various polymers
like exopolysaccharides (EPS), proteins, eDNA, and other amyloidogenic proteins [7]. The
cells in multilayered biofilms are arranged closely with each other, either in contact with
the surface, e.g., with substratum, or in flocs, which constituent a mobile form without
making contact with the substratum [3].

Based on matrix properties and intercellular interactions, e.g., social and physical
contact, biofilms present a different lifestyle to bacteria than free-living bacterial cells.
Therefore, bacterial communities within biofilms possess new emergent properties, which
are not present in free-living bacterial cells [8]. Furthermore, the cells within biofilms
undergo differentiation due to multiple factors, e.g., local conditions such as pH, and,
most importantly, due to molecular factors, e.g., the expression of specific genes and
proteins required for the growth and development of bacteria in spatially heterogeneous
ecosystems, which provides another source of heterogeneity to bacterial communities [9].
The biofilm-based emergent properties include new structures, functions and activities, new
patterns and novel properties that arise during and after biofilm development [10]. These
emergent properties, such as physical and social contact among the microbial communities,
increased antibiotic resistance and an enhanced rate of gene exchange, are governed by
the surrounding EPS matrix, which encloses bacterial cells within biofilms and is mostly
composed of eDNA, lipids, proteins and sugars [11].

Biofilms cause approximately 80% of chronic and reoccurring infections in hu-
mans [7]. In the USA, biofilms act as the etiologic agent for around 60% of all chronic
infections [12,13]. According to Omar et al. [14,15], 1.96 million cases of biofilm-based
infections are reported annually in the USA, causing 268,000 deaths and costing approx-
imately USD 18 billion in direct treatment of such infections. Individuals with medical
implants and medical devices as well as immunocompromised immunity are at high risk of
biofilm-related infections [13]. Mycobacterium tuberculosis was observed to cause infections
in patients carrying clinical biomaterials and prosthetic joints [14]. Similarly, Streptococcus
pneumoniae and Haemophilus influenza are involved in chronic otitis media [15]. Treating
these infections is very difficult as biofilms protect pathogens by making them resistant to
a variety of antibiotics. Therefore, new alternative options to antibiotics are required for
combating antibiotic-resistant biofilm bacterial communities, which include CRISPR/Cas,
nanotechnology, bacteriophage therapy, etc. This review presents the current state of
knowledge of biofilm-based antibiotic resistance in bacteria. Genes responsible for biofilm
development and their potential against various classes of antibiotics as well as the key role
of quorum sensing (QS) in developing biofilms and antibiotics resistance are also discussed
in this review. Furthermore, this review also highlights new and modified techniques like
clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated
(Cas) proteins, nanotechnology and bacteriophage therapy, which may be useful to combat
biofilm-induced antibiotic resistance.

2. Biofilm Development and Molecular Biology

Bacteria start to develop biofilms under unfriendly conditions. In unfavorable con-
ditions, microorganisms control the declaration of the progression of biofilm-shaping
qualities through QS, nucleotide second courier-based flagging, and so on, which supply
microorganisms with the ability to survive in unhabitual conditions such as UV radiation,
extreme temperature, exposure to antibiotics and pH, high salinity, high pressing factor,
limited nutrients, anti-infection agents, and so forth [16]. The development of biofilms
is a multistep process that is initiated through the reversible attachment of bacteria on
the surface (which could depend upon the protein), where bacteria are still vulnerable
to antibiotics at this stage (Figure 1) [17]. The next step they follow is the replication of
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bacteria attached to the surface forming microcolonies and proceeding with the production
of an extracellular polymer matrix around them. This process is completed within just a
few hours after the attachment of bacteria to the surface [17]. At that stage, the biofilms
grow in thickness and are practically visible, showing the maximum tolerance to antibiotics.
Important properties of biofilm-growing bacteria are different from those of planktonic
bacteria, and this has significant diagnostic and therapeutic consequences [18]. However,
the development of biofilms solely depends on the type of gene, which each expresses
differently to different types of antibiotics.
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Figure 1. This figure represents the multiple-step process for biofilm formation in bacteria. Biofilm
starts with bacterial attachment to a biotic or abiotic surface, which is irreversible, and then it matures
through the replication of bacteria and production of EPS, ultimately leading to the dispersion
of biofilms.

The genetics and environmental signals contribute to the regulation of biofilm
development and dispersion in bacteria [19]. Three main players’ quorum sensing (QS),
bis-(3′-5′)- cyclic diguanosine monophosphate (c-di-GMP), and small RNAs (sRNAs) are
considered to be involved in the regulation of biofilm development and dispersion [20,21].
The QS is a special language used by bacteria for intercellular communication, which
functions by small signal molecules called autoinducers [19]. Different genes control the
QS pathway, comprising approximately 10% of the bacterial genome [22]. The QS pathway
is required for the development and dispersal of biofilms, importantly considered as main
regulators of biofilm dispersal [23,24].

