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Abstract: Aiming to overcome the depletion of fossil fuels and serious environmental pollution,
biofuels such as isobutanol have garnered increased attention. Among different synthesis methods,
the microbial fermentation of isobutanol from raw substrate is a promising strategy due to its low
cost and environmentally friendly and optically pure products. As an important component of ligno-
cellulosics and the second most common sugar in nature, xylose has become a promising renewable
resource for microbial production. However, bottlenecks in xylose utilization limit its wide applica-
tion as substrates. In this work, an isobutanol synthetic pathway from xylose was first constructed
in E. coli MG1655 through the combination of the Ehrlich and Dahms pathways. The engineering
of xylose transport and electron transport chain complexes further improved xylose assimilation
and isobutanol production. By optimizing xylose supplement concentration, the recombinant E.
coli strain BWL4 could produce 485.35 mg/L isobutanol from 20 g/L of xylose. To our knowledge,
this is the first report related to isobutanol production using xylose as a sole carbon source in E. coli.
Additionally, a glucose–xylose mixture was utilized as the carbon source. The Entner–Doudorof
pathway was used to assimilate glucose, and the Ehrlich pathway was applied for isobutanol produc-
tion. After carefully engineering the recombinant E. coli, strain BWL9 could produce 528.72 mg/L
isobutanol from a mixture of 20 g/L glucose and 10 g/L xylose. The engineering strategies applied
in this work provide a useful reference for the microbial production of isobutanol from xylose or
glucose–xylose mixture.

Keywords: Dahms pathway; Ehrlich pathway; Entner–Doudorof pathway; isobutanol; metabolic
engineering; xylose; glucose

1. Introduction

As an important platform chemical compound for butyl rubber, lubricant, and polyester
synthesis, isobutanol has been widely applied in the fields of foods, pharmaceuticals,
chemicals, and so on [1]. In addition, when compared with traditional biofuels, such
as ethanol, isobutanol has a higher energy density, higher octane number, and lower
hygroscopicity [2,3]. Accordingly, isobutanol has become a very promising biofuel and
has attracted more attention recently. Leading up to now, many efforts have been made
investigating how to obtain pure isobutanol at an industrial scale, which has been mainly
dependent upon chemical synthesis or microbial fermentation [4]. With the advantages of
an environmentally friendly fermentation process, the utilization of cheap raw substrates,
mild reaction conditions, and pure production in optical activity, the microbial production of
isobutanol has become a promising synthetic strategy for isobutanol [5]. Thus, engineering
an excellent microbial chassis for isobutanol production is desirable for expanding the
application of isobutanol.

Several different carbon sources, such as glucose [6–8], cellobiose [9], cellobionic
acid [10], acetate [11] and cheese whey [12], have been explored as substrates for microbial
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isobutanol production. As widely used industrial organisms, such as Escherichia coli, do
not have the native capacity for isobutanol synthesis, the construction of an effective
isobutanol biosynthetic pathway was the first obstacle to overcome. By combining a
branched-chain amino acid synthetic pathway and an Ehrlich pathway, a synthetic pathway
for isobutanol production from glucose was constructed previously [13]. In this pathway,
pyruvate derived from a glycolytic pathway was converted into 2-ketoisovalerate through
acetolactate synthase AlsS from Bacillus subtilis, and keto-acid reductoisomerase IlvC
and dihydroxy-acid dehydratase IlvD from E. coli, in turn. Then, 2-ketoisovalerate was
transformed into isobutyraldehyde by 2-ketoisovalerate decarboxylase, which was encoded
by kivD from Lactococus lactis IL1403. Finally, alcohol dehydrogenase AdhA from L. lactis,
or YqhD from E. coli, could achieve isobutanol production from isobutyraldehyde. By using
this typical pathway combined with inactivation of competing pathways, about 22 g/L
of isobutanol was obtained from recombinant E. coli under a micro-aerobic condition [13].
On this basis, the in situ product removal strategy was employed to release the toxicity
of isobutanol for the host, and isobutanol production was increased by a large margin to
50.8 g/L [14].

