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Abstract: Healthcare-associated infections (HAIs) are still a global public health concern, associated
with high mortality and increased by the phenomenon of antimicrobial resistance. Causative agents
of HAIs are commonly found in the hospital environment and are monitored in epidemiological
surveillance programs; however, the hospital environment is a potential reservoir for pathogenic
microbial strains where microorganisms may persist on medical equipment surfaces, on the environ-
ment surrounding patients, and on corporal surfaces of patients and healthcare workers (HCWs). The
characterization of hospital microbiota may provide knowledge regarding the relatedness between
commensal and pathogenic microorganisms, their role in HAIs development, and the environmental
conditions that favor its proliferation. This information may contribute to the effective control of the
dissemination of pathogens and to improve infection control programs. In this review, we describe
evidence of the contribution of hospital microbiota to HAI development and the role of environmental
factors, antimicrobial resistance, and virulence factors of the microbial community in persistence on
hospital surfaces.

Keywords: healthcare-associated infections; hospital microbiota; infection control; antimicrobial
resistance; surfaces persistence

1. Introduction

Prevention of healthcare-associated infections (HAIs) has been a subject of continuous
research due to associated high costs, high mortality and morbidity rates, and the emer-
gence of drug-resistant pathogens as causative agents [1]. The U.S. Centers for Disease
Control and Prevention (CDC) estimates that 5% of all hospital admissions result in a HAI,
culminating in approximately 722,000 infections and 75,000 deaths each year, with a burden
of $28–33 billion in costs (https://epi.dph.ncdhhs.gov/cd/hai/figures.html, accessed on
15 October 2022). Diverse strategies have been applied to reduce or control infections in
the hospital environment, and these efforts are focused on eliminating microbial sources.
However, HAIs remain a threat to health and human life even in developed countries [2];
for example, in the USA, 1 in every 31 patients develop at least one HAI every day [2].

HAI development has been associated with inadequate antimicrobial prescription or
consumption, insertion of medical devices, concomitant diseases, immunological status of
patients, and adherence to hygiene practices [3,4]. In addition, exposure to microorganisms
from a nosocomial environment may contribute to HAI development [5]. The microbiota is a
set of microorganisms in a particular environment and their interactions [6]; its composition
is prone to vary in time and scale. The most frequent bacteria found in indoor environments
include Pseudomonas spp., Acinetobacter spp., Staphylococcus spp., Corynebacterium spp.,
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Sphingomonas spp., and Clostridium spp., while frequent fungi found are Aspergillus spp.,
Penicillium spp., and Cladosporium spp. [7].

The importance of the microbial communities in a hospital resides in its contribution
to health or disease in patients; however, this aspect is not well understood [6]. The
risk of pathogen acquisition is higher in a hospital environment [8]; thus, recognition
of pathogen reservoirs in hospital settings, transference of microorganisms between the
external environment and patient microbiota, and other interactions must be considered
for infection control strategies. The aim of this review is to describe evidence of the
contribution of the hospital microbiota to HAI development and the role of environmental
factors, antimicrobial resistance, and virulence factors of the microbial community in
persistence on hospital surfaces.

2. Microbial Communities in a Hospital Environment

Based on microbiological and sequencing techniques, numerous studies have de-
scribed microbiota profiles from hospital environments. Microbial profiles vary according
to hospital settings, as shown in Table 1; various studies have shown the presence of
bacteria associated with skin and soil on hospital surfaces, including offices and highly
touched restroom surfaces [5,9–12].

Table 1. Sources of infection in hospital facilities.

Author Predominant Microorganisms Source of Infection Unit or Ward Ref.

Hewitt et al.

Staphylococcus, Streptococcus, Neisseria,
Enterobacter, Pseudomonas, Acinetobacter,
Clostridium, Fusobacterium, Gemella,
Leclercia, Propionibacterium,
Corynebacterium, Lactobacillus.

Baby bedside, door button,
incubator, sink, and
weigh cart.

Neonatal ICU [9]

Rampelotto et al. Acinetobacter, Pseudomonas,
Staphylococcus, Klebsiella, Streptococcus.

Bedrail, table, chair,
dispenser, water tap, serum
and gas support, cabinets,
surgical table, computer,
infusion pumps, and others.

