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Abstract: The importance of Saccharomyces cerevisiae yeast cells is known worldwide, as they are the
most used microorganisms in biotechnology for bioethanol and biofuel production. Also, they are
analyzed and studied for their similar internal biochemical processes to human cells, for a better
understanding of cell aging and response to cell stressors. The special ability of S. cerevisiae cells to
develop in both aerobic and anaerobic conditions makes this microorganism a viable model to study
the transformations and the way in which cellular metabolism is directed to face the stress conditions
due to environmental changes. Thus, this review will emphasize the effects of oxidative, ethanol, and
osmotic stress and also the physiological and genetic response of stress mitigation in yeast cells.
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1. Introduction

Yeasts are microorganisms known for their role in fermentation processes. In other
words, they transform complex substances from the environment into totally new ones that
are needed in various fields. However, along the way, the microorganisms face several types
of stresses, starting with osmotic stress, and as the food in the environment is consumed,
stress occurs due to the lack of nutrients and the increasing amount of resulted ethanol [1].
The most important yeasts used in industry are the Saccharomyces cerevisiae species. But
using them so intensively exposes them to a series of factors which can affect their activity
during the fermentation process. Extreme values of pH or temperature, lack of nutrients in
the environment, and metabolic reaction products are just a few examples. All the elements
presented lead to different types of stress, such as oxidative, ethanol, saline or osmotic [2].

All the stress formed in the culture medium produces harmful effects on the yeast
cells. As a result, their growth and metabolism are slowed down, and the lag phase is
often extended. To prevent these events, at the cellular level, the processes of transcription
regulation or stimulation of certain genes take place. Such genes encode both proteins
and enzymes, which act in such a way as to improve the microorganism’s tolerance to
stress [1,3]. Yeast cells can respond in a non-specific way to environmental conditions, so
that their development is not disturbed during the time required for a specific response,
through an evolutionary adaptation, namely the general stress response [4].

This paper emphasizes some types of cellular stress acting on Saccharomyces cerevisiae
species. It also evaluates how S. cerevisiae cultures use their defense mechanisms to increase
their tolerance to stressors. Understanding the aspects related to the action of cellular
stress on yeasts and their response is important from a biotechnological point of view,
being helpful for the optimization of industrial fermentation processes. This can reduce the
amount of yeast cells used, and increase the quality for the final products.
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2. Saccharomyces cerevisiae Species

Saccharomyces cerevisiae is a unicellular eukaryotic microorganism with a wide distri-
bution in trees, soil, and fruits. Research has revealed that it can also be located in the
urinary, respiratory or gastrointestinal tracts of healthy individuals [5–13]. As a facultative
anaerobic microorganism, it is able to develop both in the presence and absence of oxy-
gen. Depending on the oxygenation conditions, the yeast cell uses different biochemical
mechanisms. Thus, in the absence of oxygen, but with a carbohydrate substrate, the energy
required for cell development is obtained through glycolysis. In the presence of molecular
oxygen and in the absence of sugars, respiration takes place at the mitochondrial level,
with energy being obtained through oxidative phosphorylation [14].

In biotechnology, S. cerevisiae has been used for several decades to obtain alcohol by
fermentation in the beer and wine industries, helping the dough rise during the baking
process, and also plays a notable role in obtaining biofuels [15]. In terms of its widespread
use for ethanol production, S. cerevisiae is very advantageous, as it has a non-pathogenic
nature, has the ability to grow on inexpensive substrates, and to withstand high concentra-
tions of alcohol (up to 10% v/v) [16]. S. cerevisiae could be a suitable option for obtaining
other compounds, such as butanol (up to 2.5 mg/L with a 2% galactose carbon source,
using ESY7 strain which overexpresses the native thiolase and HbCoA dehydrogenase),
but there are still obstacles to overcome, in terms of expressing heterologous biosynthetic
pathways [16,17].

Over the years, researchers were able to sequence its entire genome, discovering about
6000 genes. The data acquisition process was carried out through “omic” technologies,
molecular biology techniques and traditional biochemistry. All information is currently
included in the “Saccharomyces Genome Database” [18–24]. Yeast cell morphology has a
relatively simple ellipsoidal shape and the sequences of genome leads to the easy produc-
tion of mutants. A database for the morphological characterization of S.cerevisiae (SCMD)
associates individual mutants of the S. cerevisiae genome with secondary gene annotation
and with protein sequences [25]. Research on intracellular organelles of S. cerevisiae, specifi-
cally mitochondria, has shown that the most frequently occurring mutant is the respiratory
deficiency (‘petite’) mutation, in which the mitochondria are incapable of synthesizing
certain proteins and become partially unable to function aerobically. Consequently, the
yeast cells can no longer metabolize non-fermentable carbon sources, like lactate, ethanol
or glycerol. Furthermore, the cell becomes less tolerant to stress factors, such as ethanol
and osmotic pressure [26].

