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Abstract: Bisphenol A (BPA) pollution poses an increasingly serious problem. BPA has been detected
in a variety of environmental media and human tissues. Microbial degradation is an effective method
of environmental BPA remediation. However, BPA is also biotoxic to microorganisms. In this study,
Rhodococcus equi DSSKP-R-001 (R-001) was used to degrade BPA, and the effects of BPA on the growth
metabolism, gene expression patterns, and toxicity-resistance mechanisms of Rhodococcus equi were
analyzed. The results showed that R-001 degraded 51.2% of 5 mg/L BPA and that 40 mg/L BPA
was the maximum BPA concentration tolerated by strain R-001. Cytochrome P450 monooxygenase
and multicopper oxidases played key roles in BPA degradation. However, BPA was toxic to strain
R-001, exhibiting nonlinear inhibitory effects on the growth and metabolism of this bacterium. R-
001 bacterial biomass, total protein content, and ATP content exhibited V-shaped trends as BPA
concentration increased. The toxic effects of BPA included the downregulation of R-001 genes related
to glycolysis/gluconeogenesis, pentose phosphate metabolism, and glyoxylate and dicarboxylate
metabolism. Genes involved in aspects of the BPA-resistance response, such as base excision repair,
osmoprotectant transport, iron-complex transport, and some energy metabolisms, were upregulated
to mitigate the loss of energy associated with BPA exposure. This study helped to clarify the bacterial
mechanisms involved in BPA biodegradation and toxicity resistance, and our results provide a
theoretical basis for the application of strain R-001 in BPA pollution treatments.

Keywords: Bisphenol A; Rhodococcus; biodegradation; toxicity resistance

1. Introduction

Although BPA is one of the most widely used chemicals in the world, it has significant
toxic effects on human health. Studies have shown that BPA blocks the estrogen response
by competing with E2 [1]. BPA also binds to androgen receptors, leading to androgen-
dependent gene regulation disorders [2] and causing reproductive, developmental, and
metabolic diseases [1,3–5]. BPA is carcinogenic and mutagenic, inducing prostate cancer [6],
breast tumors [7], and ovarian cancer [8]. BPA can destroy immune-related signaling
pathways [9], damage the immune system [10], and even induce increases in the contents of
T helper cell type 1 (Th1) and Th17 in humans, leading to various cancers and autoimmune
diseases (e.g., type 1 diabetes) [11].

BPA also causes serious harm to lower organisms such as algae, fish, and amphib-
ians [12]. Even at low concentrations, BPA can inhibit algal growth, reproduction, and

Microorganisms 2023, 11, 67. https://doi.org/10.3390/microorganisms11010067 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms11010067
https://doi.org/10.3390/microorganisms11010067
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://doi.org/10.3390/microorganisms11010067
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms11010067?type=check_update&version=1


Microorganisms 2023, 11, 67 2 of 16

photosynthesis [13]. The median lethal concentration (LC50) of BPA is only 6.8–17.9 mg/L
for fish, and the LC50 for amphibians is even lower [14].

At present, the average daily intake of BPA in the global population is 38.78 ng/kg
bw/day for adults and 51.74 ng/kg bw/day for children [15]. Although there is no uniform
standard for the minimum harmful concentration of BPA for humans, long-term exposure
to BPA undoubtedly has negative health effects.

Microbial degradation is an effective method to relieve BPA pollution [16]. Bacteria
that degrade BPA have been isolated from soil, water, WWTPs, and other environmental
media [16]. For example, Cupriavidus basilensis SBUG 290, isolated from compost soil,
degraded 78% of 0.26 mM BPA after induction [17], while Bacillus sp. AM1, isolated from
infant feces, removed 84.68% of 25 µg/L BPA [18]. Finally, Bacillus megaterium ISO-2, iso-
lated from polycarbonate industrial wastewater, completely removed 5 mg/L BPA within
72 h [19]. However, the toxicity of BPA can significantly inhibit microbial metabolism and
growth [20]: BPA not only inhibits the bioactivity and organic degradation capacity of acti-
vated sludge but can also alter microbial community structure, decreasing the abundance
of functional bacteria involved in water purification [21,22]. Indeed, this is one of the rea-
sons why WWTPs cannot completely remove BPA from wastewater. In addition, BPA can
significantly reduce microbial activity and the growth of microorganisms in the soil, change
microorganismal community structure, and inhibit the activity of certain enzymes [20,23].
Microorganisms adapt to BPA-associated biological stress by upregulating genes encoding
xenobiotic degradation proteins, flagellins, and biofilm-related proteins [24]. Rhodococcus
equi R-001 has a good degradation capacity and a high tolerance for BPA toxicity. However,
the toxic effects of BPA on Rhodococcus and the molecular mechanisms of resistance and
degradation underlying the response of Rhodococcus to BPA stress remain unclear.