Surgery center,
emergency department,
medical unit, and ICU.

[13]

Lax et al.

Acinetobacter and Pseudomonas, before
building inauguration. Corynebacterium,
Staphylococcus, and Streptococcus, after
HCW and patients´ introduction.

Floor, bedrail, staff pager,
computer, countertop, and
others. Corporal surfaces
from patients and HCW.

Ten patient rooms and
two nursing stations
from hematology and
oncology wards.

[11]

Cruz-López et al.
Coagulase negative staphylococci,
Acinetobacter baumannii, Enterococcus
faecalis, and Klebsiella pneumoniae.

Bedrail and table near
patients. Medical devices
inserted in patients.
Corporal surfaces from
patients, relatives, and HCW.

Step-down care units. [10]

Yano et al. Enterobacteriaceae
Patient overbed table, patient
room table, nurse desk, nurse
wagon, patient room skin.

Surgical and internal
wards, from three
hospitals.

[14]

Copyk et al.

Burkholderiaceae, Bacillaceae, and
Rhizobiaceae during “before opening”
stage. Corynebacteriaceae, Staphylococcaceae,
Streptococcaceae, Acinetobacter, Bacteroides,
Pseudomonas, and Enterobacteriaceae
“before closure” stage.

Bedrails, computer
keyboards, and sinks. Adult ICU [12]

HCW: healthcare workers, ICU: intensive care units.

According to Cruz-López et al., bedrails are one of the most contaminated surfaces
near patients and, among medical devices, mechanical ventilation tubes are one of the most
colonized surfaces in patients that developed ventilator-associated pneumonia, between
day 1 and day 3 at the step-down care units (SDCUs) [5,10]. In this study, commensal
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microorganisms decreased over time, and a high diversity of gram negative was observed
on day 8 on all related surfaces to patients. Additionally, high microbial diversity was
observed among patients’ relatives over time, including coagulase-negative staphylococci
(CoNS), Acinetobacter baumannii, Klebsiella pneumoniae, Klebsiella aerogenes, Stenotrophomonas
maltophilia, and Enterococcus faecalis. In addition, A. baumannii, Enterobacter cloacae, K. pneu-
moniae, Pseudomonas spp., Raoultella ornithinolytica, and Staphylococcus aureus were recovered
from ten nurses [10].

Some studies have suggested that hospital microbiota has a homogeneous structure
due to an overlap observed among the bacterial communities present in the facilities
analyzed [13]. Similarly, Yano et al. observed that the population structure in almost all
locations of one of the analyzed hospitals (hospital C) and some locations in the other
hospitals formed a cluster, being very similar with Enterobacteriaceae as the predominant
family [14]. Authors suggested that the unconcerned harmful behaviors of nurses while
treating patient wastes or cleaning sinks shared by patients or visitors resulted in the spread
of bacteria originating from patients or sinks to hospital wards. This factor may help to
explain variability in the relationship between hospital contamination and HAIs [14].

Chopyk et al. analyzed the temporal variations in a bacterial community of an adult
ICU prior to closing for renovations, during the renovation process, and after re-opening,
showing the impact of microbiota from patients and healthcare workers (HCWs). In this
study, environmental bacteria predominated after closure and human-associated bacteria
prevailed after re-opening and before closure. Bacillaceae, Cutibacterium, Streptococcus, Ral-
stonia, Herbaspirillum, and Staphylococcus were present during all study stages on the bedrail.
Four core taxa were shared among the keyboard, the sink, and the bedrail throughout
the study, including Bacillaceae, Cutibacterium, Herbaspirillum, and Ralstonia. Staphylococcus,
Streptococcus, and Cutibacterium (human-associated bacteria) were dominant core microbiota
on bedrails during the “before closure“ stage. Conversely, Staphylococcus and Streptococcus
abundance in samples collected during “after closure” decreased and were eventually
exceeded by Bacillaceae in the “before opening” stage. Human-associated bacteria increased
in abundance in samples of “after opening” stage, mainly Cutibacterium [12].

