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Abstract: This study investigated the performance of thermophilic–mesophilic (T-M) and mesophilic–
thermophilic (M-T) two-phase sludge anaerobic digestion at different inoculation proportions after a
change in digestion temperature. After temperature change, the pH, total ammonia nitrogen (TAN),
free ammonia nitrogen (FAN), solubility chemical oxygen demand (SCOD), and total alkalinity (TA)
levels of two-phase digesters were between thermophilic control digesters and mesophilic control
digesters. However, the volatile fatty acid (VFA) levels of two-phase digesters were higher than
those of thermophilic or mesophilic control digesters. The bacteria communities of M-T two-phase
digesters were more diverse than those of T-M. After a change in digestion temperature, the bacterial
community was dominated by Coprothermobacter. After a change of digestion temperature, the
relative abundance (RA) of Methanobacterium, Methanosaeta, and Methanospirillum of M-T two-phase
digesters was higher than that of T-M two-phase digesters. In comparison, the RA of Methanosarcina
of T-M two-phase digesters was higher than that of M-T two-phase digesters. The ultimate methane
yields of thermophilic control digesters were greater than those of mesophilic control digesters.
Nevertheless, the ultimate methane yield levels of M-T two-phase digesters were greater than those
of T-M two-phase digesters. The ultimate methane yields of all two-phase digesters presented
an earlier increase and later decrease trend with the increasing inoculation proportion. Optimal
methane production condition was achieved when 15% of sludge (T-M15) was inoculated under
mesophilic–thermophilic conditions, which promoted 123.6% (based on mesophilic control) or 27.4%
(based on thermophilic control). An optimal inoculation proportion (about 15%) balanced the number
and activity of methanogens of high-solid sludge anaerobic digestion.

Keywords: ammonia; inhibition; methane production; bacteria community; archaea community

1. Introduction

Municipal waste-activated sludge is an inevitable byproduct of municipal sewage
treatment plants. Over 60 million metric tons of sludge (80% water content) are produced
annually in China [1]. Sludge is rich in nutrients for plant growth (nitrogen, phosphorus,
potassium, etc.) but also contains a certain amount of readily fermentable organic matter,
pathogenic bacteria, trace amounts of organic matter, and emerging pollutants [1,2]. Before
further utilization or disposal, sludge needs to undergo special treatment to enhance
biostability, inactivate pathogenic bacteria, and reduce emerging pollutants [3]. Anaerobic
digestion (AD) is a feasible technology for sludge treatment, which results in biostability
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enhancement, pathogenic bacteria inactivation, emerging pollutants reduction, and biogas
methane generation [4,5].

The AD process involves hydrolysis, acidogenesis, acetogenesis, and methanogenesis [6].
The hydrolysis stage of anaerobic digestion is the first stage, designed to convert organic
waste into soluble organic matter by hydrolytic bacteria [6]. The acidogenesis and acetoge-
nesis stages of anaerobic digestion are mainly characterized by the production of volatile
fatty acids, especially acetic acid, via acid-forming bacteria [7]. During the methanogenic
stage, acetic acid, H2, and CO2 are converted into biogas via the synergistic action of
different methanogens [8]. The four stages above depend on the synergistic effect of a
complex microflora [8].

As to conventional sludge AD, the AD process is performed in a single reactor system [6].
However, for hydrolytic bacteria, acid-forming bacteria, and methanogens, the environmen-
tal requirement, thermodynamic properties, and kinetic constants are discrepant, which
results in low overall AD efficiency [9]. To enhance the overall AD efficiency of anaerobic
digestion, “two-phase digestion” is used to separate acid-producing and methanogenic
phases [10]. Two-phase AD is required to enable the production of organic acids (acidi-
fication stage) and methane (methanogenesis step) to have their suitable environmental
conditions, which helps to improve the stability and efficiency of the whole AD process [11].

According to the digester temperature, two-phase AD systems mainly fall into thermophilic–
mesophilic (T-M), mesophilic–thermophilic (M-T), thermophilic–thermophilic (T-T), mesophilic–
mesophilic (M-T), hyperthermophilic–thermophilic (H-T), and hyperthermophilic–mesophilic
(H-M) [8]. Combined with the VS removal, methane production, energy balance, retention time,
and system stability, T-M and M-T are reasonable options for two-phase sludge AD [7,11].