Therefore, two important foci of BPA bioremediation studies are to screen more
efficient BPA-degrading bacteria and to analyze the mechanisms underlying the resistance
of bacterial strains to BPA toxicity. In this study, we investigated the toxic effects of BPA
on microorganisms and the transcriptomic response to BPA stress using Rhodococcus equi
DSSKP-R-001 as an exemplar strain. The resistance mechanisms underlying the response
of R-001 to BPA toxicity were then further analyzed. This study expanded the known
roster of microbial species that degrade BPA, helped to clarify the molecular mechanisms
underlying microbial tolerance of BPA, and provided a theoretical basis for the application
of R-001 in BPA pollution treatment.

2. Materials and Methods
2.1. Strains and Chemicals

Rhodococcus equi DSSKP-R-001 was screened and purified in our laboratory and stored
in the China Microbial Species Preservation Center (CGMCC No. 12392). BPA (Product No.
B108653-50g) was purchased from Shanghai Aladdin Biochemical Technology Co., Ltd.,
Shanghai, China (https://www.aladdin-e.com/zh_cn/ (16 March 2022)); and ethyl acetate
(34858), methanol (1.06035), and acetonitrile (1.00029) were purchased from Sigma-Aldrich
(https://www.sigmaaldrich.cn/CN/zh (16 March 2022)). Bacterial RNA extraction kits
were purchased from Tiangen Biotech Co., Ltd. (Beijing, China).

2.2. R-001 Degrades BPA

Bacterial suspensions (initial OD600 of 1.0) were added to a mineral basal medium
supplemented with different concentrations of BPA at an initial ratio of 4% (by volume).
The inoculated media were placed in a constant-temperature shaking incubator at 30 ◦C
with shaking at 120 rpm and incubated for 2, 4, 24, 48, 96, or 120 h. The initial concentrations
of BPA were 5 mg/L, 10 mg/L, 15 mg/L, 20 mg/L, 30 mg/L, 40 mg/L, and 50 mg/L, and
three parallel samples were analyzed per group.

https://www.aladdin-e.com/zh_cn/
https://www.sigmaaldrich.cn/CN/zh
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2.3. Detection Methods

High performance liquid chromatography (HPLC), performed using a Zorbax Eclipse
Plus C18 column (150 × 4.6 mm, 3.5 mm), was used to detect the concentration of the
remaining substrate in the reaction system. The ratio of acetonitrile to water in the mobile
phase (v/v) was 1:1, and the flow rate was 0.8 mL/min. The detector wavelength was
281 nm, the column temperature was 30 ◦C, and the injection volume was 10 µL. An
Agilent liquid chromatography G6400 series triple quadrupole mass spectrometer was
used to analyze the degradation intermediate product of BPA. The mobile phase was
methanol:water (v/v) = 1:1, the detection wavelength was 281 nm, the flow rate was
0.8 mL/min, the injection volume was 2 µL, and the oven temperature was maintained
at 30 ◦C. The electrospray ionization (ESI) method was used in positive and negative
ion mode scans in the range of 50–600 Da. The ESI source conditions were as follows:
source temperature of 80 ◦C, desolvation temperature of 250 ◦C, capillary voltage of +3 kV,
and a cone gas flow rate of 50 L/h. The protein concentration was detected with the BCA
method using the BCA Protein Quantification Kit (E112-01). The ATP content of the bacteria
was detected with the phosphomolybdic acid colorimetric method using an ATP content
determination kit (G0815W96).

2.4. Transcriptome Sequencing

The concentrations of BPA in the experimental group were 5 mg/L (group A1),
15 mg/L (group A2), and 40 mg/L (group A3), and the glucose concentration in the
control group was 5 mg/L (group B1). After 120 h of culture, the samples were centrifuged
at 4 ◦C and 10,000 rpm/min for 5 min, and the supernatant was discarded. Thalli were
collected in a 1.5 mL RNase-free centrifuge tube, sealed, immediately transferred to liquid
nitrogen, and flash-frozen for 30 min. Sequencing was performed on an Illumina Hiseq
Platform. Genes were considered significantly differentially expressed when qValue was
≤0.05 and |log2

FoldChange| was ≥1. The raw sequence data has been submitted to the
NCBI database (accession number PRJNA842860). The raw expression levels of the signifi-
cantly differentially expressed genes (DEGs) from the transcriptome analysis are shown in
Supplementary Tables S1–S5.