Apart from glucose, other carbon sources have also been investigated for the pro-
duction of isobutanol. For example, cheese whey is a byproduct of cheese’s production
from milk, and contains lactose, protein, fat, lactate, calcium, phosphate, and chloride.
Accordingly, it can be employed as a potential substrate for isobutanol production in E. coli.
Consistent with expectations, raw cheese whey can support the normal growth of recombi-
nant E. coli W∆ldhA∆adhE∆pta∆frdA IB4, and 19.6 g/L of isobutanol can be accumulated
for this strain [12].

Biomass, such as non-food lignocellulosics, represents a class of abundant resources
which is still not being sufficiently developed [15]. Xylose derived from lignocellulosics is
the second-most-common sugar in nature and xylose accounts for 18–30% of lignocellulose
hydrolysate sugars [16]. Therefore, xylose has become a promising renewable resource for
producing biofuels and chemicals. However, due to bottlenecks in the xylose metabolism,
only a few products are synthesized from xylose in contrast to glucose. Accordingly,
improving xylose utilization efficiency in recombinant microorganisms is vital for the
valuable production of chemicals from xylose or even lignocellulosics.

The utilization of xylose in microorganisms is mainly accomplished using the iso-
merase pathway (XIP) or the Oxo-reductive pathway (ORP) [17,18]. In the XIP, D-xylose is
first isomerized into D-xylulose, and then D-xylulose is phosphorylated into D-xylulose-5-
phosphate. Finally, D-xylulose-5-phosphate is employed to synthesize cellular metabolites
through the pentose phosphate pathway (PPP). Comparatively, D-xylose is first reduced to
D-xylitol in the ORP, and then is transformed into D-xylulose. Similar to XIP, D-xylulose
is phosphorylated and also enters into the PPP. Notably, the ORP pathway can also be
referred to as the XR-XDH pathway. Apart from these two common pathways, the xylose
oxidative pathway (XOP) in some bacteria and archaea exhibits an alternative pathway for
xylose metabolism. In the XOP pathway, xylose is first transformed into D-xylonolactone
by xylose dehydrogenase. D-xylonolactone is then hydrolyzed either spontaneously or by
lactonases to form D-xylonic acid. Afterwards, 2-keto-3-deoxy-D-xylonic acid (KDX) is
generated from D-xylonic acid by xylonate dehydratase. KDX can be further metabolized
through one of two separate routes: the Weimberg pathway or the Dahms pathway. In
the Weimberg pathway, KDX is transformed into α-ketoglutarate, which is an important
intermediate for the tricarboxylic acid cycle. Alternatively, in the Dahms pathway, KDX is
converted into pyruvate and glycolaldehyde by an aldolase, and both compounds can be
assimilated for cellular metabolism.

Considering E. coli is a widely applied microbial chassis for the production of valuable
chemicals, and has the advantages of its convenient genetic engineering and its fast growth
in cheap media, it was employed for isobutanol production in this work. As xylose
represents a cheap substrate and isobutanol is a promising, advanced biofuel, we aimed
to produce isobutanol from xylose in E. coli for the first time. The xylose assimilation and
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Ehrlich pathways were first combined and constructed into an entire isobutanol synthetic
pathway from xylose. Considering pyruvate is the direct precursor of isobutanol, the
Dahms pathway was selected for xylose utilization. By engineering a xylose transport
system, an electron transport chain complex, and a xylose supplement concentration, strain
BWL4 could produce 485.35 mg/L of isobutanol from xylose. To further increase the
isobutanol titer, the E. coli strain was re-engineered and the Entner–Doudorof pathway was
employed for glucose assimilation. By using glucose and xylose as mixed carbon sources,
the isobutanol production of recombinant E. coli BWL9 was further improved.

2. Materials and Methods
2.1. Bacterial Strains

All strains, plasmids, and primers used in this study are listed in Table 1, Table 2, and
Table S1, separately. Wild E. coli BW25113 was used in constructing different isobutanol-
producing strains. Wild E. coli DH5α was devoted to vector construction.

Table 1. E. coli strains used in this study.

Name Relevant Genotype Reference

DH5α F−, endA1, hsdR17 (rK
−, mK

+), supE44, thi-l,
λ−, recA1, gyrA96, ∆lacU169 (Φ80lacZ ∆M15) Lab stock

BW25113 F−, λ−, rph-1 Lab stock
BWL0 BW25113 (∆ldhA∆pflB) This study
BWL1 BWL0 (∆xylAB) This study
BWL2 BWL1/pLL-1/pLL-2 This study
BWL3 BWL1 (∆cbd∆xdh::cyo∆xylFGH::nuo) This study
BWL4 BWL3/pLL-1/pLL-2 This study
BWL5 BWL0 (∆ptsG) This study
BWL6 BWL5 (∆zwf ::pgi) This study
BWL7 BWL6 (∆pgl::gnd) This study
BWL8 BWL7 (∆edd::pta) This study
BWL9 BWL8 (∆eda::ackA) This study

Table 2. Plasmids used in this study.