Wang et al. (2018) compared T-M two-phase, thermophilic single-phase, and mesophilic
single-phase high-solid sludge AD [12]. The relative abundance (RA) of Methanosarcina
from high to low was T-M two-phase, thermophilic single-phase, and mesophilic single-
phase. Compared with single-phase high-solid sludge AD, the total methane production im-
proved by 81.6% (M-T/mesophilic) or 74.8% (M-T/thermophilic). Chen and Chang (2020)
compared the T-M and M-T two-phase sludge AD [13]. The acidification phase affects the
methanogenic degree by changing methanogen composition and enhancing the system
stability by enriching Methanosarcina. Compared with single-phase sludge AD (mesophilic
or thermophilic), the total methane production improved by 23.1% (T-M/mesophilic) and
11.9% (M-T/thermophilic). He et al. (2023) investigated the effect of conventional and inter-
mittent temperatures on methanogenic performance, and microbial regulation of anaerobic
fermentation was investigated. The results showed that the hydrolysis rate increased
with the increase in temperature [14]. The intermittent temperature significantly increased
methane production by 39.4% and 19.0% compared to the mesophilic and thermophilic
digesters. Compared with single-phase anaerobic digestion, two-phase anaerobic digestion
can indeed effectively improve the anaerobic digestion performance of sludge; it has a
good improvement effect on methane yield, volatile solid (VS) removal, and solubility
chemical oxygen demand (SCOD) removal. During the two-phase anaerobic digestion, the
improvement of biogas production and removal of organic pollutants depends on their sta-
bility and performance of the hydrolyzed acidic and methanogenic phases. In addition, the
hydrolytic acidic phase is a rate-limiting step, and it was found that two-phase anaerobic
digestion can improve anaerobic digestion performance by improving hydrolysis [14].

However, the difference between T-M and M-T two-phase high-solid sludge AD is
still being determined. High ammonia of high-solid sludge AD is likely to influence the
composition of methanogens; anaerobic digestion of high-solid sludge also affects hydrol-
ysis, mass transfer, dewatering performance, and inhibitor concentration; temperature
also affects hydrolysis, gas production, and sludge viscosity, and the interplay of many
influences can lead to complex results [1]. The performance of the inoculated sludge also
significantly influences the anaerobic digestion of sludge, affecting the growth of microor-
ganisms and the rate of methane production. Moreover, the proportion of inoculation is
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a crucial factor in two-phase AD, which influences the microbial community, substrate
concentration, inhibitor concentration, and methane production of AD [15–17].

Therefore, this study investigated the effects of five different inoculation proportions
on T-M and M-T two-phase high-solid sludge AD. The difference in methane produc-
tion and microbial community was observed during the two-phase high-solid sludge
AD process.

2. Materials and Methods
2.1. Materials

Waste-activated sludge and dewatered sludge were acquired from a local municipal
sewage treatment plant in Lanzhou, China. The plant’s capacity was 100,000 m3·d−1,
using an anaerobic–anoxic–oxic process. Waste-activated sludge anaerobic digestion under
thermophilic or mesophilic conditions for 20 days was used as inoculum. Table 1 shows
the characteristics of initial inoculums and substrate.

Table 1. Characteristics of initial inoculums and substrate (VSS: volatile solids; TSS: total solids).

Mesophilic Inoculum Thermophilic Inoculum Dewatered Sludge

pH 7.48 ± 0.21 7.69 ± 0.15
VSS (g L−1) 9.3 ± 0.1 8.0 ± 0.2
TSS (g L−1) 16.8 ± 0.1 14.8 ± 0.3

TS (%) 1.7 ± 0.0 1.5 ± 0.0 16.2 ± 0.1
VS/TS (%) 56.1 ± 0.6 54.1 ± 1.3 44.3 ± 0.5

carbon (dry basis) (%) 21.84 ± 0.12
nitrogen (dry basis) (%) 3.94 ± 0.13

Note: All values are expressed as mean ± standard deviation (n = 3).

2.2. Experimental Setup

Glass bottles described by Liu et al. (2022) were used as anaerobic digesters. Dewatered
sludge inoculated with thermophilic or mesophilic inoculum at a mixing ratio of 4:1 (w/w,
wet basis) [18]. The mass of the substrate (dewatered sludge and inoculum) was 750 ± 1 g.
To ensure an anaerobic environment, all digesters were flushed with high-purity nitrogen
(>99.99%) gas over 3 min to remove the remaining air. Then, all digesters were put in the
water bath kettle at thermophilic (55 ± 2 ◦C) or mesophilic (37 ± 2 ◦C) temperature.