Importance about the composition of microbial communities is that it may harbor
opportunistic pathogens able to establish an infection in vulnerable subjects under condi-
tions, such as disruptions of the skin and mucosal barriers and gut microbiota dysbiosis.
For example, Clostridioides difficile inhabiting the gastrointestinal tract may proliferate af-
ter prolonged consumption of extended-spectrum antibiotics; antibiotic consumption is
associated with the loss of gut microbiota members, which favors C. difficile expansion [15].

Skin disruption after a traumatic event (wounds or insertion of invasive devices) may
facilitate the colonization and subsequent infection by opportunistic pathogens harbored
in the microbiota or microorganisms from the environment [16–18]. The microbiota charac-
terization of chronic wounds revealed that Staphylococcus spp. (63%) and Pseudomonas spp.
(25%) were most frequent genera detected in an analysis of 2963 samples [19]. S. aureus
and S. epidermidis were the most prevalent species, and methicillin-resistant Staphylococcus
species were present in 741 out of 2963 samples (25%) from chronic wounds. Moreover,
Corynebacterium spp., Propionibacterium spp., and anaerobic bacteria were highly frequent
in chronic wounds [19].

In addition, it has been reported that constituting microorganisms of the chronic
wound microbiota are commonly organized into biofilms [18]. James et al. reported the
presence of biofilms in 60% of chronic wounds (30 out of 50 samples, p < 0.001), and in
6% (1 out of 16 samples) of acute wounds [20]. According to this study, Staphylococcus
spp. and Enterococcus spp. were the predominant genera in sampled wounds, although
Gram-negative bacilli, such as Pseudomonas spp. and Proteus spp., were also present [20].
In addition, biofilms are prevalent (78.2%) in nonhealing chronic wounds, which may
contribute to chronic wound persistence and deficient wound healing [21].

In addition, patients’ microbiota act as a source of causative agents of infections. In a
study where 198 catheters from different anatomical sites were analyzed, 47 (23.7%) were
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contaminated with heterogeneous microbiota. In 37 out of 47 catheters (78.7%) CoNS were
detected, and in 10 out of 47 samples (21.3%) pathogenic microorganisms were found, such
as E. coli (7.8%), Enterobacter spp. (4.5%), Klebsiella spp. (4.5%), Morganella morganii (1.5%),
and P. aeruginosa (1.5%) [22].

Probably, a reason for these reported variations is the study method employed. Some
studies have described the microbial composition of hospital surfaces and the dynamics
of colonization on corporal surfaces of patients and inanimate surfaces based on culture.
However, the main limitation associated with this technique is the inability to recover non-
viable and non-cultivable microorganisms. This limitation can be overcome by applying
next-generation sequencing (NGS)-based methods, including ITS and 16S rRNA gene se-
quencing and shotgun metagenomic sequencing. NGS-based studies provide new insights
into hospital microbiome and colonization processes. First, ITS and 16S rRNA gene se-
quencing methods allows us to describe the diversity of fungi and bacteria (respectively) by
comparing phylogeny and taxonomy from complex microbiomes or environments [23,24].
Second, shotgun metagenomic sequencing has allowed the characterization genes associ-
ated with drug resistance and virulence factors in microbial communities [25]. In addition,
NGS-based methods allow the detection of genetic material from non-viable cells or non-
cultivable microorganisms in vitro [25].

Multiple parameters can alter NGS data; among these, sample collection and pro-
cessing can cause most of the variability. NGS studies have been crucial for tracking
and identifying the origins of persistent multidrug-resistant pathogens to eradicate the
infection source and prevent hospital dissemination [26]. However, the application of
NGS data in the clinical practice is still in development for the surveillance or track-
ing pathogens [27]. Surveillance studies are difficult to perform on a routine basis and
require detailed individual-level patient clinical data to reveal the transfer process of mi-
croorganisms and even the transfer of genetic material within microbial communities on
environmental surfaces in hospitals. The current studies reveal an area of opportunity for
the understanding of disease development, progression, diagnosis, and therapy.

3. Hospital Microbiota Sources

It has been observed that the microbiota of corporal surfaces from HCWs is similar
to the microbial communities present in hospital environments, due to the dynamics
and interaction of HCWs between facilities within the hospital [11]. Therefore, patients’
microbiota can also be a source of microorganisms in the hospital environment or the
contamination of high-touch surfaces [5,13]. Furthermore, 20–60% of HAIs are associated
with direct contact of HCWs with patients; thus, HCWs act as a vector for pathogen
transmission or even as reservoirs for cross-transmission, as shown in Table 2 [28,29].

