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Abstract: The estimation of a postmortem interval (PMI) is particularly important for forensic in-

vestigations. The aim of this study was to assess the succession of bacterial communities associated 

with the decomposition of mouse cadavers and determine the most important biomarker taxa for 

estimating PMIs. High-throughput sequencing was used to investigate the bacterial communities of 

gravesoil samples with different PMIs, and a random forest model was used to identify biomarker 

taxa. Redundancy analysis was used to determine the significance of environmental factors that 

were related to bacterial communities. Our data showed that the relative abundance of Proteobac-

teria, Bacteroidetes and Firmicutes showed an increasing trend during decomposition, but that of 

Acidobacteria, Actinobacteria and Chloroflexi decreased. At the genus level, Pseudomonas was the 

most abundant bacterial group, showing a trend similar to that of Proteobacteria. Soil temperature, 

total nitrogen, NH4+-N and NO3−-N levels were significantly related to the relative abundance of 

bacterial communities. Random forest models could predict PMIs with a mean absolute error of 1.27 

days within 36 days of decomposition and identified 18 important biomarker taxa, such as Sphingo-

bacterium, Solirubrobacter and Pseudomonas. Our results highlighted that microbiome data combined 

with machine learning algorithms could provide accurate models for predicting PMIs in forensic 

science and provide a better understanding of decomposition processes. 
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1. Introduction 

The postmortem interval (PMI) is one of the most important aspects of forensic in-

vestigations because it provides necessary information in many criminal and legal cases 

[1,2]. Traditionally, estimation of the PMI has relied on evidence such as the physical pro-

cesses that occur after death, including the drop in temperature of corpses, combined with 

livor mortis, rigor mortis and digestion of gastrointestinal contents [2,3]. However, the 

state of a dead body is difficult to maintain, and investigator experience surrounding en-

vironments and individual states usually affect the evaluation results. To avoid these 

shortcomings, some technologies have been applied to estimate the PMI, including bio-

logical chemistry [4–6], molecular biology [7,8], forensic entomology [9,10] and spectro-

scopic technology [11]. These methods can potentially provide significant information for 

PMI estimation. However, none of these methods are widely used by forensic investiga-

tors, and each of them faces some problems in practice. For example, the error range of 

forensic entomology can range from days to months when using this method to assess the 

PMI [12]. A study conducted by Pittner et al. [13] used a multidisciplinary approach to 
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investigate postmortem changes, including morphology, skeletal muscle protein decom-

position, presence of insects and other necrophilous animals and microbial communities, 

and summarized the current possibilities and limitations of these methods for PMI esti-

mation. Currently, microbial approaches have started to draw more attention because fo-

rensically relevant microbial profiles could provide some evidence for PMI estimation or, 

at the very least, complement traditional investigative methods [14,15]. 

Microorganisms are abundant in almost all environments and take part in important 

ecological functions such as decomposition [16,17]. In the decomposition process, cadav-

ers can be used as nutrients for microbial growth, and microbial communities respond 

rapidly to nutrient changes, showing a succession pattern [18]. Several studies have 

demonstrated that microbes can be used as a “clock” to estimate the PMI during cadaver 

decomposition [12,19], and these studies are associated with the skin [20,21], gut/intestine 

[22,23], oral cavity [24,25], gravesoil [26] and even bone [27]. In some studies, high-

throughput sequencing and a variety of model-based statistical approaches, such as ma-

chine learning algorithms, were used to estimate the PMI. For example, based on 16S 

rRNA gene high-throughput sequencing data and random forest models, Zhang et al. [26] 

found that gravesoil, rectum and skin samples of buried cadavers could be used to predict 

the PMI, with a mean absolute error (MAE) of 1.82, 2.06 and 2.13 days within 60 days of 

decomposition, respectively. Another study used high-throughput sequencing to study 

the microbial communities of decomposing mouse cadavers, and the results showed that 

the MAE of the random forest model at 48 days was approximately 3 days [12]. 

