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Abstract: The long-distance spreading and transport of airborne particulate matter (PM) of biogenic
or chemical compounds, which are thought to be possible carriers of SARS-CoV-2 virions, can have
a negative impact on the incidence and severity of COVID-19 viral disease. Considering the total
Aerosol Optical Depth at 550 nm (AOD) as an atmospheric aerosol loading variable, inhalable fine PM
with a diameter ≤2.5 µm (PM2.5) or coarse PM with a diameter ≤10 µm (PM10) during 26 February
2020–31 March 2022, and COVID-19’s five waves in Romania, the current study investigates the
impact of outdoor PM on the COVID-19 pandemic in Bucharest city. Through descriptive statistics
analysis applied to average daily time series in situ and satellite data of PM2.5, PM10, and climate
parameters, this study found decreased trends of PM2.5 and PM10 concentrations of 24.58% and
18.9%, respectively compared to the pre-pandemic period (2015–2019). Exposure to high levels of
PM2.5 and PM10 particles was positively correlated with COVID-19 incidence and mortality. The
derived average PM2.5/PM10 ratios during the entire pandemic period are relatively low (<0.44),
indicating a dominance of coarse traffic-related particles’ fraction. Significant reductions of the
averaged AOD levels over Bucharest were recorded during the first and third waves of COVID-19
pandemic and their associated lockdowns (~28.2% and ~16.4%, respectively) compared to pre-
pandemic period (2015–2019) average AOD levels. The findings of this research are important for
decision-makers implementing COVID-19 safety controls and health measures during viral infections.

Keywords: air pollution; particulate matter; climate variables; COVID-19; Bucharest; Romania

1. Introduction

Surveillance of viral disease outbreaks and the influx of data on the evolution of
viruses and other pathogenic microorganisms highlight the need for in-depth investiga-
tion and severe measures to mitigate the potential transmission of airborne viruses and
pathogens, particularly through outdoor particulate matter contaminants. The recent coron-
avirus disease 2019 (COVID-19) pandemic, caused by Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) and its mutations, and known as the third human disease
outbreak of the 21st century is responsible for more than 68,262 deaths and more than
3,410,957 infected people from 26 February 2020 to 20 August 2023 in Romania. Bucharest,
the capital of Romania, recorded about 16.97% of the total confirmed COVID-19 cases and
8.83% of deaths in Romania [1].

Due to the hydrophobic properties of the SARS-CoV-2 spike protein, COVID-19
viral respiratory infection is believed to be transmitted mainly through the inhalation of
virus-laden respiratory droplets [2,3], airborne diffusion [4–6], direct contact with infected
persons, fomites, feco-oral routes [7], or the incineration of COVID-19 sewage sludge and
recovery of residue ash as building material [8,9]. The relative importance of different
viral transmission routes is variable in different spatio-temporal climates and topographic
and socioeconomic conditions. Several scientific studies considered international trade
indicators and complex human-to-human interactions to be more important pathways
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than demographic, pollution, and economic aspects that must be used to describe the
transmission of COVID-19 dynamics in different countries [10–12]. Examining the relative
significance of different transmission routes is crucial for developing and adopting targeted
infection-control strategies.

As new coronavirus species may emerge in the future with different intensities of
the waves, it is essential to understand the COVID-19 pandemic spreading related to air
pollution and associated bioaerosols in the large metropolitan area of Bucharest. During
the COVID-19 pandemic period, due to intensive air pollution control in European com-
munity countries, there was a decrease in fine PM2.5 and coarse PM10 particulate matter
concentrations at the ground level. However, the issue of high air pollution complexity in
metropolitan cities remains a serious threat to the environment. According to the air quality
standards of the European Environmental Agency, Bucharest has an average concentration
of fine particulate matter PM2.5 of 16.4 µg/m3, classifying it among the poor air quality
metropolises in Europe [13]. High levels of aerosols and bioaerosols recorded in European
cities harm air quality, local and regional climate systems, and radiative forcing, all of
which pose a significant risk to human public health.