2.5. qPCR Analysis of the BPA-Degrading Genes

To further investigate the expression levels of the BPA-degrading genes, qPCR analysis
was performed. The culture conditions were described in Section 2.4. Cultures exposed
to BPA concentration groups q1 (5 mg/L), q2 (15 mg/L), and q3 (40 mg/L), respectively.
RNA extraction and qPCRs were performed as previously described [25], and the primers
used are shown in Supplementary Table S6. Gene expression levels in each sample were
calculated relative to the expression levels of the recA reference gene using the 2−∆∆Ct

quantification method.

2.6. Bioinformatics Analysis

The BLAST platform was used to analyze the key genes associated with BPA degra-
dation. The amino acid sequences of previously reported BPA-degrading enzymes were
aligned, including cytochrome P450 monooxygenase (accession no. WP_106851580.1, de-
rived from Rhodococcus equine DSSKP-R-001; accession no. OMQ03826.1, derived from
Bacillus sp. GZB; and accession no. BAG15884.1, derived from Sphingomonas bisphenolicum
AO1) and laccase (accession no. APF29085.1, derived from Bacillus sp. GZB).

3. Results and Discussion
3.1. BPA Degradation by R-001

Rhodococcus equi DSSKP-R-001 had a higher BPA degradation rate at low concentrations
than at high concentrations, and the degradation rate decreased as the concentration of BPA
increased. At a BPA concentration of 5 mg/L, the degradation rate was 51.2%, and when
the BPA concentration was increased to 40 mg/L, the degradation rate was 28.2%. Above
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this concentration, the degradation rate decreased significantly: the degradation rate was
only 19.52% at a BPA concentration of 50 mg/L (Figure 1). These results demonstrated that
R-001 can use BPA as the sole carbon source and degrade it efficiently. However, 40 mg/L
may be the maximum concentration of BPA that R-001 can tolerate while maintaining its
degradation function. In comparison, Bacillus pumilus BP-2CK, BP-21DK, and BP-22DK
must be supplemented with other nutrients during BPA degradation [26]. A previous study
on five probiotics found that the highest rate of BPA degradation (at a BPA concentration of
50 µg/L) was only 51.9% [27], and the removal of 1.7 mg BPA (0.15 mM) by Cupriavidus
basilensis JF1 took 144 days [28]. R-001 showed comparatively excellent BPA degradation
performance with respect to both BPA concentration and BPA degradation time. These
results suggested that R-001 has a good potential utility for BPA degradation and has
theoretical value for further analysis.
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Figure 1. Degradation of BPA by strain R-001 at different concentrations.

3.2. Toxic Effects of BPA on the Growth and Metabolism of R-001

The cytotoxicity of BPA and the antitoxic function of R-001 were very obvious when
R-001 was cultured with BPA. Different concentrations of BPA significantly affected the
bacterial biomass of R-001. At BPA concentrations of 5–15 mg/L, the bacterial biomass
of R-001 continued to decrease, and at BPA concentrations of 15–40 mg/L, the bacterial
biomass of R-001 increased. At BPA concentrations above 40 mg/L, the bacterial biomass
of R-001 decreased again. In general, the bacterial biomass exhibited a “V” shape as the
BPA concentration increased from 5 mg/L to 40 mg/L (Figure 2A,B).

Total intracellular protein concentration and ATP content effectively reflect organismal
growth and metabolism [29]. Under BPA stress, protein concentration and ATP content in
R-001 showed a V-shaped trend. At a BPA concentration of 15 mg/L, protein concentration
and ATP content were minimized (8.447 µg/mL and 1.21 nmol/104 cells, respectively).
At a BPA concentration of 50 mg/L, ATP content decreased significantly, suggesting that
BPA concentration may have exceeded the tolerance range of strain R-001 (Figure 2C,D).
The results indicated that the inhibitory effects of BPA toxicity on R-001 were nonlinear.
Similarly, Roseobacter sp. AzwK-3b grows normally at a BPA concentration of 9 µM, but
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BPA concentrations greater than 18 µM can inhibit the strain. Moreover, exposure to
18 and 44 µM BPA reduced the OD600 value of strain AzwK-3b by about 20% and 67%,
respectively [30]. Other studies have shown that BPA reduces the protein content of
microorganisms [31] and even the ATP levels in human cells [32]. Organisms can also
activate antioxidant mechanisms to trigger retrograde signal transduction and enhance
BPA tolerance [33]. Our results also showed that the protein and ATP contents of strain
R-001 tended to increase as BPA concentrations increased from 15 mg/L to 40 mg/L.
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CFU value. (C) Changes in protein concentration. (D) Changes in ATP content.

