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Nanomaterials are used to develop simpler, cheaper, and faster methods for disease
diagnosis [1]. Recently, owning to the coronavirus COVID-19 pandemic, intervention in
viral transmission has become an important priority in public health. Disinfectants, such
as weakly acidic hypochlorous acid solution and ethanol, are known to destroy lipids
in the viral envelope of the severe acute respiratory syndrome coronavirus SARS-CoV-2.
However, ethanol is flammable and can cause harmful injury to human skin. Chemical
reactions with ethanol cause the structural decay of chemical synthetic fibers, plastic, and
cotton clothes. Sodium hypochlorous acid solution (pH > 10) has a weaker virucidal effect,
when used at concentrations of <200 ppm, and a more concentrated solution is required to
achieve efficient effects [2].

A weakly acidic hypochlorous acid solution (pH 6) is 10–50-fold more efficient against
microorganisms [2]. However, when a weakly acidic hypochlorous acid solution is used
at a concentration of <50 ppm, the microbiocidal effects are easily lost in the presence of
organic matter contamination. Temperatures of higher than >25 ◦C and ultraviolet (UV)
rays from sunshine influence the microbiocidal effects of this disinfectant [3]. When a
weakly acidic hypochlorous acid solution is used at concentration of >100 ppm, chloramine
and chloride gases are produced. These gases exhibit corrosive effects on steel. Therefore,
environmentally friendly and non-harmful disinfectants for viruses and microorganisms
are still under development. Numerous types of virucidal measures, such as cold gas
plasma [4], chemical disinfectants [5], 222 nm UV [6], and photocatalysis [6], have been
actively studied and are reported in this collection.

This Special Issue consists of one review, four original articles, and two communica-
tion articles. These discuss various new photocatalysts, naturally produced disinfectants
(Kampo), and nanomaterials that function as disinfectants. Nanomaterials can prevent viral
contamination via air and through contact with contaminated surfaces and can sterilize
protective equipment, especially in hospital settings and animal facilities [6,7]. Creating a
self-disinfecting surface using graphene–silver hybrids is a promising strategy to prevent
the spread of COVID-19 [8].

Several products made of nanoparticles exhibit antimicrobial activities and are used
for the disinfection of surfaces. CAC-717 is a novel disinfectant consisting of calcium bicar-
bonate mesoscopic crystals that contain mesostructured nanoparticles, which inactivate
enveloping and non-enveloping viruses and prion [9,10]. Graphene in face masks can also
sterilize SARS-CoV-2 and allow reuse [11]. Therefore, this coating is suitable for use on
surfaces in public places.

Ephedrin alkaloids (EFE) and herbal extracts exert anti-viral effects against the in-
fluenza virus [12,13]. The unpredictable and unknown nature of COVID-19, the similarity
of the specific properties of this disease, and the physicochemical properties of nanosys-
tems will lead to a solution based on new technologies [14–16]. Kampo medicine is a
traditional Japanese medicine consisting of natural herbs and animal products. In Kampo
medicine, several compounds have been reported to have anti-viral effects. Recently, these
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extracts were shown to exhibit anti-viral effects against human coronaviruses and SARS-
CoV-2 [15,16]. EFE has been widely studied by virologists at the National Institute of
Health Science (NIHS), in Japan [16]. At the NIHS Biosafety Level (BSL)-3 laboratory, Vero
E6/TMPRSS2 cells were cultivated and infected with SRAS-CoV-2 (moi = 0.03). After 2 h,
the cells were washed with media and cultured for an additional 3 h. Real-time polymerase
chain reaction (PCR) was used to determine the number of N protein genome (SARS-CoV-2)
copies inside the cells. EFE (5–100 µg/mL) and ephedra herb macromolecule condensed
tannin (EMCT; 5 µg/mL) was added to the cells 1 h before the infection [16]. The same con-
centration of the anti-viral agent was added during cultivation. The cytotoxic effect of the
anti-viral agent was tested using the 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay [16].

In the EFE-treated groups, the increase in viral RNA was suppressed in a dose-
dependent manner. EFE suppresses viral growth in the early phases of viral replication
during the cell entry process of virion attachment to the viral receptor [16]. EMCT showed
similar effects. At the indicated doses, the MTT assay showed that EFE and EMCT did not
exhibit any cytotoxicity. Therefore, EFE and EMCT may be useful for the early treatment of
COVID-19.

Another Kampo product has been studied by scientists at the University of Tokyo [15].
Epigallocatechin gallate (EGCg) is catechin derived from green tea that is traditionally used
as a virucidation product. EGCg was enclosed inside cyclodextrin molecules (CD-EGCg)
molecules to enhance their solubility in water. Higher concentrations of EGCg in water
enhance virucidal effects against numerous types of viruses [15]. Human influenza viruses
and coronaviruses are widely known to be affected by EGcg. However, CD-EGCg did
not show any cytotoxicity during the cultivation of the MDBK cell line without a viral
infection. CD-EGCg exhibited a virucidal effect after the adsorption of viruses onto the cell
line. However, CD-EGCg did not show virucidal effects against free viruses in media. It
was suggested that CD-EGCg could be used to spray raw food at cold temperatures [15].

Various antibodies to cytokines against cytokines has been shown to inhibit disease
progression and virus-induced immunopathology [17–21]. Most patients with severe
COVID-19 show increased levels of serum pro-inflammatory cytokines such as interleukin
(IL)-6, IL-1β, IL-2, IL-8, and IL-17. In lethal COVID-19 cases, SARS-CoV-2 nucleocapsid
antigen has been detected in a sizable portion of adipocytes [22]. This shows that the virus
may directly infect the parenchymal cells of subcutaneous fat. The infection appeared to
activate the interferon pathway and attract infiltrating leukocytes. The adipose tissue serves
as a significant reservoir of SARS-CoV-2 and is an important source of mediators causing
immunopathology [22]. In addition, the reactivation of latent cytomegalovirus and Epstein–
Barr virus (EBV) infection may occur in COVID-19 patients, causing fatigue or neurological
symptoms such as brain fog [23]. In this sense, new advances in the disinfectants of viruses
and antiviral agents are crucial. Collectively, these new drugs can inhibit the first steps of
virus-induced immunopathology.
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