Furthermore, c-di-GMP is a complex signaling network, considered to be a decider
between the planktonic and biofilm-associated lifestyle of bacteria [25,26]. The c-di-GMP-
based system regulates EPS synthesis, eDNA secretion, syntheses of pili and adhesins
(a virulence factor) and controls cell death and motility [19]. Finally, sRNAs participate in
a wide range of post-transcriptional gene regulation in bacteria [21,27,28]. Hence, sRNAs
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are considered to be involved in regulating the biofilm life cycle of bacteria, e.g., regulation
of EPS synthesis, regulation of flagella, curli and cell surface structures as well as the
regulation of biofilm-associated transcriptional and post-transcriptional regulators [21].

In addition, based on genomic analysis of bacteria, various genes are reported to
be responsible for biofilm development and dispersion (Table 1). The ndvB gene was
discovered in the genomic makeup of Pseudomonas aeruginosa, which encodes for glucosyl-
transferase that upregulates the synthesis of cyclic-b-(1,3)-glucans (important for biofilm
formation) [29]. Moreover, Escherichia coli contains HlyB–HlyD–TolC complex, which is
responsible for the exportation of hemolysin through biofilms, contributing to multi-drug
resistance [30]. RapA genes, on the other hand, were also found to be responsible for
biofilm-mediated resistance to penicillin in E. coli [31]. In Vibrio cholera, tssC1 from the first
type VI secretion system (T6S) was characterized as a virulent gene for toxin delivery in
biofilm-related drug resistance [32]. Furthermore, icaABCD gene clusters were found to be
important for enhancing virulence factors as well as for biofilm development and disper-
sion in methicillin-resistant Staphylococcus aureus [33]. Similarly, icaA and icaD genes were
reported to be associated with the formation of slime and biofilm in S. epidermidis [34,35].
However, different types of genes are expressed in different types of bacteria, but the
research community has consensus over the fact that biofilms contribute significantly to
antibiotic resistance, thus creating severe medical complications and consequences.

Table 1. Genes/clusters responsible for biofilm formation and biofilm-based antibiotic resistance in
various bacteria.

S. No Species Gene/Clusters Functions References

1 E. coli

HlyB–HlyD–TolC
complex

Exports hemolysin through biofilms, contributing to
multi-drug resistance [30]

RapA Responsible for biofilm-mediated resistance to penicillin [31]

2 P. aeruginosa
algACD Involved in alginate synthesis, an integral part of cystic fibrosis [36]

ndvB Responsible for the expression of ethanol oxidation genes [29]

tssC1 Involved in biofilm-specific antibiotic resistance [37]

3 Salmonella
typhimurium csgD Responsible for biofilm formation [38]

4 S. aureus icaABCD Enhancing virulence factors as well as for biofilm development
and dispersion in methicillin resistance [33]

5 S. epidermidis icaA and icaD Associated with the formation of slime and biofilm [34]

6 V. cholera tssC1 Virulent gene for toxin delivery in biofilm-related
drug resistance [32]

3. Biofilm-Based Medical Problems

Bacterial biofilms pose serious health issues due to their capabilities to combat external
stressors, host defense systems and resist antibiotics; hence, they contribute to chronic
infections [39]. Bacterial biofilms contribute to approximately 80% of chronic and recurrent
microbial infections in the human body [7]. A large number of diseases are associated with
bacterial biofilms in humans such as chronic osteomyelitis, chronic otitis media, chronic
prostatitis, colitis, conjunctivitis, otitis, urethritis and vaginitis, a very short list of common
diseases [40] (Figure 2). Biofilms also contribute to the development of gingivitis and
infections in the oral cavity [23]. Furthermore, biofilms have been reported to infect artificial
implants, contact lenses, orthopedic prostheses, respirators, sigmoidoscopies, urinary
prostheses and ventricular assist devices [7]. Biofilms can even infect breast implants,
leading to severe health issues. According to Davies [19], two main characteristics of
biofilms contribute to problems associated with human biofilm infections. Firstly, biofilms
are extremely resistant to immunological-based elimination as well as antimicrobial-agent-
based killing and clearance. Secondly, biofilms provide shelter to individual bacterial cells
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inside the human body, making them invisible in surrounding tissues and the circulatory
system, which might later cause acute illness as they are protected from antimicrobial
agents even after vigorous use.
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Figure 2. Pathogenic bacteria form biofilms on various artificial implants/devices, which leads to the
development of various serious medical implications in humans.