3.3. Inhibitory Effects of BPA on the Expression Profiles of Metabolic Genes

Under BPA stress, the expression levels of most genes in the R-001 transcriptome
were downregulated; only a few genes were upregulated. The number of downregulated
genes in each of the three BPA treatment groups was 1710 (A1), 4095 (A2), and 3510 (A3),
respectively (Figure 3A). There were significant differences in gene expression profiles
among the samples (Figure S1). Groups A2 and A3 exhibited fairly similar gene expression
patterns, with 1874 significantly DEGs in common. Although there were fewer significantly
decreased DEGs in the A3 group, which had a higher BPA concentration, 376 genes in
group A3 were nonetheless downregulated relative to group A2 (Figures 3A and S2). The
results showed that the toxicity of BPA severely inhibited gene expression in R-001. This
effect was correlated with BPA concentration, and higher concentrations of BPA had a
stronger inhibitory effect on gene expression levels in strain R-001.
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subclusters 1 and 3 across the different treatment groups. (C) Trends in gene expression patterns of
the genes in the downregulated gene clusters.

Under BPA stress, the significantly DEGs in strain R-001 were divided into eight
subclusters. A total of 1898 genes were steadily downregulated as BPA concentration
increased; these genes were mainly concentrated in subclusters 1, 3, and 7 (Figure 3C). The
expression levels of the genes in subcluster 1 decreased an average of 0.324-, 0.094- and
0.024-fold in A1, A2, and A3 treatment groups (Figure 3B). The expression levels of the
genes in subcluster 3 decreased an average of 0.461-, 0.054-, and 0.026-fold in A1, A2, and
A3 treatment groups (Figure 3B). KEGG annotations indicated that the downregulated
genes in these two subclusters were associated with glycolysis/gluconeogenesis, glyoxy-
late and dicarboxylate metabolism, the pentose phosphate pathway, lipopolysaccharide
biosynthesis, and the alanine, aspartate and glutamate metabolism (Figure S3).

3.3.1. Glycolysis/Gluconeogenesis Pathway

Glycolysis/gluconeogenesis is at the center of the function-gene interaction network.
A total of eight genes were associated with this pathway, and these genes were downregu-
lated an average of 0.075-fold (Figure 4A,B). pck (gene ID: GE04331, log2

FC from −3.663 to
−3.331) encodes phosphoenolpyruvate carboxykinase, a key enzyme that initiates gluco-
neogenesis in most bacteria, converting oxaloacetate to phosphoenolpyruvate and CO2 [34].
Phosphoenolpyruvate carboxykinase also has a complementary function in some bacteria,
catalyzing reverse reactions that are essential for bacterial growth and survival [35]. Studies
have shown that the knockdown of pck results in growth inhibition in fatty acid media,
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the accumulation of methylcitrate cycle (MCC) intermediates, and the weakening of tricar-
boxylic acid (TCA) cycle activity, resulting in strain dormancy [36]. pgi (GE02393, log2

FC

from −3.502 to −3.140) encodes a glucose-6-phosphate isomerase that is involved in the
upstream glycolysis/gluconeogenesis pathways as well as the conversion of β-D-fructose
6-phosphate to α-D-glucose 6-phosphate, an important precursor of the pentose phosphate
pathway [37]. In Xanthomonas, mutations in pgi lead to a complete blockade of gluconeoge-
nesis, meaning that these bacteria are unable to use pyruvate or intermediates of the TCA
cycle for growth [38]. In addition, the loss of pgi blocks gluconeogenesis and some hexoses
(e.g., sucrose, fructose, and mannose) from entering the pentose phosphate pathway (PPP)
or the Entner-Doudoroff pathway. Transgenic strains lacking pgi exhibit a 72% reduction in
extracellular polymer (EPS) production compared with wildtype strains [39], and decreases
in EPS strongly decrease bacterial resistance to toxic substances. pgm (GE00298, log2

FC

from −3.771 to −1.151) encodes phosphoglucomutase, which can interconvert D-gucose
1-phosphate and α-D-glucose 6-phosphate. PGM is a key enzyme in the glycolysis pathway
and EPS production [40]. Studies have shown that the activity of α-phosphoglucomutase is
related to EPS biosynthesis and EPS production, and the inactivation of pgm can reduce
capsule production in Streptococcus pneumoniae [40,41]. fbp (GE02198, log2