Infected patients also act as a source of pathogens; a high proportion of HAIs is a
consequence of patient-to-patient transmission and surfaces close to patients are frequently
contaminated with HAI-associated pathogens (Table 2) [5,30]. These contaminated surfaces
lead to the transmission of pathogens in the hospital environment [31]. Diverse studies
have reported that an infection with Pseudomonas aeruginosa, A. baumannii, or C. difficile in
the previous occupant of a room is a risk factor for the acquisition of the same infection by
subsequent occupants [32–34].
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Table 2. Vectors of transmission in hospital facilities.

Author Unit/Ward Traced Pathogen Evidence of Pathogens Transmission Ref.

Agodi et al. ICU P. aeruginosa

One-hundred and thirty-eight isolates were recovered
from 45 patients; 61% of the isolates were highly
genetically related and were distributed in 46% of
patients. Cross-transmission was observed in 59% of
the colonized or infected patients.

[29]

Hassan et al. Adult and
pediatric medicine. K. pneumoniae

The most frequently recovered from surfaces near
patients infected (bedsheet, towel, bedrail, etc.)
by this species.

[30]

Weber et al. Non-specified C. difficile

C. difficile spores have been found in the rooms of
infected patients by this pathogen (2.9% to 75%) and
have been isolated from the hands of infected patients
and the hands of HCWs in charge of these patients.

[28]

Saughnessy et al. ICU C. difficile Up to 11% of the patients who acquired CDI after
admission had a prior occupant with CDI (p = 0.002). [32]

Nseir et al. ICU P. aeruginosa,
A. baumannii

The prior occupant with a multidrug-resistant P.
aeruginosa or multidrug-resistant A. baumannii strain in
an ICU room is an independent factor for its
acquisition by a subsequent patient (OR 2.3, 95% CI
1.2–4.3, p 0.012; and OR 4.2, 95% CI 2–8.8,
p < 0.001, respectively).

[34]

Cruz-López et al. SDCU
A. baumannii,
K. pneumoniae,
E. cloacae

Genetically related isolates associated with the
causative agents of HAIs were widely distributed on
inanimate surfaces near patients and in the skin folds
of patients and medical devices inserted before and
after infection outcome.
A. baumannii clones (associated with HAI development
in patients) were detected in 4/35 nurses who attended
units analyzed.

[5]

CDI: Clostridoides difficile infection, HAIs: healthcare-associated infections, HCW: healthcare workers, ICU: inten-
sive care units, SDCUs: step-down care units.

The presence of microorganisms on high-touch surfaces may represent transitory
contamination or contamination that remains stable over time [13]. These surfaces are
recognized as reservoirs of potentially infectious agents that facilitate their dissemination
despite cleaning procedures [13]. Often, the causative agents of HAIs are found on sur-
faces near patients, such as tables, bedrails, monitors, privacy curtains, and ventilator
buttons [5,10,11]. Moreover, they are found on stethoscopes and invasive devices, such as
central venous catheters and endotracheal tubes [5,5,8,10].

The presence of Gram-negative strains genetically related to HAI causative agents,
recovered before and after the HAI outcome, have been reported; these microorganisms
persisted on environmental surfaces despite disinfectants and dryness conditions [5]. Dis-
tinctively, species such as K. pneumoniae and E. cloacae were recovered after HAI develop-
ment; these pathogens were isolated for the first time from clinical samples, and recovery
was gradual in other environmental surfaces [5].

4. Environmental Factors

The indoor environmental conditions such as temperature, seasonal trend, built de-
sign, ventilation, occupancy, inhabitants, and the operational characteristics of buildings
influence on the microbiota composition of an environment [11,35,36]. Some examples are
included in Table 3.

The occupants of a building are an important factor in shaping their microbial com-
munity. High occupancy increases the accumulation of human-related microorganisms
and the potential transmission of microorganisms through increased social interactions,
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contact with surfaces (direct or indirect), and air flow (Table 3) [7]. Diverse studies suggest
that resuspended floor dust is an important source of bacterial aerosol populations during
occupancy [37].