Name Relevant Genotype Reference

pKD3 bla, FRT-cat-FRT [19]
pKD4 bla, FRT-kan-FRT [19]
pCP20 bla and cat, helper plasmid [20]

pTKRed SpcR, IPTG induced λRed enzymes [21]
pCL1920 SpcR [22]
pTrc99a bla Lab stock

pLL1 pTrc99a-xdh-yagF-yagE-aldA-aceAK This study
pLL2 pCL1920-adhA-kivD-alaS-ilvD-ilvC This study

2.2. Plasmid Construction

To facilitate the construction process, recombinant plasmid pLL1 containing xylD(Cc)
that encodes xylose dehydrogenase from C. crescentus, yagF that encodes xylonate de-
hydratase, yagE that encodes 2-dehydro-3-deoxy-D-pentonate aldolase, aldA encoding
lactaldehyde dehydrogenase, and aceAK that encodes isocitrate lyase-isocitrate dehydro-
genase kinase/phosphatase was directly synthesized by TSINGKE Biological Technology.
Additionally, pLL2 containing adhA(Ll) that encodes alcohol dehydrogenase from L. lactis,
kivD(Ll) that encodes 2-keto acid decarboxylase from L. lactis, ilvC that encodes ketol-acid
reductoisomerase, ilvD that encodes dihydroxy-acid dehydratase, and alaS(Bs) that encodes
acetolactate synthase from B. subtilis was also directly synthesized by TSINGKE Biological
Technology.
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2.3. Gene Deletion

Three genes, ldhA, pflB, and xylAB, in E. coli BW25113, which encode lactate dehydroge-
nase, pyruvate-formate lyase, and xylulokinase, respectively, were knocked out in BW25113
sequentially using a one-step inactivation method [19]. The primers ldhA-QF/ldhA-QR,
pflB-QF/pflB-QR, and xylAB-QF/xylAB-QR, along with the template plasmids pKD3 or
pKD4, were used for obtaining targeting DNA fragments of ldhA, pflB, and xylAB, respec-
tively. Positive clones were verified via PCR using ldhA-JF/ldhA-JR, pflB-JF/pflB-JR, and
xylAB-JF/xylAB-JR. The resulting strain of BW25113 (∆ldhA∆pflB∆xylAB) was titled BWL1.
Based on BWL1, the cbdAB gene encoding terminal oxidases was also deleted utilizing the
same strategy. To replace cyo encoding cytochrome O with the xdh that encodes xylose
dehydrogenase from Caulobacter crescentus in BWL1, DNA fragments containing homolo-
gous arms of the cyo, xdh gene and the chloramphenicol resistant gene cmr were obtained
using overlap PCR. In brief, the upstream homologous arm of cyo and cmr was assembled
via the primers cyo-cmr-NF/cmr-NR and template plasmid pKD3, while the downstream
homologous arm of cyo and xdh genes was assembled using the genome of C. crescentus as
a template along with primers cmr-xdh-NF/xdh-cyo-NR. Then, these two DNA fragments
were further assembled using overlap PCR. The homologous arms of cyo were further
extended using the primers cyo-cmr-NF plus/xdh-cyo-NR plus. The replacement of cyo
was performed according to the one-step inactivation method [19]. Positive clones were
verified with primers cyo-JF/cyo-JR. Similarly, nuo encoding NADH-quinone oxidoreduc-
tase was replaced by the xylFGH encoding xylose ABC transporter periplasmic binding
protein. The resulting strain was referred to as BWL3. Finally, pLL1 and pLL2 plasmids
were co-transformed into BWL1 and BWL3 to obtain BWL2 and BWL4, respectively.