Prolonged exposure and the inhalation of high concentrations of airborne fine particles
lead to direct deposition in the lower respiratory system bronchi and alveoli sacs, while
coarse particles are deposited in the upper respiratory system, airways region and lower
respiratory tract’s trachea and bronchi [14]. Coronavirus-laden fine and coarse particulate
matter, known as “pathogenic“, may decrease the respiratory system immunity through
intra-host induced mutagenesis of the SARS-CoV-2 genome. Under daily average peaks
of PM2.5 and PM10 and bioaerosols, these airborne pollutants may be active viral vectors
mode of various diseases, including influenza A (H1N1) and COVID-19 spreading both
indoor and outdoor environments [15,16].

Several epidemiological studies found a positive association between short-term and
long-term exposure to solid air pollutants (especially PM2.5 and PM10) in transmission
and the severity of respiratory viral diseases such as COVID-19, rhinovirus, respiratory
syncytial virus (RSV), influenza and influenza-like illness [17,18]. Through damaging
airway epithelial cell cilia and affecting antiviral immunity cell types, including neutrophils,
macrophages, dendritic cells and lymphocytes, PM can increase susceptibility to viral
infections inducing oxidative stress and stimulating proinflammatory cytokine release and
other inflammasome responses [19,20]. Some studies indicate that PM2.5 may act as a
SARS-CoV-2 carrier for both outdoor and indoor transmission [21,22]. There is worldwide
epidemiological evidence that COVID-19 incidence and severity is associated with high
levels of ambient air pollution PM (ultrafine, fine and coarse) that worsen COVID-19
outcomes [23–25].

Also, high concentrations of inhalable air pollutant gases outdoors and indoors (ozone
(O3), nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide
(SO2), volatile organic compounds (VOCs), etc.) may decrease the human immunity system
and the severity of COVID-19 disease outcomes.

Linking weather conditions to the urban micro- and macro-climate context demon-
strated that climate variables seasonality has a high impact on airborne microbial
SARS-CoV-2 temporal patterns, being affected by seasonal changes of air temperature,
pressure, humidity, solar surface irradiance, wind speed intensity and direction, Planetary
Boundary Layer height, and synoptic meteorological patterns [26–28].

Several studies show that environmental (green and blue spaces), demographic, so-
cial, and clinical factors play an important role in exposure to SARS-CoV-2 virions and
COVID-19 viral infection severity transmission, but human host-specific genetic factors may
contribute to revealing biological mechanisms involved in therapeutic relevance results [29].
However, the understanding of COVID-19 spreading requires a complex interdisciplinary,
multidimensional, and transdisciplinary approach [30–33].

This paper investigates the synergy between exposure to the main ambient air pollu-
tants particulate matter PM2.5 and PM10 and weather-related factors, which may increase
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the viral pathogens’ impact on human health and the COVID-19 viral infection diffusion
and mortality in Bucharest. Using regression models and descriptive statistics applied to
the daily in situ and satellite time-series data registered during several seasons and over
a long period (1 January 2020–31 March 2022), and five COVID-19 pandemic waves, this
study provides an accurate assessment of the linkage between urban air quality related to
climate factor variability and the epidemiologic evolution of the COVID-19 viral disease
in the metropolitan city of Bucharest. As a measure of the aerosol loading in the lower
atmosphere over Bucharest city, this study used a fundamental variable, total Aerosol Opti-
cal Depth (AOD) at 550 nm, which is a marker of air pollution that expresses the sunlight
attenuation by aerosols. Also, this study investigated temporal patterns of the daily obser-
vational and satellite time-series data of PM2.5, PM10, and total AOD at 550 nm data in
the different time windows, before the outbreak of the epidemic (2015–2019) years, during
the lockdown and beyond. The diffusion pattern of SARS-CoV-2 virions in the Bucharest
metropolitan city is a multifactorial process involving among other factors outdoor and
indoor air pollution, meteorological parameters variability, and viral inactivation.