Microbial succession after death is extremely complex and is affected by multiple 

environmental factors [28–30]. Currently, high-throughput sequencing technology and 

subsequent bioinformatics analysis can provide necessary information to gain insight into 

the complex microbial community composition in various environments [31]. Although 

postmortem microbiomes have been identified by previous studies, further research is 

still needed to obtain more information. In this study, the first objective was to determine 

the PMI based on bacterial community succession 36 days after the death of mice using 

high-throughput sequencing and random forest regression models and to determine bac-

terial biomarkers. Second, we aimed to identify the relationships between environmental 

factors and bacterial communities. This study helps us understand the relationship be-

tween the postmortem microbiome and decomposition and further provides theoretical 

evidence for forensic science and the criminal justice system. 

2. Materials and Methods 

2.1. Experimental Design and Sample Collection 

All experiments were approved by the Animal Care and Use Committee of Nanjing 

Agricultural University (Nanjing, China) (permit number: SYXK (Su) 2017-0007). Sixty-

five ICR mice (males, 20 ± 2 g) were acquired from Shanghai SLAC Laboratory Animal 

Co., Ltd. After one week of adaptive feeding, the mice were humanely euthanized by cer-

vical dislocation. The experiment was conducted in a forest, in a small geographic range 

(Figure S1), where the soil was loose and the area was flat. Sixty-five cadavers were buried 

separately in 20 cm × 20 cm × 20 cm square graves (118°50’ E, 32°4 ‘N), and the distance 

between each pair of graves was greater than 10 cm. Each mouse was separately placed 

in a grave, and the soil was loosely placed back on top of the buried mouse. The soils 

under buried cadavers (depth ≤ 0.5 cm) were considered gravesoils. Five graves were ex-

cavated immediately, and after removing the mice, the gravesoils were carefully collected 

as controls (day 0). Then, five graves were randomly excavated every 3 days (days 3, 6, 9, 

12, 15, 18, 21, 24, 27, 30, 33 and 36), and the gravesoils were collected accordingly. Each 

soil sample (approximately 3–5 g) was placed into a 10-mL sterile plastic tube and then 

immediately placed in a box filled with ice. After being taken back to the laboratory, each 

soil sample was divided into three parts. One part was stored at −80 °C for the extraction 
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of soil DNA. Another part was used to determine ammonium (NH4+-N) and nitrate (NO3−-

N) contents. The third part was air-dried in the laboratory for soil chemical analysis. 

2.2. Soil Physical and Chemical Properties 

The soil temperature and humidity of each grave were measured using a thermo-

hygrometer (TA8672, TASI, Suzhou, China). Soil pH was determined using a pH meter 

(PB-10, Sartorius, Germany) in a 1:5 soil/water mixture. Total organic carbon (TOC) and 

total nitrogen (TN) contents were analyzed according to the methods of Bao [32]. For TOC, 

the soil sample was oxidized with K2Cr2O7-H2SO4 and titrated with a standard FeSO4 so-

lution (phenanthroline indicator). For TN, the soil sample was catalyzed by an accelerator 

(K2SO4: CuSO4: Se (w: w: w) = 100: 10: 1) and heated using a boiling furnace. The final 

liquid was diluted with H2O and analyzed using a continuous flow analytical system 

(San++ System, Skalar, Holland). NH4+-N and NO3−-N were extracted at a ratio of 1 g of 

fresh soil to 10 mL of 2 M KCl for 1 h. Then, the liquid was analyzed using the aforemen-

tioned continuous flow analytical system. 

2.3. DNA Extraction, PCR Amplification and Sequencing 

Genomic DNA of each soil sample was extracted from 0.5 g of gravesoil using a Fast 

DNA™ Spin Kit for Soil (MP Bio, Santa Ana, CA) according to the instructions. The primer 

set 341F (5′-CCT AYG GGR BGC ASC AG-3′)/806R (5′- GGA CTA CNN GGG TAT CTA 

AT-3′) was selected to amplify bacterial 16S rRNA gene sequences. PCR was performed 

using a GeneAmp PCR System 9700 (ABI), and the reaction mixture (20 μL) comprised 4 

μL of 5×FastPfu Buffer (TransStart, TransGen Biotech, Beijing, China), 1 μL (50 ng/μL) of 

template DNA solution, 2 μL of dNTP mixture (2.5 mmol/μL), 0.8 μL of each primer (5 