S. cerevisiae grows in colonies when in adequate conditions, but under different stres-
sors, yeast cells can alter their growth pattern to produce complex structures leading to
a change in colony morphology and also at a genetic level. Therefore, different genes
were identified to be involved in complex colony morphology, components of MAP kinase
cascade and the Ras-cMAP-PKA pathway, which are the most researched pathways in
eukaryotic organisms. Under different nutrient conditions, some strains develop complex
colony morphology morphotypes, included in the following categories: spokes (OS17
strain), concentric rings (YJM224 strain), lacy (YJM311 strain), coralline (NKY292 strain),
mountainous (PMY348 strain), and irregular (BY4743 strain) [27].

The importance of Saccharomyces cerevisiae yeast cells is given by certain proteins
that are considered to be similar to human ones. Thus, yeast cells are used in various
studies to analyze biochemical processes that have similar effects in human cells, like
aging, cellular stress, and drug screening [13,28–31]. Another role for this microorganism
is its involvement in the molecular mechanisms of response to oxidative stress and in
the correlation between reactive oxygen species and aging processes at the cellular level.
S. cerevisiae is both genetically and reproducibly safe to grow due to short-lived generations
of between 1.5 and 3 h. From this point of view, the microorganism is intensively used as
an experimental model for the study of certain genetic and cellular aspects [32].
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3. Types of Cellular Stress

With the start of the fermentation process, different stressful factors appear in the
environment that directly affect the yeasts. Among them are osmotic, oxidative, and ethanol
stresses, nitrogen starvation, low external pH, heat shock, prolonged anaerobiosis or the
appearance of toxic molecules, as presented in Figure 1 [33]. As a shield against them,
microorganisms have created defense responses specific to each type of stress, as well as a
general environmental stress response (ESR) [34–37].
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Figure 1. Types of stresses to which the yeast cell can be exposed during the fermentation process
and its way of responding to stressful stimuli [33].

3.1. Oxidative Stress

Oxidative stress results from the cells’ inability to reduce or eliminate reactive oxygen
species and reactive nitrogen species (superoxide radical anion O2

•−—the primordial
reactive oxygen species, hydroxyl radicals, peroxynitrite, singlet oxygen, and hydrogen
peroxide) or to repair the molecular damage produced by them [32,38–41]. In aerobic
conditions, the generation of ROS takes place continuously (Figure 2), these being metabolic
side products or the result of cellular control systems. Maintaining low concentrations of
reactive oxygen species (ROS), below 10−8 M, is achieved by the generation and degradation
mechanisms achieved through specific and non-specific cellular mechanisms [42].

Among the factors which determine oxidative stress, metabolism and aerobic res-
piration contribute the most to this process. A very recent study compared, by using
an AI model and neural network algorithm, cellular morphology under basal and stress
conditions and concluded that the changes induced by stress due to a high concentration
of glucose in the medium were actually due to osmotic stress [43].

In the process of cell development, the microorganism culture goes through several
stages, including the lag phase (adaptation), the exponential phase (active cell division),
the stationary phase (in which the number of newly formed cells is equal to that of dead
cells), and the phase of cell death. In the exponential phase of cell growth, the energy
produced is the result of glycolysis. The number of mitochondria is reduced, oxygen
consumption is minimal, and so, in this phase, the activity of antioxidant enzymes is also
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reduced. A responsible factor for oxidative stress is ethanol, by acting on the reactive
oxygen species present in the mitochondria [37,44]. In the stationary phase, the cells use the
ethanol obtained in the previous phase as an energy source. The number of mitochondria
is increased, as a result of their need to oxidize ethanol, so, in this phase, the generation of
reactive oxygen species intensifies. Thus, the transition of the cell culture to the stationary
phase can cause the occurrence of oxidative stress [44]. The transformation of molecular
oxygen into ROS leads to certain phenomena, such as protein oxidation, lipid peroxidation
or DNA mutations. These actions occur even though the cells contain antioxidant defense
mechanisms [29].
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maintain physiological homeostasis [32].

Oxidative stress can also be caused by compounds or substances such as tetrachloro-
bisphenol A or xylene [45,46]. In addition, through the autooxidation processes of some
molecules, some oxidases generate reduced amounts of ROS, such as NADPH oxidase,
xanthine oxidase, cyclooxygenases, and lipoxygenases [47].