2. Materials and Methods
2.1. Ambient Particulate Matter, Bioaerosols and COVID-19 Disease

Outdoor ambient air pollution, which includes diverse man-made (traffic-related,
construction-related, energy-generating, etc.) and natural sources (mine dust, biomass
burning, etc.), is a significant environmental risk factor for human health, and it is influ-
enced by a high range of local and regional atmospheric processes. Bioaerosols are a subset
of atmospheric particles that are released from the biosphere into the atmosphere and
contain both living and dead microorganisms (viruses, bacteria, and fungi as well as their
excretions such as endotoxins, glucans, mycotoxins, fungal spores, and plant pollen) [34].
These particles pose a serious threat to human health as pathogens and allergens. Accord-
ing to Figure 1, aerosol particle sizes can range from nanometers to nearly a tenth of a
millimeter. The upper limit of this range is affected by a number of atmospheric processes,
including rapid sedimentation, etc.
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Figure 1. Characteristic size ranges of atmospheric particles and bioaerosols.

Inhalable ambient particles may contain a wide range of organic chemicals, metals,
salts, and potentially pathogenic biological species (bacteria, viruses, fungi, proteins, lipids
from plants, etc.) [35,36]. Different size fractions of PM (ultrafine particles PM0.1 with an
aerodynamic diameter less than 0.1 µm, fine particles PM2.5 with an aerodynamic diameter
less than 2.5 µm, and coarse particles PM10 with an aerodynamic diameter greater than
2.5 µm and less than 10 µm) predominate in agglomerated metropolitan regions [37,38].
Due to its composition, which includes an inert carbonaceous core, nitrate, sulfate, organic
chemicals, metals, and crustal elements, as well as potential adsorbed organic pollutants,
viruses, bacteria, fungi, and toxic heavy metals on its surface, PM2.5 is thought to have a
higher level of toxicity [39–41].

Epidemiological and toxicological studies revealed that the elevated level of cyto-
toxicity of ambient ultrafine nanoparticles and fine particles (PM2.5, including PM0.1) in
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comparison with coarse particles may be attributed to increased bio-reactivity. Its small
size and high surface-to-mass ratio allow for deep penetration into the lung airways and
through the circulatory system into the organs while also carrying large amounts of po-
tential toxins with allergenic and inflammatory potential [42–44] and associated increased
morbidity and lethality. In terms of the compartmental deposition of inhaled particulate
matter in different size fractions on the respiratory tract [45], according to Figure 2, PM10 de-
posits primarily in the upper and large conducting lungs airways, while PM0.1 and PM2.5
deposit in the lower respiratory tract, primarily in small airways bronchi/bronchioles and
alveoli, being potentially more harmful to health [46,47] through increased risk of lung
infections by affecting the function of alveolar macrophages and epithelial cells [48,49]. The
exposure of the nasopharyngeal, tracheobronchial, and pulmonary regions of the human
respiratory tract to potentially toxic inhaled particulate matter of different size fractions,
bioaerosols, and gases is a critical issue in interpreting the response to injury [50,51].
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Figure 2. Compartmental deposition of particulate matter in different size fraction on the respira-
tory tract.

The function of age, the strength of the immune system, seasonal or local and regional
atmospheric circulation and weather conditions, geographic location, and epidemiologic
studies found that both short-term and long-term exposure to high levels at the ground
or street-level PM and bioaerosols concentrations can be linked with a variety of airway
diseases seasonality and increased respiratory system symptoms, including rhinitis, airway
inflammation, asthma, bronchitis, organic dust toxic syndrome, seasonal influenza, severe
acute respiratory syndrome, and coronavirus disease (COVID-19), through lung function
decrease and the development of different respiratory symptoms (cough, shortness of
breath, pain on deep inspiration, etc.) [52–55].