μmol/μL), 0.4 μL of FastPfu polymerase and 11 μL of sterilized distilled water. The PCR 

cycling parameters were as follows: 95 °C for 5 min; 34 cycles of denaturation at 95 °C for 

30 s, annealing at 57 °C for 30 s, and extension at 72 °C for 45 s; a final extension at 72 °C 

for 10 min. The PCR products were purified using an Axy Prep DNA Cell Extraction Kit 

(AXYGEN, Corning, America) following the instructions and then sequenced with an Il-

lumina MiSeq FGX platform (Biozeron Co., Ltd, Shanghai, China.) according to the man-

ufacturer’s protocols. The sequence files were submitted to the Genome Sequence Archive 

(https://ngdc.cncb.ac.cn/gsa/ accessed on 6 April 2022) under accession number 

CRA006561. 

2.4. Data Analysis 

High-throughput sequencing reads were analyzed using QIIME2 [33]. Briefly, the 

reads were filtered, denoised and merged, and chimeras were removed using DADA2 for 

quality control. Subsequently, mitochondria- and/or chloroplast-related sequences were 

removed based on the Greengenes database (version 13.8). From the reads, the amplicon 

sequence variants (ASVs) were clustered using the DADA2 function according to the 

SILVA database (version 132). In addition, the sequences were rarefied to the minimum 

number of bacterial sequences (n = 21,310 sequences). The alpha-diversity indices, includ-

ing the Shannon and Chao 1 indices, were determined using QIIME2. Nonmetric multidi-

mensional scaling (NMDS) was used to determine the clustering of different soil samples 

based on the Bray–Curtis distance using R package vegan. PERMANOVA was used to 

examine the difference in bacterial community compositions among samples (R software 

(version 4.02), vegan). Redundancy analysis (RDA) was performed to arrange bacterial 

communities based on environmental factors. One-way ANOVA with the Student–New-

man‒Keuls (SNK) test was used to compare the differences among samples. 

A random forest (RF) model, a machine learning method, was used in this study to 

generate PMI prediction models based on the relative abundances of bacterial taxa against 

the actual PMI (R package ‘randomForest’). Bacterial taxa were tacitly ranked in the RF 

model (feature importance) by 100 iterations. The number of biomarkers was determined 
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by 10-fold cross-validation implemented with the rfcv() function. The minimum cross-

validation error was obtained accordingly. In addition, a RF regression model based on 

feature species was established to predict the PMI. The MAE and goodness-of-fit (R2) were 

used to measure the accuracy and efficiency of the models. The MAE was calculated ac-

cording to the methods of Zhang et al. [26] and Liu et al. [34]. 

3. Results 

3.1. Sequencing and Bacterial Community Composition during Decomposition 

High-throughput sequencing yielded a total of 2146,876 high-quality sequences, and 

21,310–53,446 reads were obtained from each sample. In total, 1362 ASVs were detected 

in all soil samples. The number of ASVs and the Shannon index were selected to estimate 

the bacterial richness and diversity during cadaver decomposition. As shown in Figure 

S2, the Shannon indices generally showed no significant differences among the first 24 

days (p > 0.05). By comparison, an obviously decreasing trend was observed in the later 

stage (days 27 to 36) of decomposition (p < 0.05). A similar pattern was observed regarding 

the number of ASVs, except on the 27th day. 

There were 11 dominant bacterial phyla (mean relative abundance > 1%) across all 

PMI-related soil samples: Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Ni-

trospirae, Bacteroidetes, Thaumarchaeota, Gemmatimonadetes, Verrucomicrobia, Firmic-

utes and Latescibacteria (Figure 1A). As shown in Figure 1A, the samples exhibited dif-

ferences in the relative abundance of each bacterial group. Notably, the relative abun-

dances of Proteobacteria and Bacteroidetes generally increased during cadaver decompo-

sition. In contrast, the relative abundances of Acidobacteria, Actinobacteria, Chloroflexi 

and Nitrospirae showed opposite patterns. Furthermore, the top 20 genera across all sam-

ples are illustrated in Figure 1B, showing that Pseudomonas, subgroup 6 and 18 other bac-

terial groups were the dominant genera. Similarly, the relative abundances of Pseudomo-

nas, members of the family Oxalobacteraceae, members of the family Comamonadaceae, 