Table 3. Effect of environmental conditions on microbial composition of hospital surfaces.

Environmental Factor Effect on Microbial Composition Ref.

Higher temperatures/higher luminance Greater microbial dissimilarity between patient and surface microbial
communities within a patient room on the same day. [11]

Higher luminance Reduction of human associated bacterial communities and inactivation
of viruses in indoor surface [36]

High relative humidity and humidity ratio Significant microbial similarities in a hospital room on the same day. [11]

High relative humidity Improved persistence of bacteria, i.e., Acinetobacter spp. survives for
11 days at ≥31% relative humidity and 4 days at 10% relative humidity. [38]

Seasonal trend
The microbiota from nose and hands of different HCWs on the same
floor are highly similar during late summer/early fall. In contrast, they
are least similar in the winter.

[11]

Seasonal trend BSIs caused by Gram-negative microorganisms were more frequently
reported during the summer period than during winter. [39]

Higher humidity Significant similarity in microbial community of the hand and nose
among different HCWs. [11]

Higher temperature Less similarity in microbial community of the hand and nose among
different HCWs. [11]

Higher temperature Each 5.6 ◦C increase in the mean temperature was related to a rise in the
frequency of BSIs by Gram-negative bacteria (independent of season). [39]

High occupancy Elevated concentrations of indoor airborne microorganisms.
Increased bacterial genome concentration in indoor air and floor dust. [7,37]

In addition, floors are an important reservoir of human-associated microbiota due the
high concentration of bacteria specific to the hair, nostrils, and skin of humans found in floor
dust and indoor air. Furthermore, the particle shedding of desquamated skin cells and their
subsequent resuspension strongly influenced the airborne bacteria population structure
in this human-occupied environment. The inhalation of microbes shed by other current
or previous human occupants may occur in communal indoor environments [37]. The
indoor microbial communities found in dust and surfaces contain microbial populations
from the human skin, gut, oral, and urogenital microbiomes [7]. Moreover, occupant-
associated microbiomes may disperse in spaces by direct human contact, aerosols and
particulates from human surfaces; and indoor dust containing microorganisms from human
microbiomes [7].

5. Bacterial Virulence Factors and Environmental Persistence

Most of the described interactions in the hospital environment are among the mi-
crobiota patients, the microbiota of HCWs, and the hospital microbiota [11]. The skin
of patients and the skin of HCWs probably determine the composition of the microbial
community on hospital surfaces over time by the transference of microorganisms [10,11].

Virulence factors expressed by bacteria allow them to colonize host niches and to
contribute to virulence and pathogenesis [40]. Bacterial virulence factors may play a role
in the stability of hospital microbiota. Microbial species have diverse virulence factors,
such as proteolytic enzymes, extracellular capsules, lipopolysaccharides, outer membrane
proteins, and biofilms [40,41]. The hospital environment is hostile to microorganisms,
owing to the use of antimicrobial agents, disinfectant solutions, and cleaning protocols and
adverse changes in temperature and humidity; thus, the expression of virulence factors is
influenced by environmental stimuli for physiological adaptation [41].
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The extracellular capsule (the outermost layer of a bacterial cell) allows microorgan-
isms to withstand environmental perturbations, such as desiccation and antimicrobial
agents. This structure is frequently found in environmental bacteria and clinical isolates;
moreover, it may contribute to the colonization of patients and pathogenesis [42]. Biofilms
are structures that confer resistance to disinfectant solutions, detergents, desiccation, and
antimicrobial agents. Biofilms comprise multiple species and remain attached to inanimate
surfaces [43,44]. Hu et al. determined that biofilms may persist for up to 1 year on fre-
quently cleaned surfaces and are detected on approximately 93% of the studied surfaces in
an ICU [43]. In addition, spores contribute to the environmental persistence of clinically
relevant pathogens, such as C. difficile. Spores provide resistance against desiccation and
cleaning products on hospital surfaces and medical equipment over the years [45].