The defense against oxidative stress is based on enzymatic and non-enzymatic mecha-
nisms, which have the role of maintaining the level of reactive oxygen species within normal
limits. The action of the enzymatic part in yeasts is based on the presence of two catalases
(A and T) and two superoxide dismutases (Cu/Zn SOD and Mn/Zn SOD). Catalases have
the role of breaking down H2O2 into H2O inside the peroxisome and cytosol. Superoxide
dismutases convert the superoxide anion into oxygen and H2O2 in the cytoplasm and
mitochondria. Enzymes that act against oxidative stress also play a very important role in
the ethanol tolerance of yeasts. They eliminate the reactive oxygen species that appear in
the presence of alcohol [37]. Studies have shown that S. cerevisiae develops the ability to
survive in stress conditions that could become lethal, if it was previously exposed to low
doses of cellular stress of the same or a different type [48].

Melatonin is a hormone that protects the human body from oxidative stress, but also
from that caused by ethanol. It acts as an antioxidant both for S. cerevisiae and for non-
Saccharomyces microorganisms. Directly, melatonin eliminates reactive oxygen species, and
indirectly decreases the amount of oxidized glutathione and activates the genes involved in
the response to oxidative stress. Given this information, some studies claim that S. cerevisiae
produces melatonin to defend itself against the oxidative stress caused by the presence of
ethanol and its consequences [37,49–51].

Other substances with an antioxidant role are carotenoids. In this case, their chemical
structure plays an important role. The nature of the terminal group, the substituents
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they have in the composition or the length of the polyene chromophore are some of the
aspects that determine the stopping of reactive oxygen species from producing unwanted
effects [52].

3.2. Osmotic Stress—Stress Due to Environmental Salts

S. cerevisiae is a microorganism with a high sensitivity to environmental salts. High
concentrations can limit water activity, thus leading to cell growth problems [53,54]. Over
time, cells have developed a tolerance to high salt concentrations, thus being able to
adapt to water fluctuations in the environment. At the same time, this tolerance has an
important role in the processes of maintaining or restructuring biological, physiological or
morphological functions [53,55,56].

Several strains of S. cerevisiae were analyzed to study salt resistance. Following expo-
sure to different molar concentrations of K+ (from 0.025 M to 2 M), cells were found to lose
viability at 1.5 M K+. It was also observed that S. cerevisiae strains exhibited a decrease in
cell density ranging from 37 to 65% compared to the reference cultures, where they all had
approximately the same density. Also, although the concentration of K+ increased, some
strains of S. cerevisiae were able to consume all the glucose in the medium and convert
ethanol to acetic acid. In addition to K+, the microorganisms were also exposed to different
concentrations of Na+. Some S. cerevisiae strains showed a 79% decrease in growth rate at
only 0.5 M Na+, while others had a 59% decrease at 2 M Na+. In the case of sodium use,
the cell density of S. cerevisiae chains was between 25% and 68% compared to the reference
values [53].

Some studies have shown, following the analysis of the microorganism Deinococcus
radiodurans, that it has a gene which increases its tolerance to environmental stress. This
was isolated and then combined with the genetic material of a strand of S. cerevisiae. After
exposure to different salt concentrations (2%, 3%, 4%, 5%, and 7%), it was observed that
normal strands of S. cerevisiae can withstand a maximum salt content in the medium of
5%. However, the strand of S. cerevisiae that contained the pprI gene, originating from
the microorganism Deinococcus radiodurans, tolerated the salt concentration of 7% very
well [16].

Another recent study investigated how the adhesion and cytotoxicity of positively
charged polystyrene nanoparticles from two yeast cultures are affected in the presence of
the NaCl salt. The nanocarriers were exposed for 24 h to NaCl concentrations ranging from
5 to 600 mM and temperatures from 4 to 25 ◦C. The yeast strains used were Saccharomyces
cerevisiae and Schizosaccharomyces pombe. At the end of the research, it was observed that, for
the survival of the two cultures, at a temperature of 4 ◦C, NaCl concentrations of 100 mM
for S. pombe and 150 mM for S. cerevisiae were necessary. In the case of S. cerevisiae, the
degree of adhesion decreased with increasing NaCl concentration at a temperature of 25 ◦C
and an exposure time of less than 4 h. Thus, at NaCl values higher than 150 mM, the
adhesion became almost insignificant. In terms of cytotoxicity, the higher the degree of
adhesion at the beginning, the more pronounced the cell death. Regarding S. pombe, the
degree of adhesion increased at the same time as the NaCl concentration. Thus, it was
observed that the cells coated with nanoparticles had a mortality reduced by 50% at an
exposure time of less than 4 h [57].