To construct recombinant E. coli using a glucose–xylose mixture as the carbon source,
BWL0 was selected as the base strain. The ptsG gene was first knocked out in BWL0 via
the one-step inactivation method [19]. Subsequently, pgi encoding glucose-6-phosphate
isomerase was replaced by zwf encoding glucose-6-phosphate 1-dehydrogenase, similar to
the replacement of cyo via the one-step inactivation method [19]. The resulting strain was
referred to as BWL6. Afterwards, gnd encoding 6-phosphogluconate dehydrogenase, pta
encoding phosphate acetyltransferase, and ackA encoding acetate kinase were replaced with
pgl encoding 6-phosphogluconolactonase, edd encoding phosphogluconate dehydratase,
and eda encoding 2-dehydro-3-deoxyphosphogluconate aldolase, respectively, in BWL6
via the same method; in addition, the recombinant E. coli BWL7, BWL8, and BWL9 were
obtained, in turn.

2.4. Growth Conditions

Luria–Bertani medium (1% tryptone, 0.5% yeast extract, and 1% NaCl) was used for
culturing E. coli strains at 37 ◦C for 8–12 h. Different antibiotics were supplemented with
appropriate concentrations, including ampicillin (100 mg/L), chloramphenicol
(17 mg/L), kanamycin (25 mg/L), and spectinomycin (50 mg/L). For batch fermenta-
tion, a medium containing 33.9 g/L Na2HPO4, 15 g/L KH2PO4, 2.5 g/L NaCl, 5 g/L
NH4Cl, 1 mM MgSO4, 0.1 mM CaCl2, 5 g/L yeast extract, and 10 g/L xylose was employed.
Glucose was supplemented as indicated. An amount of 1 mL of overnight cells were inocu-
lated into 50 mL fermentation medium for batch fermentation, and strains were cultivated
at 37 ◦C with 200 rpm of shaking. Isopropyl β-D-1-thiogalactopyranoside (IPTG) was
added at a final concentration of 0.2 mM, when the OD600 of E. coli cells reached 0.4–0.6.

2.5. Analytical Methods

High-performance liquid chromatography (Thermo Fisher Scientific, Waltham, MA,
USA) and Aminex HPX-87H ion exclusion particles (300 mm × 7.8 mm, Bio-Rad, Hercules,
CA, USA) were used for determining the concentrations of glucose, xylose, and isobutanol,
respectively. The mobile phase was 5 mM sulfuric acid with a flow rate of 0.6 mL/min,
and the column was maintained at 65 ◦C. For glucose determination, a refractive index
detector was applied with a 10 µL sample. For isobutanol determination, a UV detector
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was employed at 214 nm with a 10 µL sample. Cell growth was monitored via OD600 using
a UV5100H spectrophotometer (METASH, Shanghai, China). Three parallel experiments
were carried out for each experiment within this work. The error bars represent standard
deviations from three replicate experiments. The Origin 2019 and Microsoft Excel 2019
programs were employed for statistical analyses. Data were plotted using Origin 2019.

3. Results and Discussion
3.1. Construction of an Isobutanol Synthetic Pathway from Xylose

As isobutanol is not a natural product of wild E. coli, a complete synthetic pathway
for isobutanol from xylose should be constructed first. In this study, the entire pathway
could be divided into two parts: part I was located from substrate xylose to an intermediate
pyruvate, and part 2 was located from pyruvate to end-product isobutanol (Figure 1). To
redirect more pyruvate into the isobutanol biosynthetic pathway, pflB that encodes pyruvate
formate-lyase and ldhA that encodes lactate dehydrogenase, which are responsible for the
generation of formate and lactate, separately, were deleted in turn from BW25113.
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Figure 1. Isobutanol synthetic pathway from xylose in E. coli. The red, five-pointed stars indicate the
genes that were deleted. The thick red arrows indicate the increased flux by directly overexpressing
the corresponding genes within the plasmids. Heterogenous genes are indicated in purple.

In wild E. coli, xylA encoding xylose isomerase and xylB encoding xylulokinase were
mainly responsible for xylose assimilation. However, one mole of ATP was needed for
generating one mole of xylulose from the xylose catalyzed by xylB. In contrast, E. coli
K-12 series strains including BW25113 can naturally utilize D-xylonic acid with an analog
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of the Dahms pathway, but lack xylose dehydrogenase activity [23]. Accordingly, the
xylD(Cc) gene from C. crescentus, encoding xylose dehydrogenase, was introduced into
the E. coli strain to construct a complete Dahms pathway from xylose to pyruvate. In the
meantime, xylA and xylB were inactivated simultaneously to direct the most xylose into the
Dahms pathway. The recombinant strain of BW25113 (∆ldhA∆pflB∆xylAB) was referred
to as BWL1. Next, yagF encoding xylonate dehydratase and yagE encoding 2-dehydro-3-
deoxy-D-pentonate aldolase were also overexpressed in pLL1 to strengthen the carbon
flux of the Dahms pathway. As a result, the biosynthetic pathway from xylose to pyruvate
was obtained.