2.2. Study Test Site

Bucharest city, Romania’s capital, with a 240 km2 surface, located in the southeastern
part of Romania and southeastern part of Europe, is centered at (44.43◦ N, 26.10◦ E), and it is
considered to be the greatest carbon emitter in Romania. Due to its extensive traffic-related
and industrial pollution, it is one of the most polluted metropolitan cities in Europe. Its
climate is temperate continental, with western European climate circulation influences,
east-European anticyclone, and the synoptic meteorological Mediterranean cyclones, which
are characterized by very hot summers, especially during heat waves, and cold humid
winters, with frequent extreme climate events. Bucharest metropolitan city has about
1.7945 million residents [56]. The main air pollutant sources in this region are associated
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with fossil fuels (coal and natural gas) used for home heating and the intensive use of
old cars.

2.3. Data Collection

For analysis of the COVID-19 viral infection patterns related to air quality and climate
variability in Bucharest (Daily New Cases (DNCs), Daily New Deaths (DNDs), this study
used available data provided by websites [57,58]. Additional COVID-19 data for the
26 February 2020 to 31 March 2022 period have been delivered by other websites [59,60].

Time series of the average daily concentration of air pollutants of PM2.5 and PM10
for Bucharest were provided by [61–63]. This study used also MERRA-2 time-series data
collected from Modern-Era Retrospective analysis for Research and Applications Version 2
and derived total Aerosol Optical Depth (AOD) at 550 nm products provided by National
Aeronautics and Space Administration (NASA) and Copernicus Atmosphere Monitoring
Service (CAMS) data [64].

Also, Modern-Era Retrospective Analysis for Research and Applications Version 2
MERRA-2 [65] provided the available daily time series of meteorological data, including
average temperature (T), maximum (Tmax) and minimum air temperatures (Tmin), air
pressure (p), relative humidity (RH), and average wind speed intensity (w) for the Bucharest
metropolitan region. Other climate data have been collected from the Climate Change
Service of Copernicus (C3S) [66] and meteorological Romanian networks.

2.4. Statistical Analysis Used

To evaluate the similarity between two time-series data of the averaged outdoor
daily PM in two size fractions (PM2.5 and PM10) and the average daily AOD levels,
climate observables (air temperature and relative humidity, wind speed, surface solar
irradiance Planetary Boundary Layer heights), and COVID-19 incidence and mortality in
Bucharest, we used cross-correlation analysis. The dependence between pairs of the daily
time-series data was assessed in this study by statistical standard tools, Spearman rank-
correlation, and rank-correlation non-parametric test coefficients as well as linear regression
analysis. The normality of the average daily time-series data sets was assessed through
Kolmogorov–Smirnov tests of normality. Because the daily new COVID-19 cases (DNCs)
and daily new COVID-19 deaths (DNDs) have a non-normal distribution, Spearman rank
correlation was selected to identify the linear correlation between the important variables:
(1) air pollutants PM2.5, PM10 concentrations, total Aerosol Optical Depth at 550 nm,
climate variables and (2) COVID-19 incidence and mortality rates. We used the p-value (p
< 0.05) to determine the statistical significance of the correlation. ORIGIN 10.0 software
version 2021 for Microsoft Windows was used for data processing.