Vitreoscilla and Sphingobacterium increased with an increasing PMI, and the relative abun-

dances of subgroup 6, 0319-6A21, members of the family Gemmatimonadaceae, RB41 

(subgroup 4), Roseiflexus, GR-WP33-30, members of the family Xanthobacteraceae and 

MB-A2-108 decreased. 
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Figure 1. The relative abundances of the main bacterial members for different gravesoils. The 

stacked bar graph represents the relative abundances (%) of the major bacterial community, and 

only the average relative abundance > 1% for phylum (A) and the top genera (B) for genus across 

all the samples are shown. The relative abundance of each taxon is the average value of five repli-

cations (four replications for days 3, 27 and 30). 

3.2. Bacterial Succession Pattern during Cadaver Decomposition 

To compare the dissimilarity of bacterial communities during cadaver decomposi-

tion, NMDS based on the Bray‒Curtis distance was used to display the distribution of all 

soil samples in a two-dimensional space (Figure 2A). The results showed that the samples 

with different PMIs were separated from each other (F. model = 5.25, R2 = 0.563, p < 0.001). 

PERMANOVA based on the Bray‒Curtis distance supported the dissimilarities of bacte-

rial communities between most pairs of PMI-related samples (Table S1), suggesting that 

the bacterial communities changed along with the PMI. Furthermore, a linear model was 

analyzed to determine relationships between similarities of bacterial communities and 

PMIs. A negative slope (slope = −0.01, R2 = 0.35, p < 0.05) was observed based on the plots 

of bacterial community similarity versus PMI (Figure 2B). The curve suggested a succes-

sion pattern of microbial communities and consequently estimated the PMI according to 

the microbial community composition. 



Microorganisms 2023, 11, 56 6 of 14 
 

 

 

Figure 2. Bacterial communities changed with the PMI. (A) Nonmetric multidimensional scaling 

(NMDS) plots of bacterial communities based on the Bray‒Curtis distances. (B) Significant linear 

relationships between the similarities of bacterial communities and the number of days of decom-

position were observed in gravesoil. 

3.3. Effect of Environmental Factors on the Bacterial Community Composition 

RDA was performed to determine the most significant environmental factors shap-

ing bacterial communities during cadaver decomposition (Figure 3). The data indicated 

that environmental factors were significantly related to the bacterial community compo-

sition. The first two axes together explained 14.38% of the total variation in the bacterial 

communities. The RDA results showed that the bacterial communities were significantly 

impacted by TN, NH4+-N and NO3‒-N levels and temperature (Table 1). Among them, 

temperature had the greatest impact, explaining 6.35% of the explained variation in the 

dataset, followed by TN (5.62%), NO3‒-N (3.06%) and NH4+-N (2.44%) levels. 

Table 1. Correlation coefficients, r-squared and significance values for environmental factors with 

RDA axes. 

 RDA1 RDA2 r2 p value 

pH −0.130 0.991 0.018 0.56 

TC 0.996 0.085 0.060 0.174 

TN 0.899 0.438 0.143 0.012 

NH4+ 0.457 0.890 0.177 0.003 

NO3‒ 0.969 0.246 0.095 0.05 

Temperature −0.303 0.953 0.345 0.001 

Humidity −0.729 −0.685 0.058 0.172 
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Figure 3. RDA ordination diagram of environmental factors in relation to soil samples. Environ-

mental factors are indicated by lines with arrows, and the soil samples are represented by dots. 