In the Dahms pathway, two intermediates, pyruvate and glycolaldehyde, are gener-
ated from 2-dehydro-3-deoxy-D-xylonic acid using YagE. To facilitate the metabolism of
glycolaldehyde, aldA encoding lactaldehyde dehydrogenase and aceAK encoding isocitrate
lyase-isocitrate dehydrogenase kinase/phosphatase were also overexpressed in pLL1.

In previous studies, an effective isobutanol biosynthetic pathway was designed by
combining a branched-chain amino acid synthetic pathway from glucose and an Ehrlich
pathway, with 2-keto-isovalerate serving as a precursor [24]. Similarly, to improve the pro-
duction efficiency of isobutanol from pyruvate, adhA(Ll) encoding alcohol dehydrogenase
from L. lactis, kivD(Ll) encoding 2-keto acid decarboxylase from L. lactis, ilvC encoding ketol-
acid reductoisomerase, ilvD encoding dihydroxy-acid dehydratase, and alaS(Bs) encoding
acetolactate synthase from B. subtilis were all overexpressed in pLL2. By co-transforming
pLL1 and pLL2 into BWL1, a base strain of BWL2 for isobutanol production from xylose
was obtained.

To investigate the effect of the engineering strategies mentioned above, batch fer-
mentation was performed for BWL2. As shown in Figure 2, BWL2 exhibited a relatively
quick growth before 30 h, but the maximum OD600 was only 2.49, which was significantly
lower than other isobutanol-producing E. coli using glucose as the sole carbon source [8].
Consistent with the growth curve, the xylose assimilation was also poor for BWL2. After
72 h of batch fermentation, 5.05 g/L of xylose remained, indicating that only 52.8% of
the xylose was consumed. Compared with other reported E. coli strains using xylose as
a carbon source for microbial production, the xylose consumption capacity of BWL2 was
obviously lacking [25,26]. Nevertheless, BWL2 could produce 63.79 mg/L of isobutanol
after 60 h of batch fermentation, indicating the isobutanol biosynthetic pathway from xylose
worked well. To our knowledge, this is the first report about isobutanol production using
xylose as the sole carbon source.
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3.2. Engineering of Xylose Transport and Electron Transport Chain (ETC) Complex to Increase
Xylose Assimilation and Isobutanol Production

In E. coli, there are two different xylose transport systems [27]. XylE belongs to the
major facilitator superfamily of transporters [28] and is a low-affinity xylose transporter
with a Km for xylose between 63 and 169 µM [29]. In contrast, XylF, XylG and XylH
constitute high-affinity xylose transporters belonging to the ATP binding cassette family of
transporters with a Km between 0.2 and 4 µM [29]. Accordingly, integrating another copy
of xylFGH operon may be beneficial to the xylose utilization of BWL1.

The ETC complex is mainly responsible for bacterial respiration under aerobic condi-
tions. Depending on ETC, the proton motive force related to ATP synthesis can be generated
by the electron flow derived from the oxidation of electron donors and the reduction of
electron acceptors. The ETC of E. coli includes two protein complexes, NADH dehydroge-
nase and terminal oxidase [30]. The engineering of ETC may regulate the redox state of E.
coli, while a highly reduced intracellular state is advantageous for isobutanol production.
Accordingly, ETC could be selected as a novel manipulation target for isobutanol and other
reductive products [31].

Three ETC components, cyo encoding cytochrome O, nuo encoding NADH-quinone
oxidoreductase, and cbdAB encoding terminal oxidases, were deleted in turn from BWL1.
In addition, additional copies of xylFGH and xdh(Cc) were prepared to integrate into
BWL1. To facilitate the construction process, cyo and nuo were directly replaced by xylFGH
and xdh(Cc), respectively, and the resulting strain BWL3 was obtained. By transforming
plasmids pLL1 and pLL2 into BWL3, the recombinant strain of BWL4 was generated.