On the 11th day, a portion of the digesters were taken apart. The corresponding
digested sludge was used as thermophilic or mesophilic inoculum for two-phase AD. Dif-
ferent proportions of thermophilic or mesophilic inoculum were inoculated into mesophilic
or thermophilic digesters. Five different mesophilic digested sludge inoculation propor-
tions (mesophilic inoculum/substrate = 0%, 5%, 10%, 15%, and 20%. wet basis) were
labeled as T-M0, T-M5, T-M10, T-M15, and T-M20 of T-M two-phase AD. Five different ther-
mophilic digested sludge inoculation proportions (thermophilic inoculum/substrate = 0%,
5%, 10%, 15%, and 20%. wet basis) were labeled as M-T0, M-T5, M-T10, M-T15, and M-T20
of M-T two-phase AD. The thermophilic and mesophilic digesters of the whole digestion
process were labeled as T-C and M-C, respectively. Each working condition was performed
in triplicate.

2.3. Analytical Methods

The pH, TSS, VSS, TS, and VS of sludge samples were determined using the standard
method [18]. The total ammonia nitrogen (TAN) and total alkalinity (TA) of liquid samples
were determined using the standard method [19]. The free ammonia nitrogen (FAN)
proportion in TAN was calculated via a special computational formula determined by the
pH and temperature [19]. As to soluble chemical oxygen demand (SCOD), volatile fatty
acids (VFAs), methane content of biogas, and biogas volume, the determination method
was the same as described by Liu et al. (2022) [18]. We generally use a Hash SCOD meter
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to test for SCOD. Relative abundance (RA) is a metric used to represent the proportion of
each category in a set of data.

The sludge samples’ deoxyribonucleic acid (DNA) extraction method was the same
as described by Liu et al. (2022) [18]. Finally, the raw data and species information were
processed on the website (http://www.ncbi.nlm.nih.gov, accessed on 1 October 2022) to
generate a complete table of operational taxonomic units (OTUs). The reference thoroughly
describes the experimental procedures and data preprocessing techniques [20].

2.4. Statistical Analysis

Statistical analysis was used to determine the correlation using SPSS software Version
22.0. Both correlations and variations were statistically significant at a confidence interval
of p < 0.05.

3. Results and Discussion
3.1. pH, TAN, and FAN

The pH of the anaerobic digester is mainly related to the balance of alkalinity and
VFA [21]. The pH levels at the thermophilic temperature were higher than those at the
mesophilic temperature (Figure 1a,b). This phenomenon should be related to the incre-
ment of alkalinity. The sludge protein deamination generated ammonia at different levels
(Figure 1c,d), which resulted in different alkalinity levels [22]. The pH of all digesters
was between 7.2 and 8.8, which was a reasonable pH range for microbial metabolism of
anaerobic digestion [23]. The pH levels of T-M0, T-M5, T-M10, T-M15, and T-M20 were
close and remained stable after a change of digestion temperature. This phenomenon
should be related to the different hydrolysis abilities between thermophilic and mesophilic
temperatures [24,25]. Low hydrolysis ability at mesophilic temperature makes it hard
to hydrolyze organic matter, which has been hydrolyzed at thermophilic temperature.
Nevertheless, high hydrolysis ability at thermophilic temperature can effectively hydrolyze
organic matter that has been hydrolyzed at mesophilic temperature [7]. The high pH levels
in this experiment compared to the relevant literature may be because the change in the
anaerobic digestion rate of sludge after a temperature change can lead to a change in pH
levels [26]. During anaerobic digestion, acid-producing bacteria break down organic matter
into volatile fatty acids (VFA) such as acetic, propionic, and butyric acids. These acids
combine with alkali metal ions in the reactor to produce the corresponding salts. The
conversion of VFA to methane via methanogenic bacteria consumes hydrogen ions and
may result in an increase in pH [27].