3. Results and Discussion
3.1. Particulate Matter PM2.5 and PM10 and COVID-19

To assess the impact of air pollutants on COVID-19 disease transmission and lethality
during the 26 February 2020–31 March 2022 period, with five recorded waves of COVID-19
in Bucharest, this study analyzed time series of the daily average PM2.5 and PM10. In good
accordance with the numerous studies which have explicitly examined the harmful effects
of particulate matter on COVID-19 transmission [67–69], the results of this research show
direct positive correlations of PM2.5 concentrations, PM10 concentrations, and the derived
PM2.5/PM10 ratio with daily new COVID-19 cases (DNCs) and deaths (DNDs) (Table 1).
The outdoor PM2.5 and PM10 temporal patterns, for the entire analyzed period, show
seasonal variation with lower values during the spring–summer periods and higher values
for the fall–winter seasons (Figure 3). For the entire analyzed pandemic period, this study
found a decreased average daily PM2.5 concentration (23.83 ± 14.05 µg/m3) in comparison
with the daily average PM2.5 concentration for the pre-pandemic period (2015–2019) of
32.67 ± 13.24 µg/m3. A similar decreased value of the average daily PM10 concentrations
for the same reported period (62.52 ± 23.50 µg/m3) was found in comparison with the same
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pre-pandemic period of (76.39 ± 26.19 µg/m3). The reported decreased concentrations
of PM2.5 and PM10 found during implementation of the total or partial lockdowns may
be explained through adopted draconian measures to mitigate the potential transmission
of airborne SARS-CoV2 virions. However, like in other European metropolitan areas,
especially during pandemic events, there is an urgent need to improve urban air quality in
Bucharest’s densely populated area [70,71].

Table 1. Spearman rank correlation coefficients and p-values between COVID-19 cases and average
daily PM concentrations and PM2.5/PM10 ratios for Bucharest city for the analyzed pandemic period,
26 February 2020–31 March 2022.

Bucharest Average Daily Air Pollutant Concentration

COVID-19 incidence PM2.5 (µg/m3) PM10 (µg/m3) PM2.5/PM10

Daily New Cases (DNCs) 0.39 * 0.37 * 0.51 *

Daily New Deaths (DNDs) 0.44 * 0.42 * 0.56 *
Note: PM2.5 (particulate matter of 2.5 µm size), PM10 (particulate matter of 10 µm size); * p < 0.01.
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Figure 3. Temporal patterns of the average daily ground levels of PM2.5 and PM10 concentrations
and daily new confirmed COVID-19 cases (DNCs) and deaths (DNDs) for the investigated period
during the pandemic in Bucharest city.

If the particulate matter (PM) concentration variability constitutes an important indi-
cator of the degree of air pollution in megacities, PM2.5/PM10 ratios quantify the ability to
affect human health and atmospheric processes [72–74]. When PM2.5/PM10 ratios are less
than 0.5, it is considered that fine particles (PM2.5) have more adverse effects on human



Microorganisms 2023, 11, 2531 7 of 16

health than coarse particles (PM2.5–PM10). However, while PM2.5 is a proxy of exhaust
emissions, PM2.5–10 is associated with non-exhaust contributions. In our study, using the
observation data across the Bucharest metropolis from 1 January 2020 to 31 March 2022
and the daily time-series distribution of PM2.5 and PM10 with the daily COVID-19 inci-
dence and mortality for the entire investigated period, the average ratio PM2.5/PM10 was
(0.44 ± 0.221), which means a lower contribution of fine particles (PM2.5) as compared to
coarse particles (PM10).

Our results show that outdoor PM2.5 is high in winter and low in summer, while PM10
is high in winter and spring and low during summer and autumn. Temporal analysis of
PM2.5/PM10 ratios from 1 January 2020 to 31 March 2022 in the Bucharest area presents the
highest values in winter and the lowest values in spring seasons. The derived PM2.5/PM10
ratios, which show a strong independence on PM2.5 and PM10, can provide extra useful
information about the type of aerosol pollution. Similar findings have been reported in the
previous studies focused on this specific topic [75,76].