Batch fermentation was then carried out for BWL4. As shown in Figure 3, after
engineering the xylose transport and ETC, BWL4 exhibited improved growth with a
maximum OD600 of 4.10, which was 64.7% higher than that of BWL2. In addition, the
xylose utilization rate of BWL4 increased, and 10 g/L of xylose was nearly completely
consumed after 54 h of cultivation. Consistent with our expectations, the isobutanol
titer of BWL4 increased to 373.13 mg/L, representing an improvement of 484.93% that of
BWL2. However, the isobutanol production titer was still relatively low compared to the
recombinant strain using glucose as the carbon source [5,32].
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3.3. Optimization of Xylose Supplement Concentration

To further enhance the isobutanol titer, the effect of the xylose supplement concentra-
tion was investigated. Four concentration gradients, 5 g/L, 10 g/L, 20 g/L, and 30 g/L,
were applied for batch fermentation. As shown in Figure 4, with the xylose concentration
increase from 5 g/L to 20 g/L, the maximum OD600 of BWL4 was increased from 3.23 to
4.81. In accordance with strain biomass accumulation, the isobutanol production was also
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improved from 223.21 mg/L to 485.35 mg/L. However, the strain growth and isobutanol
production were both decreased when xylose was at 30 g/L, indicating 20 g/L may be an
appropriate supplement concentration for isobutanol production of BWL4.
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3.4. Construction of Recombinant E. coli for Isobutanol Production from Glucose–Xylose Mixture

As glucose is a preferred carbon source compared to xylose for E. coli, glucose was
then applied as a supplemental carbon source for isobutanol production in the E. coli. Apart
from the glycolytic pathway, three other carbohydrate metabolism pathways exist in nature,
the pentose phosphate pathway, Entner–Doudoroff (ED) pathway, and phosphoketolase
pathway [24]. Among them, only four enzymes are needed to obtain pyruvate from glucose
in the ED pathway, which is far fewer than in the glycolytic pathway. In addition, no carbon
was lost through carbon dioxide in the ED pathway [32]. Accordingly, the ED pathway was
selected for assimilating glucose and generating pyruvate. To improve the performance
of recombinant E. coli for isobutanol production using the glucose–xylose mixture as a
carbon source, BWL0 was selected as the base strain for further careful engineering. When
glucose and xylose both existed within the medium, assimilation of xylose occurred only
when glucose uptake finished due to carbon catabolite repression (CCR). To relieve CCR
and achieve a simultaneous consumption of glucose and other sugars, the deletion of
PTS-related genes, such as ptsG encoding glucose-specific PTS enzyme IIBC components,
was often carried out [33,34].