TAN is the hydrolysis product of proteins [18], which increase gradually with the
development of the digestion process (Figure 1c,d). A high concentration of TAN or FAN
has an inhibitory effect on microorganisms [28]. There is a dynamic equilibrium between
TAN and FAN in the system, which is influenced by temperature and pH [7]. The TAN
levels of T-M0, T-M5, T-M10, T-M15, and T-M20 were slightly lower than that of T-C,
similar to M-C at a later stage of the digestion process. The TAN levels of M-T0, M-T5,
M-T10, M-T15, and M-T20 were significantly higher than that of M-C after a change in
digestion temperature. The abovementioned phenomenon should be related to the fact
that thermodynamic properties and kinetic constants at thermophilic temperature are
greater than those at mesophilic temperature [7,11]. The differences in ammonia nitrogen
between this study and other related studies are insignificant [1,3,26], and many factors
affect ammonia nitrogen. Temperature greatly influences the anaerobic digestion process
and microbial activity [26]. Microbial activity is important in removing ammonia nitrogen
during anaerobic digestion [3]. Factors such as insufficient nutrients and accumulation of
toxic substances may affect microbial activity, which in turn affects the removal of TAN [28].
Excessive ammonia nitrogen load may lead to ammonia nitrogen accumulation and affect
the treatment effect. Reasonable control of the influent ammonia nitrogen load is essential
to maintain the stable operation of the anaerobic digestion system [8].

http://www.ncbi.nlm.nih.gov
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During anaerobic digestion, FAN is also toxic to methanogens [2]. The FAN of T-C is
higher than that of M-C (Figure 1e,f). The FAN of T-M0, T-M5, T-M10, T-M15, and T-M20
was similar. It remained the same after the temperature change (about 400 mg L−1). The
FAN of M-T0, M-T5, M-T10, M-T15, and M-T20 was similar, which increased quickly after
a change of digestion temperature (from 200 mg L−1 to 1600 mg L−1). This phenomenon
should be related to the synchronous increase of pH and TAN. The FAN at a thermophilic
temperature was significantly greater than that at a mesophilic temperature. The slightly
higher levels of FAN in our study compared to the other literature may be due to the effect
of pH, temperature, and nutrient imbalance.

Higher or lower may lead to weakened microbial activity and affect the removal
of TAN, while higher temperatures may lead to the accumulation of volatile fatty acids
and affect the methanogenesis process [29]. Microbial activity plays an important role
in removing ammonia nitrogen during anaerobic digestion. Factors such as insufficient
nutrients and accumulation of toxic substances may affect microbial activity, which in
turn affects the removal of TAN. Excessive ammonia nitrogen load may lead to ammonia
nitrogen accumulation and affect the treatment effect. Reasonable control of the influent
ammonia nitrogen load is essential to maintain the stable operation of the anaerobic
digestion system [8]. A high pH results in elevated free ammonia concentrations [2].
Generally, anaerobic digestion processes are best served in the pH range of 6.5–7.5. When
the pH is lower than 7, free ammonia tends to accumulate; when the pH is higher than 7.5,
free ammonia may be released into the environment as ammonia gas, thus affecting the
effectiveness of anaerobic digestion. Temperature has a great influence on microbial activity
during anaerobic digestion. When the temperature is higher or lower, the microbial activity
may be affected, leading to the accumulation of free ammonia [30]. During anaerobic
digestion, microorganisms require sufficient nutrients to remain active. An imbalance
of nutrients such as nitrogen and phosphorus in the system may lead to a decrease in
microbial activity, affecting the removal of free ammonia [31].
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3.2. VFA, SCOD, TA, and VFA/TA