3.4. Bacterial Taxonomic Biomarkers for the PMI Determined Using the RF Model 

To process the large datasets obtained by high-throughput sequencing, we regressed 

the relative abundance of soil bacterial communities at the genus level against the PMI 

using the RF machine learning algorithm. The model explained 85.7% of the bacterial com-

munity composition variance related to the PMI. We performed 10-fold cross-validation 

to reveal the importance of bacterial genera as biomarker taxa during cadaver decompo-

sition. The minimum cross-validation error was obtained using 18 important genera. The 

top 18 bacterial groups at the genus level across PMIs are shown in Figure 4A in the order 

of time-discriminatory importance. Sphingobacterium was the most important genus in the 

process of cadaver decomposition, followed by Solirubrobacter, members of the family 

Rhodobiaceae and Serratia. As shown in Figure 4B, some biomarker taxa, such as Soliru-

brobacter and members of the family Rhodobiaceae, showed higher relative abundances in 

the early stage of decomposition, whereas Sphingobacterium, Serratia and Pseudomonas 

were abundant in the later stage of decomposition. A new RF model was established to 

regress the 18 biomarker taxa against the PMI, and the results showed that the new model 

could explain 83.9% of the variance. 
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Figure 4. Bacterial taxonomic biomarkers of gravesoils during cadaver decomposition. (A) The top 

18 biomarker bacterial genera were identified by applying a random forest model of their relative 

abundances in gravesoils against PMIs. Biomarker taxa are ranked in descending order of im-

portance to the accuracy of the model. The inset represents a 10-fold cross-validation error as a func-

tion of the number of input genera used to regress against PMIs. (B) Abundance profiles for PMI-

discriminant genera in gravesoils. Genera are colored by their classification as early, late, or complex 

colonizer patterns. There were 8 genera (yellow) with increasing relative abundances, 3 genera 

(gray) with complex patterns and 7 genera (blue) with decreasing relative abundances during ca-

daver decomposition. 

To accurately evaluate the prediction effect, the differences between the predicted 

and actual PMIs of each sample were analyzed using a RF regression model. The dataset 

was not divided into a test set and a training set because the number of soil samples was 

only 62. As shown in Figure 5, the R2 value was 0.96, which suggests that the regression 

effect of the RF algorithm was good. The MAE was 1.27 ± 0.18 d within 36 d of the decom-

position process. 
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Figure 5. Random forest regression model. Each red dot represents a gravesoil sample. The blue 

straight line represents the predicted value, and the actual values are equal. 

4. Discussion 

Previous studies have demonstrated that microbiological methods can be used as 

promising tools to predict postmortem changes in forensic investigations [14,18,26]. Based 

on the data of high-throughput sequencing and machine learning algorithms, PMIs have 

been estimated under different environmental conditions [21,35,36]. However, the rela-

tionship between buried cadavers and their related microbial community needs to be fur-

ther studied. In this study, based on 16S-amplicon sequencing and the RF model, PMIs 

could be predicted with high accuracy using the succession of bacterial biomarkers. 

Microorganisms are the most abundant and vital components of soils and are sensi-

tive to environmental changes. During cadaver decomposition, nutrient-rich fluids are re-

leased into the underlying soil, which can greatly impact the composition of the nearby 

microbial community [37]. In this study, a similar pattern was also observed (Figure 1), 

showing the changes in bacterial community composition during cadaver decomposition. 

Generally, Proteobacteria, Acidobacteria, Actinobacteria and Chloroflexi were the domi-

nant bacterial groups in the soil samples. These phyla are commonly found in forest soils 

[38]. Our data indicated that Proteobacteria was the most abundant bacterial phylum 

(25.8%−72.2% of the overall community) across all samples and increased in abundance 

during cadaver degradation. Bacteria within Proteobacteria are ubiquitous in various soil 

environments [39,40], and they are typical r-strategy bacteria that are generally considered 

fast-growing bacteria often connected with labile carbon sources [41–44]. In this study, we 

hypothesized that the degradation of cadavers increased the available nutrient levels in 

gravesoils and therefore resulted in the rapid enrichment of Proteobacteria. At the genus 

level, Pseudomonas, a member of gamma-Proteobacteria, was the most abundant group, 

and increased abundance of this genus was positively related to Proteobacteria (Figure 2). 