FC from −4.499 to
−1.105) encodes fructose-1,6-bisphosphatase, a key enzyme in gluconeogenesis that can
convert β-D-fructose 1,6-diphosphate to β-D-fructose 6-phosphate [42]. fbp null strains
are difficult to grow on gluconeogenic carbon sources [42]. fba (GE04475, log2

FC from
−4.299 to −1.215) encodes fructose-bisphosphate aldolase, which is also central to gly-
colysis/gluconeogenesis and which catalyzes the cleavage of fructose 1,6-diphosphate to
glyceraldehyde 3-phosphate and dihydroxyacetone phosphate [43]. These results showed
that many genes involved in glycolysis/gluconeogenesis were downregulated in strain
R-001 in response to BPA stress. This may result in the inability of intermediates to enter the
PPP and TCA cycles, producing insufficient energy for R-001 growth and weakening TCA
cycle activity. This process may eventually lead to reductions in thallus activity and damage.
In addition, the downregulation of pgi and pgm may lead to the reduction of EPS secretion
in strain R-001, further reducing the ability of the strain to resist environmental toxins.

3.3.2. Glyoxylate and Dicarboxylate Metabolism

Glyoxylate and dicarboxylate metabolic pathways were significantly enriched in the
KEGG annotations of subcluster 3 (Figure 4B). The glyoxylate and dicarboxylate metabolism
is the primary mechanism of material metabolism and energy supply in bacterial cells [44].
Genes in this pathway tended to be downregulated, with an average log2

FC value of
−3.776. The average log2

FC values for genes in this subcluster at different concentra-
tions of BPA were −1.201 for group A1, −3.848 for group A2, and −6.28 for group A3
(Figure 4D, Table S7). Studies have shown that biochar induces the upregulation of genes
in the glyoxylate and dicarboxylate metabolism, the citric acid cycle, and other metabolic
pathways and that this upregulation is conducive to the bacterial biodegradation of 2,2’,4,4’-
tetrabrominated diphenyl ether [44]. Glyoxylate and dicarboxylate metabolic pathways
may also play a role in the degradation and detoxification of HCBD by Rhodopseudomonas
palustris YSC3 [45].

In general, various concentrations of BPA have toxic effects on R-001, primarily due
to the BPA-driven downregulation of genes in the glycolysis/gluconeogenesis, glyoxylate
and dicarboxylate, and pentose phosphate metabolism pathways. This downregulation
reduces the biological flux of intermediates, strain energy levels, and the production of EPS,
leading to decreases in strain activity and toxicity resistance.



Microorganisms 2023, 11, 67 8 of 16Microorganisms 2023, 11, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 4. Gene functions and expression levels in strain R-001 exposed to different concentrations 
of BPA. (A) The significantly enriched function-gene interaction network for the glycolytic/gluco-
neogenic pathway. Square nodes represent functional information, circular nodes represent genes, 
and lines represent the associations between genes and functions. The color of the square node cor-
responds to p value, with increasing color intensity reflecting an increasing degree of enrichment. 
The size of the square node corresponds to the number of associated interactions: larger squares 
interact with more DEGs and thus likely have a greater influence on biological phenomena. (B) The 
expression levels of genes associated with glycolysis/gluconeogenesis. (C) The significantly en-
riched function-gene interaction network for base mismatch repair. (D) The expression levels of 
genes related to the glyoxylate and dicarboxylate metabolism pathway in different BPA treatment 
groups. 

3.4. Resistance of R-001 to BPA Toxicity 
3.4.1. Downregulation of BER-Related Genes to Increase Strain Mutation 

A study has shown that the downregulation of proteins involved in DNA mismatch 
repair can completely inhibit the mismatch repair mechanism of Escherichia coli, leading 
to an increase in the frequency of strain mutations, which may lead to improvements in 
the resistance of this bacterium to the toxic damage caused by BPA [46]. Therefore, the 
expression levels of genes participating in DNA damage repair were analyzed in strain R-
001. In the BPA-treated group, base excision repair was significantly enriched in subclus-
ter 1 (Figure S3A). This function was located at the central node of the gene-function in-
teraction network and was associated with a total of eight genes (Figure 4C). Base excision 
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bases and alkylated bases, and BER usually repairs bases with minimal damage [47]. BER 
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First, DNA glycosidases encoded by alkA (GE00878), tag (GE02066), mutY (GE03054), 
and fpg (GE02415) recognize the damaged base, excise the glycosidic bond and generate 
the abasic (AP) site [48]. Second, the phosphodiester bond is hydrolyzed at the 5’-terminus 
to dealkalize deoxyribose using exonuclease III, encoded by Xth (GE04559), or 