Water activity describes the chemical yield of free water in a solution. One of its
uses is to help classify microorganisms into: halophile, halotolerant, and halosensitive.
Halophile microorganisms have the ability to grow in environments with high salinity,
while halo-sensitive ones are drastically affected by such amounts. At their core, halo-
tolerant microorganisms are those that do not require certain amounts of salt to grow
and can be viable over a wide range of salinity values in the environment. In order to be
classified into one of the categories above, yeasts must have a certain value for water activity.
Thus, for a value lower than 0.70, microorganisms are considered halophile. However,
most of them develop at values between 0.90 and 0.95 [58]. Some examples of halo-tolerant
yeasts are described in Table 1.
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Table 1. Halotolerant yeast species [54].

Category Characteristic Species Name NaCl: M; % (w/v)

Halotolerant Growth at NaCl > 2.0 M

C. parapsilosis 3.0; 17.5
P. membranifaciens 3.0; 17.5

I. orientalis 2.0; 11.7
P. sorbitophila 3.0–4.0; 17.5–23.4

Z. rouxii 3.0; 17.5
H. werneckii 5.20; 30.8
D. hansenii 3.0–4.0; 17.5–23.4
C. halophila 4.0–5.0; 23.4–29.1

Moderate halotolerant Growth inhibition at
NaCl > 2.0 M

S. cerevisiae <1.70; 10
S. pombe 1.00; 5.8

Z. florentinus 1.00; 5.8
C. albicans 1.70; 10
C. tropicalis 1.7–2.0; 10–11.7

Z. sapae 2.0; 11.7
Z. bailii 1.0–2.0; 5.8–11.7

Z. bisporus 1.0–2.0; 5.8–11.7

Stress caused by environmental salts can lead to hyperosmotic stress, but also to
specific cation toxicity. Its action on S. cerevisiae causes the microorganism to activate certain
protective steps. First, some mechanisms are activated that prevent cell death following
the change in osmolarity. Processes ensue that are intended to protect, repair, and recover
from the osmotic effects and sodium toxicity. Finally, cells resume their growth process
through readaptation conditions. However, S. cerevisiae has a long-term defense process
that relies on osmotic changes driven by osmolyte synthesis and cation transport to remove
sodium [59].

The waste water produced in the pharmaceutical, textile, chemical or food industries is
very harmful to the environment. It contains large amounts of pollutants and salts that make
the biodegradation process difficult. Although there are certain treatment processes, they
involve the appearance of new substances at the end. For this reason, bioaugmentation was
researched. The technology accelerates the destruction of refractory pollutants by involving
microorganisms in a classic biological treatment system. Thus, it was found that halophile
yeasts are effective in cleaning polluted waters. An example is Meyerozyma guilliermondii
W2, which has a high degree of survivability and growth in high salinity environments.
In one study, the use of microorganisms increased the chemical oxygen demand (COD)
removal percentage from 67% to 94% after the bioaugmentation process [60].

Related to the salt tolerance of yeasts, a study was carried out with the aim to determine
the effects of carotenoid substances in the defense against salt stress. Thus, strains of
Sporidiobolus pararoseus NGR were exposed to different concentrations of NaCl. HPLC
results showed that carotenoid products released by Sporidiobolus pararoseus NGR protect
microorganisms against salt stress. Separately, amounts of diphenylamine were added to
some samples to evaluate the behavior of carotenoids. It was observed that the synthesis
of the substances was inhibited, thus no longer able to protect the cells of Sporidiobolus
pararoseus NGR against NaCl in the environment [52].

3.3. Stress Due to Ethanol Accumulation

Ethanol is both the product resulting from the alcoholic fermentation of yeasts, but
also one of the factors that lead to the appearance of stress at the cellular level. As the
fermentation process progresses, more and more ethanol is produced. This leads to harm-
ful actions against the yeast cells, such as blocking cell proliferation, depolarizing the
cytoskeleton, or altering the activity of transport systems [61]. To respond effectively to
stress conditions, yeast reprograms its cellular activity to protect important cell components
for normal cellular activity and a higher degree of survival [62].
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The structure of the yeast cell wall protects it against permanent changes in the external
environment and it prevents cell lysis resulting from changes in osmotic conditions. The
alcohol causes the disruption of cell integrity by intercalation in the hydrophilic layer inside
the lipid bilayer of the membrane, thus increasing cell permeability [48,63]. The presence
of ethanol during fermentation subjects yeasts to continuous stress. Thus, most of the
time, cell viability is reduced, followed by the full blockage of the process for obtaining
a certain product [37]. To prevent this, cells use several protective mechanisms. Among
them are the activation of some heat shock proteins, the increase in the level of unsaturated
fatty acids and ergosterol in the plasma membrane or the accumulation of the intracellular
trehalose (known to replace the water molecule to stabilize proteins and membranes from
desiccation and to protect yeast cells from thermal denaturation) content in the cells [64–67].
Additionally, studies demonstrate that ATPase in the plasma membrane also controls the
tolerance of yeast cells to the stress due to ethanol, as this enzyme is reported to be activated
by the alcohol [68]. Vacuolar and membrane ATPase are involved in the recovery after the
acidification at a cytosol level induced by the presence of alcohol, by pumping protons into
the vacuole and outside the cell, due the effect of alcohol in order to induce a membrane
permeabilization effect through a passive influx of protons [62,69,70].