Moreover, Pearson correlation analysis suggested that the relative abundance of Pseudo-

monas was positively related to the concentration of NH4+-N (r = 0.45, p < 0.05). Previous 

studies have noted that members of Pseudomonas are versatile and involved in organic 

pollutant degradation [45], plant growth promotion [46], nitrification and denitrification 

[47,48]. In this study, the contents of NH4+-N in gravesoils gradually accumulated as ca-

davers decomposed (Figure S2). The large amount of ammonium provided enough sub-

strate for nitrification and subsequent denitrification. Therefore, Pseudomonas, as a hetero-

trophic nitrifier and/or denitrifier, exhibited rapid growth at the later stage of cadaver 

decomposition. 

Compared with that of Proteobacteria, the relative abundances of Acidobacteria, Ac-

tinobacteria and Chloroflexi changed with different patterns, showing decreasing trends 

at the later stage of decomposition (Figure 2). Acidobacteria are frequently reported to 
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show a close correlation with soil pH [49,50]. Currently, this phylum has 26 accepted sub-

divisions [51]. However, not all of the subdivisions consistently favor low-pH conditions 

in soils [52]. For example, Gp6 could be either positively or negatively correlated with soil 

pH [53,54], indicating that the growth of Gp6 was not affected by pH. Notably, the relative 

abundance of Acidobacteria was negatively related to the concentration of NH4+-N (r = 

−0.63, p < 0.01, Table S2). This result was supported by Zhou et al. [55], who investigated 

the effects of inorganic nitrogen on rhizosphere bacterial communities of the tropical 

seagrass Thalassia hemperichii and found that the relative abundance of Acidobacteria de-

creased under ammonium enrichment treatment. Similarly, Liu et al. [56] found that the 

relative abundance of Acidobacteria decreased with an increasing NH4+-N dose. Members 

of Actinobacteria in general have shown an ability to adapt to resource-limited environ-

ments [41,57]. Ryckeboer et al. [58] highlighted that, compared with other microorgan-

isms, Actinobacteria showed low competitiveness under high-nutrient conditions. Con-

versely, Actinobacteria and Acidobacteria were in the K-strategy groups [42,59]. Accord-

ing to these results, we suppose that cadaver burial resulted in greater microbial biomass, 

but not the absolute abundance of Acidobacteria and Actinobacteria. Therefore, their rel-

ative abundance decreased at the late stage of decomposition. The phylum Chloroflexi 

showed similar and negative responses to higher concentrations of NH4+-N. Some studies 

have indicated that additional N suppresses this phylum. For example, Fierer et al. [60] 

found that the relative abundance of Chloroflexi decreased when additional N was used. 

A study conducted by Eo and Park [61] reported a similar result and summarized that the 

suppressive effect of additional N was related to altered chemical properties (e.g., soil pH 

and available nutrients) and microbial interactions such as competition and antagonism. 

In addition to those of the four aforementioned phyla, the relative abundances of 

Bacteroidetes and Firmicutes significantly increased from the 27th day. This result was 

supported by Procopio et al. [62], who investigated changes in soil microbial communities 

associated with the decomposition of buried carcasses and found that the relative abun-

dances of Proteobacteria, Firmicutes and Bacteroidetes increased with increasing PMIs. 

Many genera belonging to Firmicutes were confirmed to have the ability to transform or-

ganic nitrogen to NH4+-N [63]. Our data showed that the relative abundance of Firmicutes 

was significantly correlated with the content of NH4+-N (r = 0.73, p < 0.01, Table S2), indi-

cating that this phylum may play an important role in nitrogen cycling. In this study, 

Sphingobacterium and Pedobacter, affiliated with Sphingobacteriaceae, were the most abun-

dant genera in the phylum Bacteroidetes and were also important biomarkers in the RF 

model (Figure 4). In a study conducted by Olakanye and Ralebitso-Senior [64], Sphingo-

bacterium and Pedobacter were seasonal PMI markers for sandy clay soil. Nonetheless, 

more studies are still needed to understand the ecological roles of these genera. 

The alpha diversity indices (number of ASVs and Shannon index) were higher at the 

early stage of decomposition than at the later stage, which was in accordance with the 

results of previous studies [26]. Cadaver decomposition resulted in enough vital resources 

for growth, and some r-strategy bacteria, such as Pseudomonas, grew quickly and finally 

became dominant groups. These dominant bacterial groups could be responsible for a 

“shield” effect due to a drastic evenness change, as all minor species become too scarce in 

terms of relative abundance to be detected by rarefied sequencing alone, therefore leading 

to an artificial apparent decrease in diversity. 