Figure 4. Gene functions and expression levels in strain R-001 exposed to different concen-
trations of BPA. (A) The significantly enriched function-gene interaction network for the gly-
colytic/gluconeogenic pathway. Square nodes represent functional information, circular nodes
represent genes, and lines represent the associations between genes and functions. The color of the
square node corresponds to p value, with increasing color intensity reflecting an increasing degree
of enrichment. The size of the square node corresponds to the number of associated interactions:
larger squares interact with more DEGs and thus likely have a greater influence on biological phe-
nomena. (B) The expression levels of genes associated with glycolysis/gluconeogenesis. (C) The
significantly enriched function-gene interaction network for base mismatch repair. (D) The expression
levels of genes related to the glyoxylate and dicarboxylate metabolism pathway in different BPA
treatment groups.

3.4. Resistance of R-001 to BPA Toxicity
3.4.1. Downregulation of BER-Related Genes to Increase Strain Mutation

A study has shown that the downregulation of proteins involved in DNA mismatch
repair can completely inhibit the mismatch repair mechanism of Escherichia coli, leading
to an increase in the frequency of strain mutations, which may lead to improvements in
the resistance of this bacterium to the toxic damage caused by BPA [46]. Therefore, the
expression levels of genes participating in DNA damage repair were analyzed in strain R-
001. In the BPA-treated group, base excision repair was significantly enriched in subcluster
1 (Figure S3A). This function was located at the central node of the gene-function interaction
network and was associated with a total of eight genes (Figure 4C). Base excision repair
(BER) is the primary mechanism used to remove abnormal bases, such as oxidized bases
and alkylated bases, and BER usually repairs bases with minimal damage [47]. BER can be
divided into four steps: recognize, remove, resynthesize, and religate (Figure 5).
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Figure 5. DNA excision repair mechanisms and gene expression levels in R-001 under BPA stress. A
dashed border around a gene symbol indicates that this gene did not belong to subcluster 1 but was
involved in the DNA excision repair process.

First, DNA glycosidases encoded by alkA (GE00878), tag (GE02066), mutY (GE03054),
and fpg (GE02415) recognize the damaged base, excise the glycosidic bond and generate the
abasic (AP) site [48]. Second, the phosphodiester bond is hydrolyzed at the 5’-terminus to
dealkalize deoxyribose using exonuclease III, encoded by Xth (GE04559), or endonuclease
IV, encoded by Nfo (GE01995) [49]. This dealkalization produces 3’-OH and 5’-deoxyribo-
phosphate terminus (5′drp), creating a gap in the DNA [47]. Finally, DNA polymerase I,
encoded by DopI (GE04007, GE00989), and DNA ligase, encoded by Lig (GE00366), fill the
gap to complete the repair process [47] (Figure 5). Consistent with previous findings, genes
involved in base repair were significantly downregulated under BPA stress. The mean
log2

FC values of the genes encoding DNA glycosidase were −1.37 (A1), −3.928 (A2), and
−5.982 (A3) at the three BPA concentrations, respectively. The genes encoding exonuclease
and endonuclease were not significantly differentially expressed at 5 mg/L BPA, but were
downregulated at BPA concentrations of 15 mg/L and 40 mg/L, with mean log2

FC values
of −3.27 and −3.977, respectively. The average decrease in the expression levels (log2

FC)
of the genes encoding DNA synthase at the three concentrations were −1.38 (A1), −3.975
(A2), and −9.635 (A3), respectively. At 15 and 40 mg/L BPA, the average decrease in
the expression levels (log2

FC) of the genes encoding DNA lintase were −3.2 and −3.44,
respectively (Figure 5).

Base excision repair plays an important role in the maintenance of bacterial DNA
integrity, and the deletion of BER-related genes increases bacterial mutation rates [47].
For example, BER loss leads to increased spontaneous mutagenesis in Bacillus subtilis [50].
Therefore, the downregulation of BER-related genes in strain R-001 in response to BPA stress
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increases the mutation rate of this strain, thereby improving resistance to the toxic damage
caused by BPA; toxicity resistance was positively correlated with BPA concentration.