VFA (Figure 2) are the products of hydrolysis and acidification and are also substrates
for biogas production [22]. As to day 0, day 4, and day 8, the VFA levels of M-C were
higher than that of T-C. This should be related to a high methane production rate of T-C at
the initial stage of AD, which resulted in low VFA. As to day 11, day 19, day 27, day 33, and
day 49, the VFA gradually decreased. After a change of digestion temperature (thermophilic
to mesophilic/mesophilic to thermophilic), the VFA levels significantly increased. More-
over, the VFA levels of the mesophilic–thermophilic system were higher than those of the
thermophilic–mesophilic system. Overall, the VFA levels at the thermophilic temperature
were greater than those at the mesophilic temperature. This phenomenon is similar to the
change of TAN. Both VFA and TAN are representative hydrolysis products that have a
positive correlation with temperature [18]. The VFA content in this study did not differ
significantly from the VFA content in the other related literature [3,32]. There are many
factors affecting VFA, such as organic loading, substrate inhomogeneity, etc. [2]. Excessive
organic loading may lead to VFA accumulation. When the organic load is higher, the
decomposition of organic substances in the anaerobic digestion system is faster, which may
lead to VFA accumulation [7]. Therefore, it is necessary to control the organic load reason-
ably according to the actual conditions. Poor agitation and mixing may lead to localized
areas of VFA accumulation in anaerobic digestion systems [8]. Therefore, maintaining good
agitation and mixing is essential to ensure homogeneous reaction conditions [33].
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The main component of SCOD is VFA [1]. The SCOD was significantly positively
correlated to VFA (Figure 3a,b). All the digesters showed a trend of first rising and then
falling. The SCOD of T-C was significantly higher than that of M-C. Meanwhile, the SCOD
levels of two-phase anaerobic digesters were between T-C and M-C. This phenomenon
should be related to hydrolysis ability at a thermophilic temperature being greater than
that at a mesophilic temperature [7,11]. The pH value has a great influence on the microbial
activity during anaerobic digestion. Usually, the anaerobic digestion process is optimal in
the pH range of 6.5–7.5. When the pH is lower than 7, SCOD is easy to accumulate; when
the pH is higher than 7.5, SCOD may be released into the environment in the form of gas,
thus affecting the anaerobic digestion effect [34].
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TA (Figure 3c,d) is considered a crucial factor in anaerobic digestion, but its role is to
ensure that the anaerobic system has a specific buffering capacity and maintains a suitable
pH [32]; once the anaerobic system is acidified, it takes a long time to recover. The TA of
T-C was higher than that of M-C, which might be caused by the complete degradation of
organic matter in a thermophilic temperature than in a mesophilic temperature [18]. After
the temperature change, the TA levels of T-M0, T-M5, T-M10, T-M15, and T-M20 were close,
which showed a general trend of gentle increase. The TA levels of M-T0, M-T5, M-T10,
M-T15, and M-T20 were similar, showing a growth trend followed by a gentle increase
after digestion temperature change. This phenomenon may be due to the degradation of
organic matter in the digestive system as digestion proceeds, leading to a rise in the TA
of the system [32]. In this study, the levels of alkalinity may be slightly higher than in the
other literature, probably because of pH and microbial activity [35]. TA is closely related to
the pH of the wastewater. In the anaerobic digestion process, when the pH value is greater
than 7.5, the TA is easy to accumulate, thus affecting the anaerobic digestion effect [35].
TA has a significant effect on microbial activity. During anaerobic digestion, the balance
between organic acids and alkalis produced by microorganisms significantly affects total
alkalinity. When microbial activity decreases, total alkalinity may be affected [36].

TVFA/TA can be used as an early warning indicator for system operation. The critical
value of TVFA/TA is 0.35 [7]. When the TVFA/TA is greater than this value, the system may
be acidified and destabilized [37]. The TVFA/TA (Figure 3c,d) showed that all digesters
were stable. The levels of TVFA/TA in this paper do not differ much from the other
literature, and the reactor gradually becomes stabilized after a period of time from the
beginning of the reaction [38]. During anaerobic digestion, the equilibrium relationship
between organic acids and alkaline substances produced by microorganisms significantly
affects the TVFA/TA ratio [3]. When the microbial activity decreases, the TVFA/TA ratio
may be affected [39].
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3.3. Methane Generation

The cumulative methane yields of T-C were higher than that of M-C (Figure 4a,b),
probably because the hydrolytic bacteria, acid-forming bacteria, and methanogens in
the thermophilic temperature digesters were more active than those in the mesophilic
temperature digesters [40].
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The cumulative methane yields of T-M0, T-M5, T-M10, T-M15, and T-M20 were similar,
which is close to the cumulative methane yields of T-C. This phenomenon should be related
to the low hydrolysis ability at mesophilic temperature, reflected by similar VFA and SCOD
levels after a temperature change.