As a result, ptsG was deleted from BWL0. Subsequently, pgi encoding glucose-6-
phosphate isomerase was replaced with zwf encoding glucose-6-phosphate 1-dehydrogenase.
This inactivation of pgi and overexpression of zwf could block the glycolysis pathway
and redirect a carbon source into the ED pathway. Following this, gnd encoding 6-
phosphogluconate dehydrogenase, pta encoding phosphate acetyltransferase, and ackA en-
coding acetate kinase were replaced by pgl encoding 6-phosphogluconolactonase, edd encod-
ing phosphogluconate dehydratase, and eda encoding 2-dehydro-3-deoxyphosphogluconate
aldolase, respectively, in BWL6. The inactivation of gnd could direct 6-phospho-d-gluconate
into 2-dehydro-3-deoxy-d-gluconate 6-phosphate and block the generation of d-ribulose 5-
phosphate. In addition, pta and ackA deletion could decrease the secretion of acetate [35,36].
To increase the carbon flow of the ED pathway, the intracellular expression levels of pgl, edd,
and eda were improved. To decrease the potential metabolic burden generated by plasmids,
these three genes were directly integrated into the loci of gnd, pta, and ackA, respectively.
As a result, BWL9 was obtained (Figure 5). In order to determine the strain performance of
BWL9 for isobutanol production from the 20 g/L glucose and 10 g/L xylose mixture, batch
fermentation was carried out for this strain. As shown in Figure 6, after the inactivation
of ptsG, BWL9 could assimilate glucose and xylose simultaneously. After 72 h of batch
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fermentation, 4.38 g/L of glucose remained, representing 21.15% of the initial glucose. In
addition, only half of the xylose was consumed, which was similar to BWL2. However,
BWL9 exhibited better growth than BWL2, indicated by the maximum OD600 of 5.39 vs.
2.49. BWL9 could produce 528.72 mg/L of isobutanol at 54 h, which was 8.3-fold that of
BWL2. BWL9 also showed a slightly higher isobutanol production than BWL4 (528.72 vs.
485.35 mg/L). In addition, BWL9 was employed for isobutanol production with 20 g/L
glucose as a sole carbon source. As shown in Figure S1, BWL9 exhibited a similar growth
curve and glucose consumption to that of BWL9 using a glucose–xylose mixture. After
72 h of batch fermentation, 473.25 mg/L of isobutanol was achieved for BWL9, which was
11.72% lower than that of BWL9 using a glucose–xylose mixture. Perhaps the supplement
of xylose was beneficial for increasing carbon flux in the pentose phosphate pathway, which
could provide more NADPH for isobutanol synthesis.
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We noted glucose assimilation was impaired for BWL9 after the inactivation of ptsG,
indicated by glucose not consumed after 72 h of cultivation. In contrast, 20 g/L of glucose
could be consumed for wild MG1655 only after 24 h of batch cultivation [37]. This phe-
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nomenon was also reported by another group [38]. To improve the glucose assimilation rate
and further increase isobutanol titer, additional overexpression of glucose kinase (glk) and
glucose facilitator protein (glf ) from Zymomonas mobilis may be helpful [39]. In addition,
the utilization of xylose in BWL9 was unsatisfactory, as indicated by half the amount of
xylose remaining in the media. The engineering of the xylR encoding xylose regulator has
been employed to improve xylose consumption for the microbial production of chemical
compounds [40]. XylR is involved in the regulation of the pentose phosphate pathway,
and the overexpression of xylR was beneficial for xylose assimilation through the pentose
phosphate pathway. In addition, manipulating redox homeostasis is crucial for isobutanol
production, which can also be achieved via the engineering of XylR [41].

4. Conclusions

In this work, an isobutanol synthetic pathway from xylose was constructed in E. coli
MG1655 through the combination of an Ehrlich pathway and a Dahms pathway. Engi-
neering xylose transport and electron transport chain complex further improved xylose
assimilation and isobutanol production. By optimizing xylose supplement concentration,
the final strain of BWL4 could produce 485.35 mg/L of isobutanol from 20 g/L of xylose.
This represents the first report about isobutanol production using xylose as a sole carbon
source in E. coli. However, the isobutanol production titer and yield were still lower than
those using glucose. Accordingly, further improvement of BWL4 is needed. First, there
needs to be an optimization of the expression levels of key genes in the isobutanol biosyn-
thetic pathway from xylose. As the whole pathway is very long, balancing isobutanol
production and strain biomass accumulation is important. Perhaps an analysis of the
metabolic flux can facilitate an investigation of bottlenecks in the pathway. Second, a
further increase in the xylose assimilation of BWL4 is also vital for biomass accumulation
and the isobutanol production titer. Apart from rational engineering, adaptive laboratory
evolution (ALE) may be an effective strategy. ALE has already been applied in improv-
ing xylose assimilation of Corynebacterium glutamicum [42], Saccharomyces cerevisiae [43],
and Azotobacter vinelandii [44]. We expect ALE will also be effective in improving xylose
utilization of E. coli.

Lignocellulosic biomass is a renewable feedstock and is naturally available in abun-
dance in microbial production [45]. Apart from the pretreatment and enzymatic saccharifi-
cation, an efficient simultaneous utilization of mixed sugars in lignocellulosic hydrolysates,
such as glucose and xylose, is also vital for low-cost biorefining [46]. We additionally inves-
tigated the isobutanol production from a glucose–xylose mixture, and achieved a titer of
528.72 mg/L from 20 g/L and 10 g/L of xylose. Further engineering of glucose kinase (glk),
glucose facilitator protein (glf ), and xylose regulator (xylR) in BWL9 may be advantageous
for increasing isobutanol production to a greater extent from a glucose–xylose mixture.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms11102573/s1, Figure S1: Batch fermentation of BWL9
with 20 g/L glucose as sole carbon source; Table S1: Primers used in this study.
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