As for the concentration of ethanol in the environment, it produces certain effects both
at low and high levels. At a low percentage, the yeast cells undergo a slowdown in division,
resulting in slower growth. At high concentration, the fluidity of the cell membrane is
improved, but cell viability decreases, the electrochemical gradient decreases, and the
activity of glycolytic enzymes is affected by protein denaturation and the increase in the
percentage of insoluble proteins [67]. By analyzing the effect of ethanol concentration on
yeast proteins, it was observed that the inhibition of the process is dependent on it. To
support the statement, a study was carried out on two cultures of Saccharomyces cerevisiae,
one commercial, for wine production, and one of laboratory type. Both were subjected
to alcohol concentrations from 6% to 14%. Cell growth was completely stopped at a
concentration of 12% for laboratory strain and 14% for the commercial one. In another
study, one set of cells was subjected to 10% ethanol. As a result, protein aggregates formed
and the translation of the genetic material was repressed. Thus, it can be said that, at values
higher than 10%, the degradation of the proteasome is strongly affected [37,61].

The ethanol resulting from fermentation has harmful effects on the yeast cell mem-
brane. To avoid cell damage, some studies have shown that Mg2+ ions exhibit protective
actions against ethanol stress. Other researchers report that maintaining a balance of K+ ions
in the cell membrane lessens ethanol stress, increasing fermentative activity. Resveratrol is
a polyphenol capable of increasing ethanol tolerance. This increase occurs by decreasing
lipid peroxidation and superoxide dismutase activity [2,37].

Sometimes, the exposure of yeast cells to ethanol stress may have positive effects.
For example, the activity of the ubiquitin–proteasome proteolytic system can be analyzed
during this process. For certain proteins, ethanol leads to the suppression of proteolysis, but
after its removal, the degradation resumes. In other words, the inhibition of proteasomal
degradation is a reversible process [61].

4. The Behavior of Saccharomyces cerevisiae in Stressors Action

Once environmental stress acts on microorganisms, it produces changes at a genetic
and molecular level. For example, yeast cells produce much higher amounts of trehalose
in response to heat stress and the disaccharide acts to stabilize plasma membranes. Also,
some genes that have a role in the synthesis of ergosterols are able to exert thermotolerance
properties in yeasts [2].

An overview of the yeast adaptive response in osmotic, ethanol, and oxidative stress
is presented in Figure 3 [62,70].

Yeast cells adapt to stress by activating or inhibiting the genes responsible for actions
against it. An alternative is epigenetic mechanisms by which yeasts quickly adapt to
cellular stress. These processes involve an organization of chromatin into histones, DNA
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modifications or changes in transcription patterns [13,71–73]. Certain responses of yeast
cells to environmental stress are shown in Table 2.
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Table 2. S. cerevisiae stress response [2].

Stress Response Details

Apoptosis Near the end of life, senescent cells enter apoptosis

Genotypic changes Mutations are common in yeasts subjected to stress during the brewing process

Changes in intracellular metal ion homeostasis Several stressors lead to the loss of key metal ions such as Mg and Zn

Blocking the cell division cycle Stress leads to the blocking of the yeast cell cycle, thus inhibiting growth

Induction of stress enzymes For example, the induction of antioxidant enzymes during the action of oxidative stress

Activation of glycerol biosynthesis Glycerol is produced in excess during osmotic stress

Induction of trehalose biosynthesis Cells produce large amounts of trehalose in response to heat shock and other stressors

Structural changes in the cell membrane Disorders of membrane integrity caused by stressors

Induction of heat shock protein synthesis (hot/cold) Heat shock proteins are induced in response to high temperatures and other factors

Due to problems with nutrient-poor environments or poor parameters control during
fermentation, the conversion of sugar to alcohol is often slowed down. Apart from these
causes, there are also certain factors that cause damage during the process of obtaining
alcohol. Osmotic stress, ethanol toxicity or certain pH and temperature values can affect
the growth of yeast cells, but also their metabolism. For example, an ethanol concentration
greater than 10% (v/v) and a temperature above 35 ◦C greatly reduce the viability of
microorganisms [2].