3.4.2. Upregulation of Metabolic Genes to Maintain Energy Supply

Across the other gene subclusters, the expression patterns of 1919 genes exhibited a
“V” shape or tended to increase continuously (Figure 6). Gene functional annotations were
very similar in the A1 and A3 treatment groups, with both groups enriched in the following
pathways: fatty acid metabolism; fatty acid degradation, pyruvate metabolism; valine,
leucine, and isoleucine degradation; propanoate metabolism; and carbon metabolism
(Figure S4A,C). The upregulation of genes in these metabolic pathways may provide addi-
tional energy to compensate for the loss of energy caused by the toxic effects of BPA. First,
fadA, encoding acetyl-CoA acyltransferase, was the most significantly upregulated gene in
the fatty acid degradation pathway (log2

FC = 6.6). Studies have shown that fadA is one of
the key genes in the metabolism of 2,4,6-trichlorophenol (2,4,6-TCP) by activated sludge;
fadA converts intermediates into acyl-CoA or succinyl-CoA, and the final metabolites enter
the TCA cycle to provide energy for strain growth [51]. Second, the TCA-cycle genes
gltA, icd, sucB, sdhA, fumC, and moo were upregulated when the concentration of BPA was
40 mg/L, and this upregulation led to an increased energy supply, improving cellular activ-
ity levels [52]. In addition, when BPA concentration increased from 15 mg/L to 40 mg/L,
several genes in the oxidative phosphorylation pathway were significantly upregulated
(e.g., sdhA and ppk1; Table S8), possibly increasing ATP synthesis. This increasing trend in
gene expression level was consistent with the increase in the ATP content of the bacterium
(Figure 2D). Genes encoding acetate kinase, methylmalonyl-CoA mutase, and pyruvate
carboxylase, all of which play important roles in energy production in bacteria [53–55],
were also upregulated (Table S8).
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of BPA.

These results showed that the inhibitory effects of BPA on the metabolic genes
were limited. Strain R-001 compensated for the BPA-driven loss of energy from gly-
colysis/gluconeogenesis and the glyoxylate and dicarboxylate metabolic pathway by
upregulating genes in other energy-related metabolic pathways, generating additional
intermediates and energy to maintain metabolic activity.
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3.4.3. Upregulation of Transport-System Genes to Maintain Cell Homeostasis

ABC transporters were annotated in the A1 and A2 treatment groups (Figure S4A,B),
but the annotated genes belonged to different transport systems. In the A1 group, the up-
regulated genes (opuBB and opuBC) belonged to the osmoprotectant uptake (Opu) system,
which maintains cellular physiological function through the uptake of a variety of compati-
ble solutes (e.g., choline and glycine betaine aldehyde) [56,57]. opuBC (GE02040) encodes a
substrate-binding protein in the osmoprotection transport system. This extracellular solute
receptor is immobilized on the outer surface of the cytoplasmic membrane via the lipid
modification of the N-terminal Cys residue. opuBB (GE02043) encodes the permease protein
in the osmoprotective transport system. The significant upregulation of two important
genes in the Opu system (Table S9) suggests that strain R-001 may regulate osmolality to
maintain cell stability in response to BPA toxicity. Similarly, P450-carrying Escherichia coli
may also respond to BPA toxicity by modulating osmolality [46]. In the A2 group, the
upregulated genes encoded ABC transporters that are responsible for the transport of iron,
which is an essential nutrient for bacterial biological metabolism. fhuD (GE00670) encodes
a substance-binding protein in the iron-complex transport system, which transports iron
pigments to permeases. The iron complex transport system permease encoded by fhuB
(GE00669) interacts with FhuD to transport siderophores into the cytoplasm, a process that
is mediated by ATP hydrolysis in FhuC [58]. Our results thus suggested that strain R-001
may adopt a variety of transport mechanisms to mitigate the toxic effects of BPA, including
regulating osmotic pressure or iron complex transport to maintain cellular activity.

