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Abstract: Fusarium equiseti (JMF-01), as an entomopathogenic fungus, can effectively control agri-
cultural pests and has the potential to be a biocontrol agent. To promote mycelial growth and
sporulation, we investigated the optimal submerged culture conditions for F. equiseti. In this study,
we used the single-factor method and Box–Behnken design and determined the virulence of the
submerged culture against Myzus persicae after optimization. As a result, the highly significant factors
affecting the spore concentration of strain JMF-01 were the primary inoculum density and the initial
pH, and the highly significant factor affecting the mycelial biomass was the medium-to-flask ratio.
The highest mycelial biomass value was 0.35 g when the incubation time was 5.68 days, the initial pH
was 5.11, the medium-to-flask ratio was 0.43, and 1 mL of the primary inoculum with spore density
of 0.97 × 107 conidia/mL was added. When the incubation time was 6.32 days, the initial pH was
4.46, the medium-to-flask ratio was 0.35, the primary inoculum density was 1.32 × 107 conidia/mL
of 1 mL, and the highest spore concentration of 6.49 × 108 blastospores/mL was obtained. Compared
with the unoptimized medium conditions, the optimized submerged culture had the highest mycelial
biomass and spore concentration, which were 3.46 and 2.06 times higher, respectively. The optimized
submerged culture was highly pathogenic toward M. persicae, reaching a 95% mortality rate. Our
results provide optimal submerged culture conditions for F. equiseti and lay the basis for later research
to expand production for pest control.

Keywords: Fusarium equiseti; optimal submerged culture conditions; response surface methodology;
box–behnken design; Myzus persicae

1. Introduction

Entomopathogenic fungi (EPF) are known to be beneficial natural enemies of insect
pests [1]. Ascomycota and Entomophtoromycota include most species of entomopathogenic
fungi [2]. EPF are mainly used in the environment to control pest populations [3], and the
increased need for environmentally friendly pest management technologies has resulted
in an increase in the use of organic biocontrollers such as microorganisms, particularly
EPF [4].

Due to the fact of their prevalence in the soil and frequent connection with plant
roots as saprophytes, Fusarium species are commonly referred to as soil-borne fungi [5].
Fusarium species are commonly reported as plant pathogens that cause serious diseases
in a variety of plant species [6]. However, it has been demonstrated that a number of
Fusarium species have moderate to severe levels of insect pathogenicity, primarily against
homopterous and dipterous insects [7,8]. In terms of EPF, Fusarium species represent an
important member and have the potential to be effective agents against insects [9]. The
use of entomopathogenic Fusarium species for the biological management of insects is
advantageous because some Fusarium isolates cause high mortalities in their insect host,
do not infect the crop plant, and can also be easily propagated in the laboratory [10,11].
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Several studies report the insect pathogenicity of Fusarium spp., either in the laboratory
or on-field natural mycoses, such as Fusarium avenaceum and Fusarium verticillioides are
pathogenic to Sitophilus oryzae and Tropidacris collaris, respectively [12]. Fusarium equiseti
was isolated from Bemisia tabaci and resulted in a significant rate of mortality in B. tabaci
nymphs [13]. Fusarium incarnatum-equiseti species complex (FIESC) and F. equiseti were
reported to be insect pathogenic fungi that were isolated from insects and soil, which
can be used to control pests [14–18]. FIESC isolates and extracts of Ricinus communis and
Poincianella pyramidalis were successfully employed by da Silva Santos et al. [19] against
Dactylopius opuntiae. Beauvericin, a cyclodepsipeptide toxin discovered from Fusarium by
Gupta et al. [20], is toxic to the Colorado potato beetle. In addition, F. equiseti can also be
used for pest control by producing insecticidal toxins [21,22].

Myzus persicae is one of the most diverse and polyphagous agricultural pests, which
infests crops directly by draining the phloem sap or spreading viral infections from the
seedling stage to harvest stage [23]. On the one hand, M. persicae is exceedingly difficult to
manage solely with pesticides due to increased insecticide resistance and rapid increases in
population size [24]. On the other hand, concerns regarding the excessive use of chemical
pesticides make it necessary to seek safe and effective alternatives. Thus, mycoinsecti-
cides are attracting considerable attention as environmentally friendly pest management
agents [25].