Zinc is an important micronutrient in the growth process of S. cerevisiae cells. About
3% of their proteome requires zinc to function properly. In other words, 105 proteins use
it as a cofactor, and another 360 need it to maintain structural stability through binding
domains where it is a key factor. The trace element also enters into the structure of some
proteins called zinc fingers, these being the largest family of proteins that bind nucleic acids
and that have an important function in regulating transcription [74]. Table 3 lists some
examples and how they act against cellular stress in the yeast S. cerevisiae.

Different yeasts from the class Saccharomycetes have been analyzed and it has been
observed that each exhibits distinct defense techniques against osmotic and salt stress. For
example, Zygosaccharomyces rouxii and S. cerevisiae can export Na+ cations out of the cell or
into vacuoles. In contrast, Debaryomyces hausenii accumulates Na+ ions in the cell without
suffering intoxication [75]. Table 4 highlights the cation transport systems in several yeast
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species. For yeast species where a gene is present, a “+” was marked in the corresponding
box. In the opposite sense, a “−” was entered.

Table 3. Zinc finger proteins with role in stress tolerance of S. cerevisiae yeast [74].

Gene Type Function

Ace2 Transcription factor that early activates G1-specific gene expression; may be involved in acetic acid tolerance

Crz1 Transcription factor that activates the copying of genes involved in the stress response

Nrg1 Intervenes in glucose repression and negatively regulates many processes, including filamentous growth. Involved in
tolerance to salt, oxidative stress, and acetic acid

Rim101 Repressive transcription factor involved in cell wall structuring and pH response. It also plays a role in acetic acid tolerance

Stb5 Transcription factor involved in multidrug resistance, oxidative stress response, and acetic acid tolerance

Usv1 Transcriptional regulator of genes involved in growth of non-fermentable carbon sources and response to osmotic stress

Cmr3 YPR015C-related transcription factor affects the copying of genes involved in cell defense and rescue, but also in DNA
processing and the cell cycle

Msn2/4 Activators of transcription, regulate the general stress response. Overwriting Msn2 improves ethanol tolerance

Prd1/Prd3 Involved in tolerance to hydroxymethylfurfural (HMF) and ethanol, and in response to salt stress

Ume6 Key transcriptional regulator of early meiotic genes, involved in acetic acid tolerance and salt stress response

Table 4. Gene encoding cation transport associated with salt tolerance in different yeast
species [54,75].

System for Gene Sc 1 Sp 2 Zr 3 Dh 4 Ca 5

K+ influx

TRK1 + + + + +
TRK2 + + − − −
HAK1 − − − + +
ACU1 − − − − pseudogene

K+ efflux TOK1 + − + − +

K+ and Na+ efflux
NHA1 + + + + +
SOD2 − + + undefined −

ENA1-4 + + + + +
1 S. cerevisiae, 2 S. pombe, 3 Z. rouxii, 4 D. hansenii, 5 C. albicans.

Thanks to the success of sequencing the S288c strain from S. cerevisiae, a coordination
system between the extracellular environment and the changes occurring in the cell could
be created. The mechanism is based on receiving information from the environment,
transmitting it internally, and adapting it with the genetic information of the cell to create
an appropriate response. The system was later used in the yeast fermentation process to
optimize it at high salt concentrations [54,76].

In one study, S. cerevisiae cells were subjected to a pulsed electric field to observe its
effect on them. In addition, they were also exposed to heat and the first strand of the
complementary DNA obtained from the RNA of the cells was analyzed. The genes of
interest were those responding to oxidative and thermal stress. Heat stress led to the
activation of the MSP104 gene, which encodes the heat shock protein. In contrast, the
expression of the oxidative stress response gene GLR1 was inhibited. On the other hand,
the pulsed electric field exhibited the opposite, stimulating the GLR1 gene and repressing
MSP104 [77].

During an industrial process, it is important that the chosen microorganism has
increased tolerance to the stress that may occur after a certain period of time. Thus,
specialists resort to physiological and genetic methods to improve the resistance of the
chains of Saccharomyces used. One of them refers to adaptive evolution, which involves a
gradual and prolonged exposure to certain values of environmental factors. In this way, the
microorganism develops a higher capacity to face the difficult conditions that may occur
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until the end of fermentation [2]. Table 5 mentions some actions that can be carried out to
reduce the stress that occurs during fermentation.