However, it is important to understand that hospital microbiomes contribute to HAI
development via the transmission of genetic material associated with antimicrobial re-
sistance, virulence, and persistence between pathogens and commensal microorganisms
in clinical settings. Moreover, mobile genetic elements (MGEs) contribute to worsening
outbreaks by transferring certain traits, such as the ability to form biofilms or virulence
characteristics. In this regard, biofilms are known to increase the probability of plasmid
transfer carrying genes associated with virulence factors and persistence; however, this
process is restrained to subpopulations that do not initiate a cascade of horizontal plas-
mid spread, due to physicochemical and biological factors within biofilms. Prior studies
have shown that MGEs can potentially exacerbate outbreaks; unfortunately, techniques
that allow the tracking of the movement of MGEs are limited. Bacterial whole-genome
sequencing (WGS) has modified the understanding of the epidemiology of drug-resistance
and virulence genes through the identification of plasmid replicons, transposases, etc. [27].

6. Antimicrobial Resistance and Hospital Microbiota

Antimicrobial resistance is a phenomenon that further complicates HAI development
owing to the presence of resistant pathogens, which leads to reduced therapeutic options [2].
The spread of antimicrobial-resistant microorganisms is favored by antibiotic misuse in
animal feed as prophylaxis, an inability to complete prescribed therapeutic regimens,
and poor adherence to antimicrobial stewardship programs for the administration and
prescription of broad-spectrum or novel antibiotics [2].

Antibiotic resistance genes are abundant in both pathogenic and non-pathogenic
microorganisms in the hospital microbiota; thus, the hospital microbiota may function as
a reservoir for antimicrobial resistance genes [2,11]. Antibiotic-resistant microorganisms
may persist on hospital surfaces for long periods and may be asymptomatically carried by
HCWs, who interact with patients [2].

Identifying the hospital resistome may allow us to establish systematic evaluation
to handle resources for preventing infections [46]. Chang et al. described a phylogenetic
study to characterize the microbiome and antibiotic resistance determinants on surfaces
related to 45 patient beds in a tertiary-care hospital. They followed 179 sites for 16 months
and collected 358 samples, which were analyzed by deep shotgun metagenomic. Analysis
revealed multidrug-resistant strains widely distributed colonizing across sites, as well as
diverse environmental niches of microorganisms and antibiotic resistance genes associated
with human microbiota and biofilm producer microorganisms. In this study, the authors
recovered 63 Mb of phage and 696 Mb of plasmid sequences, most of which are not
present in existing databases, pointing out the unrevealed genetic diversity in hospital
environments. In addition, researchers noted the presence of gene combinations not
previously seen; for example, large mecA-carrying plasmids that harbored disinfectant
or antiseptic resistance genes (qacA or qacC), and plasmids with several antimicrobial
resistance gene classes, such as aac6-Aph2, dfrC, and lnuA. Moreover, the authors suggest
that clinical isolates can persist in hospitals for extended periods (>8 years), which allows
them to opportunistically infect patients [46].
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The colonization process with multidrug-resistant microorganisms is a significant risk
factor for HAI development [47]. The relevance of multidrug resistance in the hospital
environment is the exchange of resistance genes in MGEs between bacterial species, such
as plasmids, insertion sequences (IS), transposons, gene cassettes, integrons, and genomic
islands [48]. MGEs carrying antibiotic resistance genes often encode other determinants
related to increased virulence and environmental persistence, which can be shared or
exchanged between microbiota members [49]. This exchange of genetic material in the hos-
pital environment may turn non-pathogenic bacteria into antibiotic-resistant bacteria. Thus,
via horizontal gene transfer, microorganisms develop a resistance to several antibiotics and
disinfectants at once [49].

Recently, Evans et al. screened the genomes of 2173 bacterial isolates using whole
genome sequencing. Isolates were recovered from HAIs in one hospital over 18 months,
and the presence of 10 plasmids carrying antimicrobial resistance genes in isolates of
different species or the same species but another sequence type were detected, which
suggest the transmission of MGE only without the pathogen transmission [49]. Silke et al.
demonstrated the transfer of a 40 kb plasmid carrying the blaIMP-8 gene among the isolates
of P. aeruginosa and Citrobacter freundii and its evolution to a 164 kb plasmid, which was
subsequently transferred to the Citrobacter cronae isolates responsible for outbreaks at the
same hospital in 2009 and 2012 [50]. These results provide evidence for the transfer of
genetic determinants independent of bacterial transmission.