This study confirms the results of the scientific literature: exceeding the recommended
threshold levels and prolonged exposure to harmful traffic-related pollutants, particularly
PM, CO, and CO2, has detrimental health effects and potential risks for the severity of
viral diseases such as COVID-19 especially for some of the more vulnerable socioeconomic
groups [77,78]. Also, by considering the contribution of air pollutants’ seasonal variability
at the ground levels [79,80], this study highlights the association of the average daily
PM2.5 and PM10 increased concentrations during the second, the fourth, and the fifth
COVID-19 waves with high numbers of total daily new COVID-19 cases in Bucharest
(Table 2). Considering the mutual interaction of increasing ecotoxicological levels of
air pollutants and city inhabitants, this study proved the harmful effects of PM2.5 and
PM10 on COVID-19 incidence and lethality in Bucharest, the result being consistent with
previous studies [81–83]. Also, this finding supports the hypothesis that particulate matter
in different size fractions can be considered a viral vector of SARS-CoV-2 pathogens in large
cities through the reduction in pulmonary function and emergence of new viral variants.
Presently, particulate matter PM2.5 including ultrafine particles is considered the fourth
leading risk factor for death and disability in the world [84,85].

Table 2. Cumulative statistical analysis of COVID-19 cases and deaths per waves, periods and
the average daily PM2.5 and PM10 concentrations for the 26 February 2020–31 March 2022 period
in Bucharest.

Time Period Daily New COVID-19
Cases (DNCs)

Daily New COVID-19
Deaths (DNDs)

Daily Average PM2.5
(µg/m3)

Daily Average
PM10 (µg/m3)

1st COVID-19 wave and lockdown
26 February 2020–15 June 2020 2398 127 23.865 ± 18.094 65.034 ± 13.265

Pre-2nd COVID-19 wave
15 July 2020–30 September 2020 13,649 266 20.773 ± 7.801 60.092 ± 12.783

2nd COVID-19 wave 01 October 2020–31
January 2021 101,018 1421 24.772 ± 11.154 72.584 ± 27.405

3rd COVID-19 wave 01 February 2021–01
June 2021 64,848 1166 22.013 ± 10.793 61.053 ± 26.272

4th COVID-19 wave 01 September
2021–21 December 2021 120,986 2098 28.212 ± 10.534 60.592 ± 24.165

5th COVID-19 wave 22 December
2021–31 March 2022 235,185 584 25.135 ± 11.652 67.721 ± 22.823

3.2. AOD Temporal Pattern during COVID-19

Compared to the long-term average AOD level (2015–2019) for the same periods of
the year, our findings highlight the reduction in the total Aerosol Optical Depth (AOD)
at 550 nm levels over Bucharest metropolitan city (~28.2%) during the first COVID-19
wave associated with the total lockdown period (15 March–15 May 2020) and a decrease
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of ~16.4% recorded during the third COVID-19 wave when a few restrictions had been
adopted (Figure 4). Like other studies found in different metropolises, this article reported
the reduction in PM2.5 and PM10 ambient particles and the increase/decrease in trace
gases O3/NO2 during the implemented lockdown periods [86–88].
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Figure 4. The monthly distribution of AOD in Bucharest metropolis for the years 2019–2021.

Figure 4 shows the seasonal variation of total AOD at 550 nm over Bucharest metropoli-
tan city during the investigated COVID-19 pre- and pandemic period with minimum in
autumn and winter and maxima in summer and spring. Recorded high AOD values may be
associated with different atmospheric processes in the peri-urban areas (secondary aerosols
and pollutants formation due to biomass combustion after crop harvesting, hygroscopic
growth of aerosols, etc.), which favor pollutants accumulation in this region.

In the spring season, the increased AOD levels due to high dust concentrations are
sometimes attributed to transboundary pollution sources like Saharan intrusions. Like
several other studies [89–91], this research underlines the negative role of both short-term
and long-term outdoor exposure to high levels of air pollutants concentrations in Bucharest
city on COVID-19 pandemic transmission and severity and suggests the urgent need for
a reduction in air pollutants sources during pandemic outbreaks. However, to improve
air quality in large cities, lockdown implementation measures are welcome during strong
pandemic periods [92–95].