Table 5. Ways to reduce stress on yeast cells [2].

Method Details

Microbial contamination control Sanitization operations of fermentation processes, use of
antimicrobial products

Ensuring optimal physiological conditions Correct cold storage temperature, optimal
pre-propagation conditions

Use of improved yeast strains Application of genetic and physiological techniques to
optimize stress resistance

Ensuring proper yeast nutrition Micronutrient balance, bioavailability for metal ions

Control of fermentation parameters pH, temperature, agitation, specific density of the medium,
dissolved oxygen

The genetic modifications made to improve the chains of S. cerevisiae also play an
important role. Mutagenesis, hybridization, and protoplast fusion are some of the classic
techniques used to increase stress resistance. As for newer methods, gene editing technolo-
gies show promising results in this area. With the help of one of these, the desired genes
can be deleted and inserted as precisely as possible by clustered and regularly interspersed
palindromic repeats (CRISPR) and by CRISPR nuclease associated with protein 9 (Cas9).
Following application, tolerance to ethanol, acetic acid, and temperature were increased
considerably. In the culture medium, stress can occur by itself under the action of certain
factors, but it can also be induced to manipulate the cells to produce as much of the final
product as possible. Table 6 shows some examples of how types of stress are used to
influence yeasts [2].

Table 6. Influence of stress on yeasts in industrial applications [2].

Stress Type Cell Response Industrial Application

Osmotic shock Glycerol and trehalose levels increase by lowering
the osmotic potential of the growth medium Usage of tolerant yeasts in fermentation processes

UV irradiation Irradiated yeasts convert membrane ergosterol to
vitamin D2

Vitamin-D2-enriched yeasts for baking
and nutraceuticals

Oxidative stress
Induction of catalase and superoxide dismutase,
stimulation of membrane sterol, and unsaturated

fatty acid synthesis in aerobic environment

Oxygenated yeasts will have a higher stress
tolerance during the fermentation process due to
the high amounts of ergosterol and oleic acid in

the membrane

Heat shock Yeast cells with high levels of trehalose have a
higher tolerance against stress after heat shock Usage of frozen dough for baking

Heat and salts Self-digestion Obtaining yeast extracts and yeast beta-glucan

Some of the common genes responsible for yeast cells’ adaptation to different stresses
are presented in Table 7 [78,79].

Table 7. Saccharomyces cerevisiae common genes with a role in stress response [78,79].

Cell Stress Genes Biological Stress Response

BSD2 involved in metal ion transport (IMP), protein targeting to vacuole (IMP), ubiquitin-dependent protein catabolic
process (IMP)

CTT1 involved in response to reactive oxygen species (IMP), protection from oxidative damage by hydrogen peroxide

DAK1 involved in glycerol to glycerone phosphate metabolic process (IGI), involved in stress adaptation

DDR48 involved in DNA repair (IDA, IMP), expression is increased in response to heat-shock stress

GTT1 involved in glutathione metabolic process (IDA) and protein glutathionylation (IMP)
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Table 7. Cont.

Cell Stress Genes Biological Stress Response

HSP104
involved in cellular heat acclimation (IMP), chaperone cofactor-dependent protein refolding (IDA),
protein folding in endoplasmic reticulum (IMP), protein unfolding (IMP), trehalose metabolism in

response to heat stress (IMP), responds to stresses including heat, ethanol, and sodium arsenite

HSP12 involved in cell adhesion (IDA), in plasma membrane organization (IMP), cellular response to heat
(IMP), osmotic stress (IMP), and oxidative stress (IMP)

HSP26 involved in cellular response to heat (IDA) and in protein folding (IDA)

HSP42 involved in cytoskeleton organization after heat shock (IMP)

HSP78 involved in cellular response to heat (IMP, IGI), mitochondrial genome maintenance (IGI), protein
refolding (IDA, IMP), stabilization (IMP, IGI), and unfolding (IMP)

NCE103 involved in cellular response to carbon dioxide (IMP) and oxidative stress (IMP)

PPZ2 involved in intracellular sodium ion homeostasis (IMP) and regulation of potassium transport, which
affects osmotic stability

SSA4 involved in protein folding (IGI), cellular response to heat, and role in SRP-dependent cotranslational
protein-membrane targeting to membrane and translocation (IMP)

TRR2 involved in protection against oxidative stress (IMP)

TTR1 involved in cellular response to oxidative stress (IMP) and in glutathione metabolic process (IGI)

XBP1 involved in negative regulation of transcription by RNA polymerase II (IMP), induced by stress or
starvation during mitosis, and late in meiosis

TSA2 involved in cell redox homeostasis (IDA, IMP), in cellular response to oxidative stress (IGI, IMP), and
protein folding (IDA)

NQM1 involved in cellular response to oxidative stress (IMP)

RCN1 involved in response to osmotic and ionic changes
concentration

IMP—Inferred from Mutant Phenotype, IGI—Inferred from Genetic Interaction, IDA—Inferred from Direct Assay.