Two methods of fungal growth are solid and submerged cultures. Solid culture
is more favorable for sporulation because most fungi sporulate on solid media, which
is easy to achieve in the laboratory, but this method is subject to many technical and
economic limitations [26]. Submerged culture overcomes these restrictions by providing
careful control of the initial pH, dissolved oxygen (DO) concentration, and inoculum
volume to shorten incubation time, lessen labor, provide an optimal growth environment
for strain growth, and reduce the risk of contamination [27,28]. Most EPF take longer
to produce conidia on solid substrates and only a few days to produce blastospores on
submerged media [29,30], and some studies have concluded that blastospores are more
virulent than conidia [30–32]. However, subtle variations in host-pathogen interactions can
lead to significant differences in pathogenicity [33]. Conidia of EPF often infect their hosts
through a unique pathogenicity process that involves the successful adhesion, germination,
differentiation, and penetration of fungal hyphae [34,35]. The blastospore, which differs
from conidia, can produce copious mucilage, adhere readily to the cuticle surface, and
invade through the gut following ingestion [31]. Typically, spore adhesion determines how
successfully an infection spreads [7,36]. Fusarium species usually produce two types of
conidia, namely macroconidia and microconidia [10,37]. Microconidia may be phialospores
or blastospores [38,39]. This is due to the fact that the optimal culture conditions and
medium composition vary depending on the species and occasionally even among strains
of some species [40]. Therefore, we hypothesized that the production of blastospore and
mycelia would reach its optimum value under submerged culture and be pathogenic to M.
persicae during our tests.

Response surface methodology (RSM) is used to find the ideal combination of condi-
tions and components that influence the biological process by measuring the response of
each variable and assessing the interactions of groups of controlled factors in an experi-
mental set [41]. Compared with the traditional techniques, RSM can not only overcome the
limitations of economy and time, but also evaluate many parameters and their interactions
through fewer experiments [42]. A mathematical modeling and statistical method called
the Box–Behnken design (BBD) of RSM aids in optimizing conditions [43]. Previous studies
used a RSM to optimize biological processes [44–48], BBD also has been applied in the
optimization of the yield of EPF in several studies [40,49,50]. However, it has not been ap-
plied to entomopathogenic Fusarium spp. Our preliminary results showed that a Fusarium
strain, JMF-01, isolated from the cadavers of M. persicae and identified as Fusarium equiseti,
has promising prosperities as a biological pesticide for M. persicae [51]. Therefore, our
study used the two stepwise enhancement strategies [52] to optimize the four independent
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culture conditions related to spore production and mycelial biomass of strain JMF-01. First,
the single-factor method was utilized to evaluate the factors’ optimum values, and then
the level of signed factors was optimized by the BBD method. This provides optimal
submerged culture conditions for strain JMF-01 and lays the foundation for the subsequent
application of F. equiseti as a biocontrol agent in agriculture.

2. Materials and Methods
2.1. Organism, Inoculum Preparation, and Culture Conditions

Strain JMF-01 was previously isolated from dead M. persicae in Helan County (Ningxia,
China) in 2020. The isolation procedure was as follows; soaking the dead individuals of
M. persicae in a 75% ethanol solution for 10 s, then rinsing them three times with sterile
water. Cadavers were then dried on filter paper and put on PDA medium with 0.03%
chloramphenicol at (25 ± 1) ◦C for 3 days [51]. According to Topuz et al. [3], the fresh fungal
colony was picked from the edge once spore formation was observed and subcultured on
freshly prepared PDA five times to obtain a purified culture. Strain JMF-01 was identified
as Fusarium equiseti through morphological and molecular techniques [51]. In addition, the
strain JMF-01 was inoculated in M. persicae to verify pathogenicity. At 4 ◦C, potato dextrose
agar (PDA) plates were used to retain the purified fungus.

A spore suspension of 1 × 107 conidia/mL was prepared in sterile distilled water and
used as a source of inoculums.

2.2. Experimental Design
2.2.1. Preliminary Experiments: Screening of the Basic Medium

The optimum medium for the growth of strain JMF-01 was screened out of five liquid
media: potato dextrose liquid medium, potato sucrose liquid medium, Sabouraud Dextrose
Agar with a yeast extract liquid medium, Czapek–Dox liquid medium, and glucose yeast
extract liquid medium (Table 1). Each assay was repeated three times.

Table 1. Culture medium formula.