3.3. Meteorological Variables and COVID-19

Based on statistical analysis of the daily time series of meteorological variables, we
found that air temperature and surface solar irradiance are inversely correlated (Figure 5)
with the confirmed COVID-19 daily new cases (DNCs, r = −0.51, p < 0.01; and r = −0.60;
p < 0.01) and deaths (DNDs, r = −0.67, p < 0.01; r = −0.65, p < 0.01), and respectively; the
results are comparable with the scientific literature in the field [96–98].
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Figure 5. Temporal distribution of the average daily meteorological parameters (air relative humidity,
temperature at 2 m height, Planetary Boundary Layer height, surface solar irradiance, and COVID-19
incidence and mortality in Bucharest during the five waves of the COVID-19 pandemic period).

Another important finding shows that Planetary Boundary Layer height is inversely
correlated with DNCs (r = −0.70; p < 0.01) and DNDs, respectively (r = −0.72; p < 0.01).
Like other studies [99–103], this research found positive linear Spearman rank correlations
between average daily air relative humidity with DNCs (r = 0.42, p < 0.01) and DNDs
(r = 0.47; p < 0.01) and air pressure with DNCs (r = 0.27, p < 0.01) and DNDs (r = 0.35;
p < 0.01). Low negative correlations have been recorded between the average daily wind
speed intensity and daily COVID-19 new cases and deaths (r = −0.32, p < 0.01; and
r = −0.38; p < 0.01). Also, similar findings have been reported by previous studies [104–108].

Similar results have been reported by some previous studies, which demonstrated
an association of weather factors (mostly air temperature, humidity, solar radiation) and
COVID-19 transmission in specific regions of the world during different time
windows [109,110]. Despite being very important factors in COVID-19 transmission, the
airborne pathway is considered to be crucial [111].

Due to its topographic location in a large plain area surrounded by Carpathians Moun-
tain barriers, particularly during the late fall and winter seasons, the Bucharest metropolis
has strong tropospheric anomalous synoptic anticyclonic circulation with downwards
airflows, which create proper conditions during atmospheric inversions for the accumula-
tion of air pollutants and SARS-CoV-2 viral pathogens near the ground. This anomalous
atmospheric circulation may be associated with the high rates of infections reported during
the third and the fifth COVID-19 waves. Frequent spring Saharan dust storms over the
southeastern part of Romania and Bucharest are responsible for the particulate matter
and bioaerosols concentrations increasing several times over, which may explain the high
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rate of confirmed positive cases recorded during the 5th COVID-19 wave. Researchers
demonstrated that sandstorms inject newly emerging pathogens into the atmosphere with
adverse effects on urban air quality and built environments. Previous studies found that
during the sandstorm events, the particulate matter (PM) and pathogenic bacterial commu-
nity concentrations in the atmosphere were extremely high, posing a significant hazard to
human health, as small bioaerosols (0.65–1.1 µm) remained suspended for a long time in
the atmosphere [112–115].

However, experimental studies [116,117] found that the bacterial and fungal abun-
dances in ultrafine particulate matter PM1.0 were higher than those in PM2.5 and PM10
across different seasons in large cities, showing a strong positive correlation with air
quality index. Also, the bacterial gene abundances were higher than fungi, presenting
stronger seasonality variation and shifts in the available microbial sources in the urban
atmosphere [118,119]). Also, human toxicological and epidemiological studies established
a high correlation between health risks and the degrees of exposure (long term or just short
term) to high levels of PM in ambient air. Such studies took into account the reduction in
lung function and respiratory symptoms including cough, shortness of breath, and pain on
deep inhalation. The benefits of improved air quality depend on the dose–response relation-
ship and individual susceptibility at different thresholds of PM concentrations [120–122].
During COVID-19 pandemic periods, besides gaseous air pollutants and PM2.5 parti-
cles, public risk perception of urban air pollution is associated with high levels of PM10
concentrations from industrial sources [123] and their biogenic or chemical toxic compo-
nents as well as with climate and sociodemographic factors [124,125]. Among the various
risks/hazards induced by air pollutants on human health, microorganisms in PM2.5 and
PM10 are considered to be responsible for various allergies and for the spread of respiratory
diseases [126,127]. To provide information on the allergenic and pathogenic potentials
of different factors, future studies must consider metagenomic methods to analyze the
microbial composition of PM in urban metropolitan areas. The COVID-19 viral pandemic
infection caused by the SARS-CoV-2 has produced several outbreaks worldwide, which
have had a high rate of viral variants and subvariants, which in synergy with other vi-
ral or bacterial diseases, and under the pressure of environmental, socioeconomic, and
demographic stressors, are significantly related to lethality and transmissibility [128–130].