The distinguishing ability of bacteria to produce biofilms empowered them to become
more pathogenic than ever. In particular, S. Aureus can colonize on medical devices and
produce biofilms, which harbor teichoic acids, various genes, and eDNA in the EPS matrix,
thus contributing to many nosocomial infections, e.g., pneumonia, bloodstream infections,
endocarditis and osteomyelitis [41]. Moreover, the biofilm-producing abilities of Klebsiella
pneumonia and E. coli make them cause urinary tract infections (UTIs) and other diseases [42].
P. aeruginosa is associated with chronic lung disease and cystic fibrosis due to its ability
to form antibiotic-resistant biofilm in nosocomial settings. Moreover, these biofilms not
only tolerate antibiotic treatment but also contribute to the genetic determinants causing
mutations [43]. The infection of gums via the infiltration of the soft tissues and bones, a
condition called periodontitis, is the outcome of P. aerobicus and Fusobacterium nucleatum
biofilms [44]. The matrix of biofilm not only provides protection to bacteria from nutrient
scarcity but also shear mechanical forces and altered pH [45], as well as blocking the access
of antibiotics to bacteria residing in the matrix of biofilms. Hence, the biofilm matrix has
the ability to provide additional resistance against antibiotics, which leads to the emergence
of multi-drug-resistant bacteria [46].

4. Biofilm-Based Antibiotic Resistance

Biofilms protect bacteria against multiple extreme factors, e.g., altered pH, osmolarity,
nutrient scarcity, and mechanical and shear forces [45]. Most importantly, biofilms block the
access of antibiotics to bacterial communities residing inside biofilms [47]. The resistance
to antibiotics in biofilm communities occurs through multiple strategies, as explained in
Figure 3, which include chemical alteration in the microenvironment in biofilms, slow
or incomplete penetration through biofilm by antibiotics, and various subpopulations of
microorganisms inside biofilms [3]. The multicellular consortia residing in biofilms form
the basis of these mechanisms, which elevates the ability of bacteria to develop antibiotic
resistance [48]. EPS plays an important role in the development of multicellular consortia
by holding bacterial cells together, formulating a heterogeneous environment and enabling
biofilms to work in a multicellular system [49]. Bacteria residing inside the biofilms showed
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a higher frequency of mutations and horizontal gene transfer as compared to bacteria living
in planktonic states. The ability of bacteria to produce antibiotic-degrading enzymes inside
EPS empowers them to mutate and resist antibiotics [50].
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Figure 3. This figure represents the general hypothesized biofilm-mediated resistance mechanism in
pathogenic bacteria.

Generally, the nature of bacterial biofilm is a major factor in the development of mul-
tidrug resistance. The composition of biofilm mainly constitutes water, polysaccharides, or
glycoprotein gel, which decreases the effective diffusion of antibiotics inside biofilms. The
average rate of diffusion coefficients in biofilms is around 40% of the respective diffusion
coefficient in pure water [47]. The presence of EPS and increased glycol protein inside
the extracellular matrix of biofilm decreases the diffusion coefficient, which reduces the
mobility of antibiotics inside biofilms. In addition to the physical immobility of antibiotics,
the antibiotics inactivate or sequester by binding as they penetrate through the biofilm
matrix. Briefly, this review aims to present the current state of knowledge about the biofilm
defense mechanisms of different species of bacteria against different classes of antibiotics.

4.1. Cell Wall Targeting Antibiotics

The bacterial cell wall is one of the most important constituents for their survival and
metabolism; hence, antibiotics are specifically designed or obtained to hinder bacterial
cell synthesis and proliferation [51]. The D-alanyl-alanine part of peptidoglycan in the
bacterial cell wall is cross-linked by residues of glycine, which is targeted by the β-lactams,
thus inhibiting bacterial cell synthesis [52]. β-lactam antibiotics with their broad-spectrum
range are effective against bacterial infections, caused by various pathogenic bacteria.
This group of antibiotics, e.g., cephalosporin, is used to treat sinus, ear and urinary tract
infections as well as to streptococcal and staphylococcal infections [53]. β-lactams and
vancomycin antibiotics are among these agents, which were once considered the most
effective antibacterials but have now been threatened by multidrug-resistant bacteria [54].
Particularly, biofilm-based resistance threatens the efficiency of β-lactam antibiotics.

The extracellular matrix of biofilms contains eDNA, which protects the bacteria against
positively charged antibiotics [55] and escalates while interacting with some antibiotics.
As observed in the case of S. epidermidis biofilms, eDNA doubles in concentration when
interacting with vancomycin activity [56]. The increased amount of eDNA is responsible for
chelating cations and activating signaling pathways of antimicrobial resistance like PmrAB
and PhoPQ [57], causing the rapid spread of antibiotic resistance genes in bacteria [58].
Furthermore, sigma B factor in S. aureus controls some protein productions involved in
developing resistance against cell wall active antibiotics like vancomycin [59]. Additionally,
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QS receptors, e.g., TraP quorum-sensing receptor, play an important role in S. aureus by
showing elevated resistance against the cephalosporins. These receptors are associated with
increased peptidoglycan synthesis and eDNA content of biofilms [60]. However, further
extensive studies are required to access other QS receptors to analyze tolerance against the
antibiotics [48].