The cumulative methane yields of M-T0, M-T5, M-T10, M-T15, and M-T20 were greater
than that of M-C (Table 2). With the increasing inoculation proportion, cumulative methane
yields presented an earlier increase and later decrease trend. The highest cumulative
methane yield was 133.47 mL g−1 VSadded (M-T15). Compared with T-C or M-C, the cumu-
lative methane yields increased 31.65% or 123.61%. The volumetric methane production
rate (Figure 4d) increased with the increase of the inoculation proportion at the initial stage
after a temperature change, which resulted from different numbers of methanogens. Mean-
while, the FAN also increased with the increased inoculation proportion, which resulted
from the high TAN of T-C on the 11th day. High FAN resulted in ammonia inhibition [6].
Therefore, there was a balance between the number of methanogens (positive correlation
with inoculation proportion) and the activity of methanogens (negative correlation with
inoculation proportion). The methanogenic performance of T-M in this study was slightly
lower compared to the other literature, and the methanogenic performance of M-T was
improved compared to the other literature, probably due to the effect of temperature, oxy-
gen reduction potential, and nutrients [41]. Temperature is a key factor affecting anaerobic
digestion performance for methane production. Usually, the optimal temperature range
in the anaerobic digestion process is 35–38 ◦C. In this temperature range, the microbial
activity is higher, and the methane production performance is better. The pH value has a
great influence on the microbial activity during anaerobic digestion. Usually, the anaerobic
digestion process is optimal in the pH range of 6.5–7.5. When the pH is lower than 7,
methanogenic performance may be affected; methanogenesis may be inhibited when the
pH is higher than 7.5 [42,43]. The redox potential reflects the electron transfer conditions in
an anaerobic digestion system. In the appropriate redox range (usually between −200 and
−400 mV), microbial activity is higher, and methanogenic performance is better [44].
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Table 2. Parameters of the modified Gompertz model.

Ultimate Methane Yields, UMYs
(mL g−l VSadded)

Maximum Methane Production Rate,
Rm (mL g−1 VSadded d−1) Lag Phase, λ (d) R2

T-C 98.07 18.48 1.91 0.997
T-M0 97.88 18.53 1.94 0.998
T-M5 99.85 17.81 1.87 0.997

T-M10 102.51 17.59 1.86 0.995
T-M15 105.08 17.03 1.81 0.993
T-M20 100.71 18.06 1.91 0.997
M-C 61.42 2.50 2.86 0.991
M-T0 108.46 7.30 7.65 0.983
M-T5 118.34 10.60 7.84 0.993
M-T10 116.96 10.87 7.98 0.994
M-T15 132.87 11.15 7.57 0.995
M-T20 120.29 18.06 1.91 0.994

3.4. Bacteria Distribution

On the ninth day, at mesophilic temperature, the bacterial community before the
temperature change was dominated by Terrimonas (91.93%) and Coprothermobacter (4.17%)
(Figure 5). At thermophilic temperature, the bacterial community was dominated by
Coprothermobacter (99.04%) (Figure 5). Terrimonas is a Gram-negative bacterium belonging
to the phylum Bacteroidetes, an important phylum in mesophilic anaerobic digesters
associated with the breakdown of proteins and cellulose [45]. Bacteroidetes, colonies such
as Terrimonas, can break down simpler organic substances such as fatty acids and lactic acid,
producing hydrogen and some organic acids [41]. Coprothermobacter is mainly involved
in the acid-producing phase of anaerobic digestion [46]. Coprothermobacter has strong
activity at thermophilic temperatures, and it can cooperate with hydrotropic methanogenic
bacteria to degrade organic pollutants [47]. Coprothermobacter and Methothermobacter can act
synergistically to degrade organic matter [48–50]. On the 27th day, the bacteria communities
of M-T0, M-T5, M-T10, M-T15, and M-T20 were more diverse than that of T-M0, T-M5,
T-M10, T-M15, and T-M20. This phenomenon fits perfectly with the results of VFA and
SCOD, which was an important reason for the high methane yield of M-T two-phase
digesters. On the 43rd day, all digesters were dominated by Coprothermobacter (except M-C).
The RA of Terrimonas gradually decreases with the progress of the digestion process. This
phenomenon should be related to the fact that proteins and cellulose have been greatly
broken down in the early stage of the digestion process [30,45].
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3.5. Archaea Distribution