3.4. Strengths and Limitations

Our study has several strengths in having a longer observation period of air pollution
and climate variables related to COVID-19 epidemiology in the Bucharest metropolitan
region, which spanned several seasons from 26 February 2020 to 31 March 2022, allowing us
to explore a large database. Also, a few studies considered the analysis of the aerosol optical
depth satellite MERRA-2 product as a measure for aerosol loading over Bucharest during
COVID-19 multiwaves comparative analysis. A strength of this investigation consists of
its useful information on air pollution and climate variability impacts on COVID-19 pan-
demic transmission and the severity provided for policymakers in Romania and the public
worldwide. Some limitations of this study may be acknowledged. COVID-19 incidence
and death data can have some uncertainties due to under-testing and underreporting cases.
Also, due to COVID-19-related sanitary restrictions, it was not possible to measure lower
air pollution levels, which limit the statistical analysis results.

4. Conclusions

The complex statistical analysis carried out in this study suggests that exposure to
high levels of air pollution, particularly particulate matter (PM) as potential carriers of
SARS-CoV-2 virions, could increase the transmission and severity of COVID-19 viral
infection through clusters of aerosols, which can harm the integrity of the upper and
lower human respiratory tract and possibly form condensation nuclei for viral attachment.
The inactivation processes of this viral aerosol transmission, which mostly involves fine
particulate matter, are influenced by time periods and meteorological conditions.
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The results of this study highlight the importance of implementing the total COVID-19
lockdown during the 1st COVID-19 wave and some restrictions adopted during the second
and the third waves that improved air quality in the short term through a significant reduc-
tion in PM2.5, PM10, and AOD levels over the metropolitan city of Bucharest compared to
the long-term average AOD level (2015–2019) for the same periods of the year.

Also, the results of this study show a negative correlation between COVID-19 incidence
and severity with air temperature, PBL heights, and surface solar irradiance, supporting
the idea that COVID-19 will spread more readily during the colder months. COVID-19
can spread via the airborne route and over long distances. A significant negative impact
on COVID-19 transmission and human health will also result from the occurrence of
severe haze or fog episodes during particularly synoptic anticyclonic conditions linked
to autumn/winter atmospheric inversions. These episodes reflect the synergetic effects
caused by interactions between local and regional air masses, transport, anthropogenic
emissions, and atmospheric physicochemical processes. Time-series analysis of investigated
climate variables in this study demonstrated that a sudden change in outdoor temperature
might activate the COVID-19 epidemic in the temperate climate of Bucharest, and relative
humidity will facilitate aerosol spread. The effects of global changes on urbanization and
climate patterns, including an increased frequency of extreme climate events, which have
been recorded during the last few years in Romania and Europe, will lead to specific
changes in the intensity of future viral epidemics. In particular, increasing the amplitude of
seasonal fluctuations in aerosols and bioaerosols concentrations and the meteorological
variables regime lead to more intense epidemics and a high potential transmission of viral
infections in metropolitan areas.

However, the ongoing increase in confirmed new cases worldwide and the novel
Omicron subvariants imply the adoption of safety risk strategies for imported viruses.
Urban intensely polluted areas may implement targeted decisions to reduce the main
sources of air pollution and improve air quality through adopting cleaner energy sources
and electric vehicle use.
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