In some studies, certain antimicrobial resistance genes (ARG) have been detected
in both hospital surfaces and in patients. Haverkate et al. reported the rate of blaOXA-
48 transfer between K. pneumoniae and E. coli within hosts using epidemiological data and
mathematical modeling [51]. Furthermore, at the community level, Shigella outbreaks, due
to the transfer of a plasmid harboring an azithromycin resistance gene, have been reported
in the United Kingdom. The latter allowed the spreading of the pathogen since traditional
antibiotics had no activity against Shigella [52].

Similar evolutionary processes facilitate the transfer of genetic material in clinical
environments; however, in clinical settings, this transfer often has fatal results, particularly
for immunocompromised patients.

7. Aspects to Consider for Infection Control

Identifying resident microorganisms at each hospital facility may help to track po-
tential pathogens during outbreaks. As previously mentioned, the hospital microbiota
represents a source of contamination that may be associated with infection in vulnerable
patients [2]. It has been shown that pathogens prevail in hospital environments, despite
adverse conditions, such as low humidity, variations in temperature, and the use of disin-
fectants and antimicrobial agents [11,36]. Virulence factors expressed by microorganisms
and their antimicrobial resistance mechanisms make them a severe threat in the hospital en-
vironment; in addition, genes associated with virulence and antimicrobial resistance could
be transferred horizontally within a microbial community [49]. These factors, along with
microorganism transfer among patients, HCWs, and environmental surfaces are related to
HAI development (Figure 1), and they must be considered to propose new strategies in the
control of HAIs.

The application of NGS-based methods allows us to demonstrate the horizontal
transfer of genetic material between microorganisms through conjugation; however, trans-
formation and transduction also can disseminate the resistance and virulence genes [27].
The conditions for transformation and transduction can be found in clinical settings; how-
ever, to date, there are few available tools to detect these mechanisms. The processes of
transduction and transformation have gone undetected due to low rates and the difficulty
of identification of recombination events. Furthermore, horizontal gene transfer generates
a series of gene transmission events that modify phylogenetic relatedness between strains;
thus, complicating the tracking and vigilance [27]. The diversity of genes associated with
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virulence and antibiotic resistance remarks the importance of continuous studies using
molecular tools to track their mobility [27,49].
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Figure 1. Factors related to healthcare-associated infections development. (a) transference of microor-
ganisms between patients, healthcare workers, and hospital environmental surfaces; (b) hospital
environmental surfaces, medical devices, healthcare workers, and patients as reservoirs of pathogens;
(c) transference of genetic material associated with virulence, persistence, and antibiotic resistance
in microbial communities; (d) environmental conditions, such as temperature, seasonal trend, hu-
midity relative, and occupancy support persistence, diversity, and abundance of microorganisms on
environmental surfaces.

The determination of temporal patterns may suggest how microbial spread and inter-
actions between microorganisms in the hospital environment occur [13]. Thus, detecting
microbial communities in the hospital environment and tracking their composition changes
along with tracking individual nosocomial pathogens may be useful for the design of
strategies to reduce or prevent HAI development.

In addition, it is necessary to collect epidemiological data that, along with sequencing
data, allows us to obtain clues during hospital microbiome characterization, pathogen
tracking, infection control, and prevent the persistence of potential pathogens. Probably,
the cost of these study methods, the time and knowledge required to work with sequenc-
ing data, and the routine implementation of the surveillance or tracking of pathogenic
microorganisms hinder getting a complete puzzle until today.

8. Conclusions

For years, infection control programs have focused on the epidemiological surveil-
lance of microorganisms recognized as pathogens, both on biotic and inanimate surfaces;
however, infections continue to develop. The characterization of hospital microbiota
may improve the understanding of the relationship between commensal and pathogenic
microorganisms and their changes, due to variations in environmental factors. Thus, un-
derstanding the microbial community composition in the hospital environment may help
in detecting variations that facilitate infection development, including predicting the risk
of outbreaks or the emergence of resistant pathogens. These efforts could be the piece
that, along with antibiotic stewardship programs, epidemiological surveillance, isolation
rooms, surface cleaning, disinfection programs, and adherence to hand hygiene proto-
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cols, among other actions, will provide efficient approaches to prevent infections from
drug-resistant pathogens.
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