Number Name Components Per 1 L Distilled Water

1 Potato dextrose liquid medium 200 g peeled potato, 20 g glucose;
2 Potato sucrose liquid medium 200 g peeled potato, 20 g sucrose;

3 Sabouraud Dextrose Agar with yeast extract liquid
medium 40 g glucose, 10 g peptone, 10 g yeast powder;

4 Czapek–Dox liquid medium 30 g sucrose, 3 g NaNO3, 0.5 g KCl, 1 g K2HPO3, 0.01 g
FeSO4, 0.5 g MgSO4.7H2O;

5 Glucose yeast extract liquid medium 40 g glucose, 20 g yeast powder.

2.2.2. Single Factor Experimental Design

The single factor test was conducted with the incubation time, the primary inoculum
density, the medium-to-flask ratio, and the initial pH value as the factors, and the optimum
liquid medium was selected through preliminary experiments as the base medium for each
group of experiments. Each treatment was replicated three times. After incubation for
2 days, 2 mL was sampled each day until the 8th day to compare the spore concentration
and mycelial biomass of strain JMF-01 under different conditions.

Incubation Time

Standard inoculum (1 × 107 conidia/mL, 1 mL) was inoculated in each 150 mL
Erlenmeyer flask containing 50 mL of potato sucrose liquid medium (pH 7). Each inoculated
Erlenmeyer flask was placed on a shaker (150 rpm/min) at 28 ◦C for 8 days. After 4, 5, 6,
7, and 8 days of incubation, 2 mL was sampled to compare the spore concentration and
mycelial biomass of strain JMF-01 under five sets of time conditions.
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Initial pH

To investigate the effect of the initial pH on the growth of the strain JMF-01, the initial
pH values were adjusted before sterilization using HCl (GR) or NaOH (AR) to 4.0, 5.0, 6.0,
7.0, and 8.0. One milliliter of spore suspension (1 × 107 conidia/mL) was inoculated for
each treatment and placed on a shaker (150 rpm/min) at 28 ◦C for 8 days.

Medium-to-Flask Ratio

The effect on the growth of the strain JMF-01 was investigated by setting the medium-
to-flask ratio (medium volume-to-flask volume ratio) to one-third, one-quarter, one-fifth,
and one-sixth. The inoculated Erlenmeyer flask was placed on a shaker (150 rpm/min) at
28 ◦C for 6 days.

Primary Inoculum Density

To study the effect of the primary inoculum density on the spore concentration and
mycelial biomass of strain JMF-01, five groups of inoculum levels were set at 0.25, 0.5, 1,
1.5, and 2 (107 conidia/mL), and one milliliter of spore suspension was added to each
Erlenmeyer flask. At 28 ◦C (150 rpm/min), the inoculated Erlenmeyer flasks were set on
a shaker.

2.2.3. Assessment of Sporulation and Mycelial Production

The liquid medium at the end of incubation was centrifuged (10,000 r/min for 20 min)
or filtered by gauze, and then the mycelium was placed in a drying oven and dried at 85 ◦C
to a constant weight, and its mycelium dry weight was recorded.

The spore concentration was measured using a hemocytometer plate [53].

2.2.4. Box–Behnken Design

The next step was to use the findings of the single-factor experiment to guide the
design of each factor and level in a BBD. We used the optimal liquid medium selected
through preliminary experiments as the base medium. Response surface optimization
was performed with the production of JMF-01 spores and mycelia as the response values,
and a four-factor, three-level response analysis was conducted to optimize the four factors
affecting the strain JMF-01 submerged culture. The experimental design’s ranges and levels
are displayed in Table 2.

Table 2. The levels and code of variable chosen for BBD.

Factors
Levels

−1 0 1

A: Incubation time (d) 5 6 7

B: Initial pH 4 5 6

C: Medium-to-flask ratio 0.23 0.33 0.43

D: Primary inoculum density
(107 conidia/mL) 0.5 1 1.5

The method of multiple regression was then used to fit the data to a second-order
polynomial equation. This led to the development of an empirical model that connected
the measured response to the experiment’s independent factors. The model equation for a
four-factor system is as follows:

Y = b0 + b1X1 + b2X2 + b3X3 + b11X2
1 + b22X2

2 + b33X2
3 + b12X1X2 + b13X1X3 + b23X2X3
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where Y stands for the predicted response; b0 is the mean effect; b1, b2, and b3 are the
linear coefficients; b11, b22, and b33 are the squared coefficients; b12, b13, and b23 are the
interaction coefficients.

The coefficient of determination (R2) determines the polynomial model equation’s
goodness of fit. We tested the adequacy of the model using the F-value test and coefficient
of determination (R2) test. The possibility of improving mycelia and spore production was
analyzed using response surface contour plots.