4.2. Protein Synthesis Targeting Antibiotics

Protein synthesis is important for the conformational alignment of bacterial metabolism,
which in turn provides an important target for antibiotics [61]. These antibiotics specifically
target the formation of 30S initiation complex or the formation of 70S ribosome and, thus,
prevent the elongation process of the polypeptide chain [62]. Aminoglycoside antibiotics
have a specific affinity towards the 30S ribosomal subunit by altering the synthesis pro-
cess, e.g., streptomycin and tobramycin bind with 30S initiation complex and block the
formation of larger 70S subunits [63]. Moreover, doxycycline can hinder the binding of
aminoacyl-tRNA by blocking the aminoacyl site (A site) of 30S ribosome [64]. The main
role of aminoglycosides is to treat Gram-negative bacterial infections, particularly for the
treatment of sepsis. Moreover, they are potent antibiotics for the treatment of tuberculosis,
as streptomycin is among the few effective drugs against tuberculosis [65]. However, the
biofilm-producing ability of pathogenic bacteria changed the scenario for protein synthesis
targeting antibiotics by developing resistance in targeted pathogenic bacteria.

Recent studies implicated biofilm-based resistance in P. aeruginosa against tobramycin
through periplasmic glucans (specifically expressed in biofilms), which bind to tobramycin
and restrict their passage towards target proteins [66]. Moreover, two important factors, e.g.,
accessory gene regulator (agr) and sigma factor B (SigB), have been reported in S. aureus [67].
The agr is required by biofilms for colonization during the dissemination phase of infection,
whereas alternative Sig B is needed for host tissue colonization during stress responses like
antibiotic exposure, adhesion and expression [67]. Studies observed that Sig B also plays a
major role in the upregulation of cell-surface proteins including fibronectin-binding protein
A (FnBPA) and the downregulation of various exotoxins [68]. Consequently, findings stated
that sigma B induces the production of biofilm through the up-regulation of the FnBPA
gene upon exposure to aminoglycoside antibiotics [68]. Similarly, Sig-B-based antibiotic
resistance patterns have been analyzed in clinically relevant pathogens after exposure to
the glycopeptide class of antibiotics [69].

4.3. DNA Targeting Antibiotics

The antibiotic class of quinolones and fluoroquinolones inhibits bacterial type II
topoisomerases and interferes in DNA coiling. Quinolones bind directly to the active site of
topoisomerases, whereas fluoroquinolones stabilize enzyme–DNA complex to deactivate
or interrupt the relegation step [70]. During nosocomial and genitourinary infections,
fluoroquinolones and quinolones are prescribed for treatment [71]. Additionally, they are
the first-line therapy for acute bacterial prostatitis and pyelonephritis and are recommended
once other classes of antibiotics have failed to comply [72].

In recent years, researchers have reported that upon exposure to fluoroquinolone
antibiotics, relaxing of supercoiling of DNA induced the formation of biofilms, particularly
under aerobic conditions [73]. The strains, which were resistant to fluoroquinolone, were
invasive and posed more threat to be transmitted among humans. The relaxation of
DNA supercoiling triggered an increased amount of EPS production and eDNA, which
restricted the induction of fluoroquinolone inside the biofilm matrix [57]. Later on, wild-
type strains of Campylobacter jejuni and fluoroquinolone-resistant strains were injected into
Galleria mellonella larvae, revealing that even a small amount of fluoroquinolone-resistant
strain was responsible for the death of the tested animal as compared to wild-type strain [74].
Hence, antibiotic-resistant strain poses more pathogenic capabilities than wild type by the
relaxation of supercoiled DNA.
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4.4. Cell Membranes Targeting Antibiotics

Disturbing the plasma membrane initiates a cascade of events including depolarization
of proteins, DNA and RNA, leading to bacterial cell death [75]. Many antibiotics work on
this principle, among which macrolides like daptomycin and other cyclic lipopeptides are
common. The daptomycin enters the phospholipid bilayer membrane and causes the loss
of membrane potential, hence redirecting various important proteins for cell replication
and division [76]. Daptomycin creates stress inside the cell membrane, leading to the
activation of cytotoxic reactive oxygen species (ROS) by increasing peroxide production,
thus neutralizing bacterial cells [77] S. aureus bacteremia and S. aureus endocarditis are
treated using daptomycin in various regions of the world. Daptomycin has the ability to
bind with pulmonary surfactants, so this antibiotic is not recommended for pneumonia [78].
However, most importantly, biofilms make daptomycin ineffective against pathogens,
e.g., S. aureus.