In order to adapt to the conditions to which they are exposed, especially to stress, yeast
cells go through certain changes at the proteome level [35,80]. A set of proteins that produce
positive effects on S. cerevisiae is represented by Msn2 and Msn4 (Msn 2/4). They are able to
stop the mutation of the SNF1 gene and regulate some stress responses. Through cycles of
phosphorylation and dephosphorylation, proteins are activated to produce certain effects.
For example, ethanol tolerance and fermentation improvement in the yeast S. cerevisiae
can be influenced after the phosphorylation of specific serine residues of Msn 2/4. Of
course, proteins can also act in a less desirable way on S. cerevisiae. They can decrease their
growth rate by overwriting the binding domain of their DNA [81]. The phosphorylation
processes controlling Msn2/4 are represented by low protein kinase A (PKA) activity and
low nitrogen and glucose concentrations. Instead, dephosphorylation relies on intense
PKA activity and high glucose concentration. In addition to these two, the functions of
Msn2/4 are also influenced by the nuclear and cytoplasmic localization of the reactions
taking place under the catalysis of the protein kinase Tpk1-3, specific for the cAMP-PKA
signaling pathway. In other words, it can be said that this pathway is responsible for the
thermotolerance of S. cerevisiae cells, the influence of some of the cellular processes and the
accumulation of stress-resistant substances (glycerol, trehalose, and glycogen). Also, both
under normal conditions and under cellular stress, the cAMP-PKA pathway can identify
and respond to high or low amounts of nitrogen and glucose [64,82]. In the case of the
yeast S. cerevisiae, the cAMP-PKA signaling pathways contain elements such as Msn2/4
(transcription activating proteins), Bcy1-2 (regulatory subunit of PKA), Mep2 (ammonium
permease/nitrogen sensor) or Grl1 (sensing glucose, activator of adenylate cyclase). In
cAMP-PKA signaling, the DNA binding domain of Msn2/4 has the ability to recognize
promoter sequences (AG4 and C4T). At high glucose concentrations, Bcy1 is removed from
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the catalytic subunits Tpk1-3, and thus, an increase in Tpk1-3 activity results. At the same
time, Msn2/4 phosphorylation occurs, followed by expulsion from the cell nucleus [82].

Another signaling pathway present in S. cerevisiae cells is that of nitrogen or TORC1
(target of rapamycin 1). It includes Sch9 (protein kinase), TORC1 (is the key regulator,
stimulated by nitrogen, activates Sch9 by phosphorylation), Deh1, and Dal80 (represses
transcription) and Gat1, Glu3, and Msn 2/4 (activates transcription). The role of the
TORC1 signaling pathway is to phosphorylate Glu3, Gat1, and Msn 2/4 and to inhibit
the phosphorylation of Deh1 and Dal80. These actions only occur in the presence of high
concentrations of nitrogen and amino acids. As long as the nitrogen signaling pathway is
active, the expression of the genes responsible for inducing cellular stress is stopped [83,84].

5. Conclusions

In the fermentation process, yeast cells are continuously and simultaneously subjected
to different types of cellular stress, which determines a constant cellular adaptation to
environmental conditions. This paper focuses on the specific response to each type of stress
that occurs in the cell—osmotic, oxidative or due to the presence of ethanol—by means
of the arduous biochemical and transcription regulation or stimulation of certain genes
processes. Under the action of various stressors, yeast cells can modify their colony growth
morphological architecture and changes occur at a genetic level. The response to cellular
stress involves the action of multiple genes, such as SOD1, SOD2, TSA1, GSH1, GSH2,
GLR1, and CTT1 (oxidative stress), GPD1, GPD2, and HSP12 (osmotic stress), and HSP104,
GUP1, GPP1, GPP2, GPD1, GAT1, and OLE1 (ethanol stress). Further molecular biology
and genetics studies are necessary for the complete understanding of the cellular regulation
mechanisms under stress conditions. This information could lead to the optimal use of
Saccharomyces cerevisiae species in industrial fermentation processes and to an increase in
the bioproducts’ quality. In addition, deciphering the physiological and genetic response of
stress mitigation in yeast cells can also lead to countering the aging effects on human cells.
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