Microbial communities in soils are sensitive to many environmental factors, such as 

pH, temperature, and nutrient content. In this study, RDA suggested that soil temperature 

and TN, NH4+-N and NO3‒-N contents were the environmental factors that significantly 

affected the bacterial community composition (Figure 3 and Table 1). Some studies have 

revealed that temperature affects microbial succession. For example, in PMI estimation, 

scientists also confirmed the significant effects of temperature on microbial communities 

[19,28]. In this study, the experiment was done during a cold period of the year (Figure 

S2). As we know, soil enzymes produced by microorganisms are highly sensitive to tem-
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perature and biochemical reaction rates increased with temperature according to the Ar-

rhenius law. Therefore, the decomposition process might be delayed by lower tempera-

ture, showing similar bacterial community composition from day 3 to day 18 (Figure 1A 

and Table S1). Compared with lower temperatures, microbial community composition 

usually showed rapid succession patterns within several days in the summer [22,34]. At 

the later stage of decomposition, bacterial community composition changed significantly, 

which might be due to the increased temperature and the gradual accumulation of nutri-

ents. Our results also highlighted that soil nitrogen in different forms affected bacterial 

communities. One possible explanation was that a large amount of nitrogen (protein-, 

peptide-, amino- and NH4+-N) in gravesoil greatly impacted bacterial community compo-

sition during cadaver composition. Based on Figure S2, cadaver decomposition resulted 

in a sharp increase in NH4+-N content, particularly from the 21st day, and how NH4+-N 

affected the bacterial community composition is discussed above. However, due to the 

complexity of environmental factors, their effects on microbial communities during ca-

daver decomposition still need to be investigated. 

Previous studies have demonstrated that machine learning methods are very power-

ful and ideal tools to calculate PMIs using complex microbiome data [20,21,26,34]. In this 

study, we combined bacterial community data and machine learning algorithms (RF 

model) to investigate microbial succession patterns during cadaver decomposition. Based 

on the RF model, 18 important bacterial genera were identified as biomarker taxa to ex-

plain the succession of bacterial communities during cadaver decomposition (Figure 4). 

The 18 biomarkers together could explain 83.9% of the variance, and the value was only 

slightly lower than that of the total microbiome data (85.7%). This result suggested that 

machine learning methods could simplify bacterial biomarkers that correlate with PMIs, 

supporting the hypothesis that machine learning methods could be applied to predict the 

PMI in forensic investigations. As shown in Figure 5, we found that the MAE during 36 

days of decomposition was 1.27 ± 0.18 d. If the model is established, the PMI can be pre-

dicted based on real human microbiome data. Moreover, we found that the deviation be-

tween some predicted values and the actual values was high, which might be because of 

the small number of samples. Therefore, more samples should be collected for further 

research to minimize the deviation. In addition to the RF model, some other methods were 

also used to predict the PMI in previous studies, such as the k-nearest neighbor regressor, 

support vector machine and artificial neural network [20,34], and each of them has both 

strengths and weaknesses [21]. Therefore, multiple methods should be considered alone 

and/or in combination in future work to obtain more accurate PMIs. 

5. Conclusions 

In this study, a significant succession of bacterial communities was found during the 

36-day cadaver decomposition. Bacterial communities were significantly related to tem-

perature, TN, NH4+-N and NO3−-N. We used a machine learning algorithm to assess the 

microbiome data, and the results suggested that the RF model could effectively predict 

the PMI with an MAE of 1.27 ± 0.18 d during 36-day decomposition. We also observed 

several bacterial groups, such as Sphingobacterium, Solirubrobacter, members of the family 

Rhodobiaceae and Pseudomonas, that may facilitate the establishment of the PMI predic-

tion model. Taken together, our data suggest that the combination of microbial methods 

and machine learning algorithms can support necessary information in forensic PMI in-

vestigations. 

Supplementary Materials: The following supporting information can be downloaded at 
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