The activity of daptomycin was low against bacteria producing adequate biofilms [79].
Parra-Ruiz et al. [80] reported that daptomycin was effective against planktonic S. aureus
but showed ineffectiveness against biofilm-embedded S. aureus. In another study, biofilms
producing S. aureus appeared to be unaffected by daptomycin due to the presence of a
substance called catalase, which acted as an antagonist against cytotoxic peroxide and
inhibited the production of ROS [81]. This study revealed the presence of catalase in biofilm-
producing S. Aureus, which protected cells from daptomycin ROS capability [81]. The
presence of a catalase survival mechanism against ROS activity underlines the importance
of biofilm against environmental stressors.

4.5. Folic Acid Synthesis Targeting Antibiotics

Folic acid constitutes a necessary nutrient for the synthesis of protein and nucleic
acid in bacteria, via the substrate para-amino-benzoic acid (PABA) [82]. The sulfonamide
class of antibiotics are in particular used against the production of folic acids, acting
as various competitive inhibitors of PABA and dihydropteroate synthetase, important
enzymes for folic acid metabolism [83]. The sulphonamide drugs are recommended to
treat thyroiditis, inflammation, and glaucoma inflammatory diseases and coughs [84].
They are even recommended to treat livestock diseases such as gastrointestinal and
respiratory tract infections [84]. They are widely used with broad spectrum because
they contain other moieties than a typical antibiotic like thiazide diuretics, acetazo-
lamide and some COX-2 inhibitors [85]. However, biofilm-based resistance threatens
the efficiency of sulfonamide antibiotics.

Integrons (genetic elements) play an important role in biofilm-based resistance to sulfon-
amide by spreading resistance genes among bacterial communities [86]. For example, sul genes
inside the class 1 integrons encoded for sulfonamides resistance, e.g., sulfamethoxazole [87].
Biofilms are predominant in stress environments, which play an important role in dynamic
exchange between attached and planktonic populations along with gene exchanges; among
them, integrons play a major role in transferring antibiotic resistance genes [88]. The pres-
ence of class 1 integrons and the sul gene in water biofilms were investigated by Farkas
et al. [86], where they identified that S. Vitulinus, S. Saccharolyticus, and Enterococcus faecalis
contain class 1 integrons associated with biofilm formation. They emphasized the risk of
bacterial resistance, which might be perpetuated through environmental species in the form
of biofilms [86]. Moreover, sul genes restrict the absorption of sulfonamides inside bacterial
cells, thus restricting the drug from reaching the target [89,90]. Antunes et al. [89] reported
sul genes (sul1, sul2 and sul3) in 50 uropathogenic E. coli strains, which were resistant to
sulfamethoxazole.

5. Quorum Sensing and Biofilm-Based Resistance

The QS plays a significant role in regulating biofilm development in both Gram-
positive and Gram-negative bacteria [91]. The Gram-negative bacteria use acyl homoserine
lactones (AHL) containing N-3-oxohexanoyl-l-homoserine lactone (3OC6-HSL) ring as a
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signal molecule to regulate the QS system [92,93], while oligopeptides are responsible for
regulating the QS process in Gram-positive bacteria [94]. A Gram-negative bacterium,
P. aeruginosa, uses two signaling systems of QS, rhlI/rhlI and lasl/lasR, which activate
transcriptional regulators responsible for the synthesis of alginates, EPS, and toxic factors,
thus leading to biofilm development [93]. Similarly, two-component sensing proteins are
responsible for recognizing and regulating gene expression involved in biofilm formation
in Gram-positive bacteria [94]. Although studies on the contribution of QS toward biofilm-
based resistance against antibiotics are limited, it is believed to be a key player in the
phenomenon of biofilm-based antibiotic resistance.

Previous studies highlight the role of QS in biofilm formation and subsequent devel-
opment of resistance in pathogenic bacteria to antibiotics. In two different studies, biofilms
developed by mutants of P. aeruginosa, lacking QS systems in biofilms, were more suscepti-
ble to tobramycin [95] and colistin [96] than wild-type biofilms. E. faecalis, possessing fsr
QS system and gelE protease (responsible for the fratricidal release of eDNA in developed
biofilms), was resistant to gentamicin, daptomycin and linezolid [97]. Additionally, QS
receptors like AgrA and AgrC played an important role in S. aureus, indicating elevated
resistance against cephalosporins, and further extensive studies are required to access other
QS receptors to analyze tolerance against antibiotics [97]. The receptors of QS played an
important role in increasing the EPS content of the biofilm, which in turn decreed the access
of certain antibiotics like cephalosporins to the extracellular matrix.