3.5. Genes and Pathways Associated with BPA Degradation in Strain R-001

During the degradation of BPA by R-001, there were no significant differences in the
expression levels of the BPA-degradation genes in the treatment group. However, the
BPA-degradation genes were upregulated from 1.56- to 19.35-fold in the high-BPA group
as compared to the low-BPA group. After exposure to various concentrations of BPA,
the qPCR analysis showed that the expression levels of the BPA-degradation genes were
1.48- to 2.95-fold greater than the expression level of the reference gene (recA; Table 1). In
particular, cytochrome P450 plays a critical role in the degradation of BPA [59–61], and
the addition of cytochrome P450 inhibitors will inhibit the degradation of BPA in different
degrees [62]. qPCR analysis showed that the gene GE00504, which encodes P450 monooxy-
genase, was upregulated an average of 1.67-fold after induction. The amino acid sequence
of GE00504 had 29.26% and 32.05% identity with the amino acid sequences of cytochrome
P450 monooxygenase from Sphingomonas sp. AO1 (BAG15884.1) and Bacillus sp. GZB
(OMQ03826.1), respectively. In addition, studies have shown that multicopperoxidase
(laccase) can also complete the biotransformation of a variety of phenolic substances [63].
The gene GE00283, encoding multicopperoxidase, was upregulated an average of 2.36-fold
after induction, and the amino acid sequence of GE00283 had 29.38% identified with laccase
from Bacillus sp. GZB (APF29085.1). Recombinant laccase completely degrades BPA and
has certain detoxification effects [64]. The upregulation of the GE00283 gene at a BPA
concentration of 40 mg/L may also contribute to the BPA detoxification abilities of R-001.
In addition, we also detected the upregulated expression of hqdD (GE03927, Tables S3–S5),
which can encode Maleylacetate reductase. Kolvenbach et al. have confirmed that Maley-
lacetate reductase can transform maleylacetate into 3-oxoadipate, both of which can be
obtained by further degradation of hydroquinone [65,66]. Although these intermediates
were not found in our LC-MS results, it can still be predicted that hqdD can participate in
the subsequent biodegradation of BPA.

Based on the above analysis and LC-MS results (Figure S5), we found that R-001
degraded BPA via two pathways (Figure 7). In pathway I, P450 catalyzes the hydroxylation
of BPA methyl to produce 2,2-bis(4-hydroxyphenyl)-1-propanol (2,2-BIS). The product is fi-
nally cleaved to 4-hydroxybenzoate by multicopperoxidase [27]. In pathway II, cytochrome
P450 acts on the quaternary carbon atom of BPA and undergoes hydroxylation to form
1,2-bis(4-hydroxyphenyl)-2-propanol, which is followed by oxidation and cleavage in the
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presence of MCO to form 4-hydroxyacetophenone and 4-hydroxybenzaldehyde. The former
product is the main intermediate in the BPA degradation process [27] and has been previ-
ously used to maintain the growth and metabolism of BPA-stressed bacterial strains [62].
After induction by 4-hydroxyacetophenone, the gene encoding 4-hydroxyacetophenone
monooxygenase (EC:1.14.13.84) was significantly upregulated (Table 1), which promoted
further cleavage of the intermediate to form 4’-hydroxyacetophenone.

Table 1. BPA-degrading genes in strain R-001.

Gene ID Gene Description Synonym
qPCR Log2

FC

q1 q2 q3 A3 vs. A1 A3 vs. A2

GE00504 Cytochrome P450 130 P450 1.48 1.60 1.92 2.337
GE00283 Multicopper oxidase MCO 1.93 2.21 2.95 0.64 4.28

GE03924 4-hydroxyacetophenone
monooxygenase HAPMO 1.64 2.10 2.57 1.027 2.273
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4. Conclusions

BPA pollution poses an increasingly serious problem. Although some BPA-degrading
microorganisms have been isolated and identified, the toxic effects of BPA on the degra-
dation abilities and toxicity-resistance mechanisms of these bacteria remain unclear. Our
results demonstrated that Rhodococcus equi DSSKP-R-001 had a high ability to degrade BPA
and tolerated 40 mg/L BPA while maintaining BPA degradation performance. However,
due to the toxic effects of BPA, the growth, metabolism, and gene expression of strain R-001
were inhibited. The OD value, total protein content, and ATP content of the strain R-001
exhibited a “V”-type relationship with BPA concentration: these parameters decreased at
BPA concentrations of 5–15 mg/L and slowly increased at concentrations of 15–40 mg/L.
In addition, 1794 genes were downregulated in strain R-001 in response to BPA stress, and
most of these genes were related to energy metabolism. Nonetheless, strain R-001 exhibited
some resistance to BPA toxicity. This strain mitigated BPA-associated toxic damage by reg-
ulating the expression levels of genes related to base excisional repair, energy metabolism,
osmoprotection, and the iron complex transport system. In addition, the genes encoding
cytochrome P450 monooxygenase and multicopperoxidase were upregulated during BPA
degradation. Moreover, the similarities between the amino acid sequences of these up-
regulated genes and known proteins suggested that the upregulated genes might play an
important role in the initial step of BPA degradation by R-001, converting BPA into small
molecule intermediates to complete the detoxification process. This study expanded our
knowledge of BPA-degrading microorganisms, clarified the details of the toxicity-resistance
and BPA-degradation mechanisms of Rhodococcus, and provided a theoretical basis for the
application of Rhodococcus to BPA bioremediation.
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