On the ninth day, the archaea community (Figure 6) of M-C was dominated by Methanobac-
terium (49.74%), Methanosaeta (29.99%), Methanothermobacter (12.11%), Methanosarcina (2.91%),
and Methanospirillum (1.62%). The archaea community of T-C was dominated by Methan-
othermobacter (53.93%), Methanosarcina (32.60%), Methanobacterium (6.00%), Methanospirillum
(1.85%), and Methanosaeta (1.55%). Methanothermobacter is a thermophilic hydrogenotrophic
methanogenic archaeon capable of reducing CO2 with H2 to produce methane [51]. Methan-
othermobacter can grow in different temperature ranges, which makes them model organisms
for studying thermophiles and organisms in extreme environments [52]. Therefore, the RA
of Methanothermobacter at a thermophilic temperature was higher than that at a mesophilic
temperature. Moreover, Methanothermobacter is also very effective in degrading proteins [52],
which is beneficial to sludge anaerobic digestion (proteins are the main component of sludge
organic matter). Methanosarcina typically grows at temperatures in the range of 30–45 ◦C,
with some strains able to grow at a wider range of temperatures [27]. Methanosarcina is an
acetic acid-nutrient methanogenic archaea, which means they utilize acetic acid as a substrate
for growth and methanogenesis [47]. Therefore, the RA of Methanosarcina at mesophilic
temperature was higher than that at thermophilic temperature. Moreover, Methanobacterium
(hydrogenotrophic) and Methanospirillum (acetotrophic), as methanogens, are synergistic dur-
ing the anaerobic digestion process and can interact with other methanogens and fermenters
to promote the decomposition and conversion of organic matter [53]. Methanosaeta typically
grows at temperatures in the range of 30–45 ◦C, with some strains being able to grow at
a wider range of temperatures [37]. Methanosaeta is a complex methanogen that can utilize
various organic substances (e.g., formic acid, methanol, formaldehyde, etc.) as substrates for
growth and methanogenesis [27]. The abovementioned properties make Methanosaeta highly
adaptable to anaerobic environments [39].
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On the 27th day, the archaea communities of M-C were dominated by Methanosaeta
(50.06%), Methanospirillum (23.34%), Methanobacterium (9.31%), Methanothermobacter (4.98%),
and Methanosarcina (2.00%). The archaea community of T-C was dominated by Methanother-
mobacter (49.77%), Methanosarcina (34.03%), Methanobacterium (5.96%), Methanosaeta (3.42%),
and Methanospirillum (3.00%). The archaeal community of mesophilic–thermophilic two-phase
digesters was dominated by Methanothermobacter (37.10–55.96%), Methanosarcina (12.65–21.79%),
Methanobacterium (17.18–21.46%), Methanosaeta (3.43–12.95%), and Methanospirillum (3.00–9.86%).
The archaeal community of thermophilic–mesophilic two-phase digesters was dominated by
Methanothermobacter (26.38–53.28%), Methanosarcina (32.08–57.56%), Methanosaeta (1.50–7.88%),
Methanobacterium (2.54–5.89%), and Methanospirillum (1.56–4.23%).

On the 43rd day, the archaea community of M-C was dominated by Methanosaeta
(50.59%), Methanospirillum (20.62%), Methanobacterium (8.61%), Methanothermobacter (3.67%),
and Methanosarcina (1.91%). The archaea community of T-C was dominated by Methanother-
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mobacter (55.02%), Methanosarcina (26.71%), Methanobacterium (5.16%), Methanosaeta (3.61%),
and Methanospirillum (1.71%). The archaeal community of mesophilic–thermophilic two-phase
digesters was dominated by Methanothermobacter (21.54–43.95%), Methanosarcina (14.76–36.57%),
Methanobacterium (15.76–25.53%), Methanosaeta (5.74–11.44%), and Methanospirillum (3.23–8.37%).
The archaeal community of thermophilic–mesophilic two-phase digesters was dominated by
Methanothermobacter (30.95–47.18%), Methanosarcina (32.35–57.75%), Methanosaeta (2.07–5.05%),
Methanobacterium (1.60–6.01%), and Methanospirillum (0.92–1.68%).

The archaea distribution on the 27th and the 43rd days was similar. The RA of
Methanobacterium, Methanosaeta, and Methanospirillum of M-T two-phase digesters was
higher than that of T-M two-phase digesters. The RA of Methanosarcina of T-M two-phase
digesters was higher than that of M-T two-phase digesters. The adaptability to the different
substrates of Methanobacterium, Methanosaeta, and Methanospirillum was higher than that
of Methanosarcina [39,47,53]. The abovementioned phenomenon should be an important
reason for the higher methane yield of M-T two-phase digesters than that of T-M two-
phase digesters.

4. Conclusions

The bacteria communities of M-T two-phase digesters were more diverse than those
of T-M. The ultimate methane yield levels of M-T two-phase digesters were greater than
those of T-M two-phase digesters. The ultimate methane yields of all two-phase digesters
presented an earlier increase and later decrease trend with the increasing inoculation pro-
portion. An optimal inoculation proportion (about 15%) for methane production balanced
the number and activity of methanogens of high-solid sludge anaerobic digestion.
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