Although QS contributes to the development of antibiotic resistance in bacteria, this
system is now considered an attractive site for therapy by targeting through abiotic
(e.g., altering pH) and biotic (e.g., enzymes) factors [98]. These factors have the ability
to interfere with QS by degrading the signals required for biofilm development, a process
known as quorum quenching (QQ) [99]. For example, two enzymes, lactonases and acy-
lases, have been reported with the ability to degrade AHL [98]. In these two enzymes,
acylases convert AHL to fatty acid and homoserine lactone by cleaving the AHL amide
bond [100], while lactonases degrade the HSL ring of an AHL and generate acyl homoser-
ines [99]. These enzymes can be acquired from natural biological sources such as lactonases
(the paraoxonase (PON) family of enzymes), which are present in humans [101] and
Drosophila [101]. It is believed that the enzymes are involved in manipulating microbial
biofilms by interfering the microbial social interactions.

Furthermore, the QQ can be utilized as a method to assess the exact contributions of
QS to biofilm resistance and tolerance [102]. Small molecules are usually used to increase
biofilm susceptibility to antimicrobials in the QQ method. Brackman et al. [103] reported
lowered biofilm resistance of P. aeruginosa and Burkholderia cepacia to tobramycin while
using QS inhibitors cinnamaldehyde and baicalin hydrate. By inhibiting receptors of
TraP quorum-sensing in S. aureus using hamamelitannin, the activity of cephalosporins,
vancomycin, daptomycin, linezolid, tobramycin and fusidic acid is significantly increased
by reducing the amount of peptidoglycan synthesis and eDNA content of biofilms [103].
Although disrupting QS systems provides an effective way to lower biofilm recalcitrance,
further research is needed to better understand the overall role of QS in biofilm resistance
and tolerance to antibiotics.

6. Alternative Strategies for Combating Antibiotic Resistance

Biofilms present troubles for treatment through antibiotics by developing various
resistance mechanisms, leading to severe medical complications in humans. As mentioned
above, various classes of antibiotics are now ineffective for eradicating bacterial infections
associated with biofilm formation. Therefore, new alternative options to antibiotics are
required to combat antibiotic-resistant biofilm bacterial communities. In this part, some
alternative strategies with the possible potential of eliminating biofilms or disrupting
developed biofilms are discussed (Figure 4).
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Figure 4. This figure represents new alternative options to antibiotics for combating antibiotic
resistance in biofilm bacterial communities.

6.1. Phages Therapy

Phages are a group of rigorously host-specific viruses, which infect and require only
bacteria for their survival and self-replication [104]. In recent years, slower new antibiotic
discoveries and the rapid emergence of antibiotic resistance in bacteria have made phages a
promising alternative therapy for eradicating antibiotic-resistant pathogenic bacteria [104].
So far, countless phages have been discovered [105] and reported with abilities to destroy
bacteria, thus representing a potential candidate for preventing biofilm development [106].
Phages are even found to penetrate developed biofilms and disrupt biofilm structures with
or without killing the resident bacteria [106]. Chan et al. [107] categorized phage-based
removal of biofilms into three groups; first, intra- to extracellular breakdown of bacteria
cells; second, extracellular to intracellular breakdown of bacteria cells; third, chemical-based
dispersion of the biofilm matrix or components, e.g., EPS. Various phage-based treatments,
e.g., phage therapy, phage-derived lysins, and phage-derived depolymerases, are used to
degrade or disrupt the biofilm matrix or components [108]. Phage therapy has been proven
to be an effective tool for exterminating biofilms developed by pathogenic bacteria.

In recent years, different studies have been carried out using phage therapy to combat
bacterial biofilms, thus preventing biofilm-based antibiotic resistance [109–111]. In this
regard, the first attempt was made using Escherichia virus T4 to eradicate developed
biofilms of E. coli [112]. Researchers have also targeted eradicating biofilms developed
on the surfaces of medical devices, e.g., prostheses and catheters [110,113]. In another
study, the anti-biofilm activity of phage was assessed against prosthesis-related infections
caused by S. aureus [114]. The results revealed a 3.3-fold reduction in biofilm biomass along
with a decrease in the thickness and area of the biofilm. Similarly, Maszewska et al. [115]
reported the phage potential involved in reductions and subsequent clearance of catheter-
associated biofilms formed by Proteus mirabilis. In addition, phage therapy for eradicating
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biofilms developed by multi-drug-resistant bacteria has been assessed in recent years,
e.g., Enterobacter cloacae [44], P. aeruginosa [116], and S. gallinarum [111] and S. aureus [114].
Furthermore, bacteriophage therapy can also be used for drug delivery to targeted areas
through viral vectors [117]. These viral vectors of bacteriophage specifically target bacteria
without affecting normal flora like antibiotics [118]. A study reported successful treatment
of bacteriophage therapy against antibiotic-resistant K. pneumoniae in mice [119].

6.2. CRISPR/Cas Technique

The CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-
associated genes) system is responsible for providing defense to bacteria against bacte-
riophages, which destroy bacteria [120]. However, recent research advances explored the
CRISPR/Cas technique as an effective approach for combating antibiotic resistance. The
CRISPR/Cas system can be used either for direct killing of pathogenic bacteria or to eradi-
cate antibiotic resistance in bacteria. This technique presents high specificity and selectivity
for attacking antibiotic resistance genes (ARGs) and eliminating bacteria in complex bacte-
ria populations [121]. Direct killing of bacteria through CRISPR/Cas involves targeting
genes on chromosomes and plasmids [122,123]. This mode, used for eliminating pathogenic
bacteria, is demonstrated in S. enterica [124], S. pneumonia [125] and S. aureus [126]. Fur-
thermore, E. coli was directly eliminated by targeting the fucP and ogr genes using the type
I-E CRISPR/Cas system [124]. Similar target-killing effects were observed in E. coli using
a CRISPR-Cas13a system [127]. In addition, Selle et al. [128] reported the potential of the
type I-B CRISPR/Cas system for preventing and treating Clostridioides difficile infection by
targeting bacterial chromosomal DNA [128].

The CRISPR/Cas system possesses the potential to restore bacterial susceptibility to
antibiotics by neutralizing ARGs, thus eliminating pathogenic bacteria [120,126]. In this
approach, ARGs are targeted, which are present on either the plasmid or chromosome
and make drug-resistant bacteria sensitive to antibiotics. This technology has successfully
suppressed targeted ARGs responsible for antibiotic-resistance pathogens [129]. A study
reported that the CRISPR/Cas system made antibiotic-resistant S. aureus re-sensitive to
kanamycin [125] and methicillin [130]. Rodrigues et al. [131] neutralized tet(M) and erm(B)
genes responsible for tetracycline and erythromycin resistance in E. faecalis, respectively.
The study showed a significant reduction in antibiotic resistance in E. faecalis in both in vitro
and in vivo experiments. In another study, this tool was used to simultaneously remove
drug-resistance genes on several plasmids [132]. Furthermore, the CRISPR/Cas system
was also used for disrupting and neutralizing a wide range of ARGs in pathogenic bacteria,
e.g., tarH, tarO, and tarG genes in S. aureus [133]; sul2, blaOXA-55-like, and nmcR-like drug re-
sistance genes in Shewanella algae [134]; tet(A), ramR, and mgrB genes in K. pneumoniae [135];
and the mcr-1 gene in E. coli [99].

6.3. Nanoparticles Approach

Nanoparticles (NPs), ranging between 1 and 100 nm in size [136], are considered
the most promising approach to deal with multidrug resistance and biofilm-based in-
fections [137]. Biofilms provide shelter for bacterial communities by reducing antibiotic
penetration, which is overcome by formulating NPs, which possess the ability to cross the
biological barrier [138]. NPs have been reported to overcome current antibiotic resistance
mechanisms, e.g., lowered uptake and higher efflux of drugs from microbial cells, biofilm
development, and protective intracellular bacteria [137]. The existing treatment strategies
for biofilm-based infections present several limitations that can be overcome by the nano-
formulation of drugs. The main characteristic of such formulation is to cross biological
barriers and reach target sites. A variety of NPs, e.g., metal NPs, green NPs and several
other combinations of NPs, have been overserved to have antimicrobial and anti-biofilm
properties [7,131]. In recent years, several reports confirmed the efficacy of NPs for the
elimination of bacterial biofilm communities (Table 2) [7,131,132,137].
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Table 2. Potentials of NPs against pathogenic bacterial biofilms.

S. No Nanoparticles NPs Size (nm) Synthesis Method Targeted Pathogens References

1 Ag-NPs 2–10 Leaf extract of
Allophylus cobbe P. aeruginosa, Shigella flexneri, S. aureus, S. pneumonia [139]

2 Au-NPs 10.2–11.5 Brust–Schiffrin two-phase
synthesis method S. aureus, P. aeruginosa [140]

3 Fe2O3-NPs 11 Co-precipitation of ferric
and ferrous ions Bacillus subtili [141]

4 MgO-NPs 50–70 Wet chemical method S. aureus, P. aeruginosa [142]

5 Ni-NPs 41.23 Solution reduction process Against oral bacteria [143]

6 ZnO-NPs 10–100 Co-precipitation method P. aeruginosa, Proteus vulgaris B. subtilis, B. pumilus [144]

In the last few years, various types of NPs, e.g., nitric oxide-releasing nanoparti-
cles (NO-NPs), chitosan-containing nanoparticles (chitosan-NPs) and metal-containing
nanoparticles, have been designed and used against biofilms producing pathogenic bacte-
ria [7,138,145,146]. Antibiotics like antimicrobial agents can be packaged within NPs for
safe delivery to the target sites. For example, metal-based NPs utilize targeted drugs with-
out any hindrance by the innate system of bacteria [147]. Metal-based NPs make therapeutic
drugs reachable to the target without affecting the normal flora [148]. All of these NPs or
NP-based drug deliveries work by using multiple mechanisms simultaneously, combating
biofilm-producing bacteria, thus making antibiotic development unlikely. This makes NPs
a promising approach to exterminating biofilm-based infections in humans [129].

Currently, various researchers are working on exploring nanoparticle potentials to elimi-
nate bacterial biofilm communities and related threats of antibiotic resistance [149–151]. The
CaF2-NPs were reported to suppress the genes associated with major virulence factors
(vicR, gtfC, ftf, spaP, comDE) of S. mutans [150]. The suppressed genes were presumed to be
involved in acid production, acid tolerance, cell adhesion, glucan synthesis, and QS, thus
ultimately causing biofilm inhibition. In addition, Rajivgandhi et al. [152] reported an 80%
reduction in biofilms produced by K. pneumonia using silver NPs (Ag NPs). The NPs were
synthesized by using the marine seaweed Gracilaria corticata. In another study, copper oxide
NPs (CuO NPs) were used against K. pneumonia and Helicobacter pylori biofilms [153]. The
study showed that NPs inhibited biofilm formation by 92.5 and 99.5% for K. pneumonia and
H. pylori, respectively. However, there are certain concerns associated with NPs while using
them for medical applications. NPs must be precisely formulated to avoid influencing
their functional properties and creating compatibility problems, which can disrupt desired
outcomes during clinical applications. Therefore, all the parameters must be considered
accurately while designing and formulating NPs to ensure efficacy against the biofilms
and avoid any adverse effects, e.g., affecting body cells, creating immunological response,
disposal and good diffusion into blood circulation and final discharge from the body via
the kidney rout.

7. Concluding Remarks and Future Outlook

Bacterial communities develop biofilms by attaching to surfaces, which present proper-
ties different than planktonic cells, e.g., exhibiting a higher degree of resistance to antibiotics.
Therefore, pathogens with biofilm-developing abilities are difficult to exterminate with
antibiotic concentrations that would usually kill free-swimming planktonic cells. Based on
their potential to withstand antibiotic treatments, pathogens demonstrate severe medical
implications, e.g., chronic osteomyelitis, chronic otitis media, chronic prostatitis, colitis,
conjunctivitis and otitis. The formation of biofilms is a well-regulated and organized devel-
opmental process in bacteria. Biofilm development is triggered by environmental factors,
e.g., UV radiation, extreme temperatures, and exposure to antibiotics, and regulated by
genetic players such as QS, c-di-GMP and sRNAs. The biofilm-producing bacterial commu-
nities present various mechanisms that contribute to antibiotic resistance and lead to the
emergence of multidrug-resistant bugs. Bacteria provide different modes of action based
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on biofilms, e.g., the production of eDNA, antagonistic chemicals, and various mutations
in gene regulators against different types of antibiotics. By keeping in view the medical
problems and increased antibiotic resistance pattern in biofilms producing pathogenic
bacteria, alternative treatment approaches must be considered as options in future research
work, in addition to CRISPR/Cas, nanotechnology and phage therapy.

Firstly, various enzymes, e.g., Dispersin B (DspB), DNase I, and a-amylase, should be
explored properly for their ability to degrade the biofilm matrix. This approach disrupts the
structural components of biofilms, e.g., EPS, eDNA, and biofilm matrix, and would thus be
helpful to enhance antibiotic penetration. In some previous studies, matrix-degrading en-
zymes were found to inhibit biofilm formation and degrade matured biofilms in pathogenic
bacteria such as P. aeruginosa, S. aureus and V. cholera [154–156]. Secondly, plant-based
treatments present a potential alternative option for combating biofilm-based diseases.
Studies have shown the anti-biofilm potential of plant extracts. For example, extracts of
Polygonum cuspidatum (Japanese knotweed), Epimedium brevicornum (rowdy lamb herb)
and Rhodiola crenulata (arctic root) were found to be associated with inhibiting proprioni
bacterium acne biofilm formation [157]. Finally, QS signaling genes can be disrupted by
using a wide variety of inhibitors/compounds, thus presenting an alternative to eliminate
biofilm-related infections. For example, halogenated furanone, acyclic diamine (ADM
3), usnic acid and ginseng have been observed to have great abilities to inhibit fungal
and bacterial biofilm formation [39,158,159]. Sufficient research studies are required to
find the exact extent of all these strategies for eliminating biofilms responsible for serious
health complications.
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