2.2.5. Verification Test

Three validation tests were performed under the optimal submerged culture condi-
tions obtained using Design-Expert 12 software, and the corresponding response values
were averaged from the results of the three tests and compared with the predicted response
values of the regression model. Unoptimized submerged culture was obtained by initial
submerged culture conditions, which was in each 150 mL flask containing 50 mL of the
base medium (pH 7) and primary inoculum density was 1 mL (1 × 107 conidia/mL) for
8 days.

2.3. Pathogenicity Test

The pathogenicity of the submerged culture of strain JMF-01 under submerged culture
against M. persicae was evaluated in the laboratory. Brassica oleracea leaves were trimmed,
and the adult aphids were removed from a colony that was kept in a green-house. Approxi-
mately 30 wingless adults were retained on each Brassica oleracea leaf disc and sprayed with
optimized submerged culture [54]. Optimized submerged culture was screened through
preliminary experiments and BBD. After being sprayed with submerged culture, the leaf
discs were dried at room temperature and placed in Petri dishes (d = 9 cm) lined with filter
paper, wrapped with moist cotton to cover the petiole, sealed with cling film, and tied,
allowing for holes to maintain the air circulation. Sterile water was treated as a control.
The treatments were incubated in a light incubator at 25 ± 1 ◦C, RH (80 ± 5) %, and a
photoperiod L:D = 14:10 h. Each treatment was replicated three times. The number of
dead peach aphids was counted every 24 h, and the peach aphids were observed under a
microscope for staining; deaths were recorded by lightly touching the insects with a fine
brush. The total observation period was 7 days.

2.4. Statistical Analysis

The summary statistics are presented as the mean ± standard error of the mean (SEM)
since each experiment was done three times independently. The one-way ANOVA with
Tukey HSD test was used to examine the data of the single-factor tests and the verification
test. Significant differences between sample mean values were defined as those with
p < 0.05. Design-Expert software (version 12.0.0, Stat-Ease Inc., Minneapolis, MN, USA)
was utilized to evaluate data from the BBD. The survival of M. persicae was evaluated using
a Kaplan-Meier analysis followed by a log-rank test (p < 0.001).

3. Results
3.1. Single-Factor Experiments
3.1.1. The Effects of the Basic Submerged Medium and Incubation Time on Spore
Concentration and Mycelial Biomass

After eight days of incubation treatment in the five liquid media, the spore concentra-
tion and mycelial biomass of strain JMF-01 cultured in potato sucrose liquid media were
3.15 × 108 blastospores/mL and 0.10 g/mL, respectively, which were significantly higher
than for the other media (Tukey’s test, p < 0.05). Therefore, potato sucrose liquid medium
was screened as the base medium for each group of experiments.

After 2 days of incubation, the spore concentration and mycelial biomass showed a
rapid growth trend with the incubation time until the 6th day. After 6 days of incubation,
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the spore concentration grew slowly, while the mycelial biomass decreased slightly. Thus,
the optimal incubation time was 6–8 days (Figure 1, Tables S1 and S2).
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The initial pH of the submerged culture had basically the same trend as the spore
concentration and mycelial biomass of strain JMF-01. At an initial pH of 4–8, strain JMF-01
could grow, but too strong acidity and alkalinity were not conducive to the growth of
strain JMF-01 (Figure 2, Tables S1 and S2). At an initial pH of 5, the spore concentra-
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3.1.3. Effects of the Primary Inoculum Density on Spore Concentration and
Mycelial Biomass

The spore concentration and mycelial biomass of strain JMF-01 were highest at an
inoculum level of 1 × 107 conidia/mL after 6 days with 2.85 × 108 blastospores/mL
(Tukey’s test, p < 0.05, compared to other primary inoculum densities) and 0.15 g/mL
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(Tukey’s test, p = 0.73), respectively. However, the spore concentration and mycelial
biomass of strain JMF-01 were lower at inoculum levels of 0.25 × 107 conidia/mL and
2 × 107 conidia/mL, indicating that higher or lower inoculum levels were not favorable to
the submerged culture of the strain (Figure 3, Tables S1 and S2).
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3.1.4. Effects of the Medium-to-Flask Ratio on Spore Concentration and Mycelial Biomass

The growth curve of strain JMF-01 increased with the increase in the medium-to-flask
ratio and reached the highest when the medium-to-flask ratio was one-third (Figure 4,
Tables S1 and S2). The spore concentration and mycelial biomass were 2.59 × 108 blas-
tospores/mL and 0.063 g/mL, respectively (Tukey’s test, p < 0.05, compared to other
treatments). When the medium-to-flask ratio was one-sixth, the spore concentration and
mycelial biomass were the lowest (Tukey’s test, p < 0.05), indicating that a too low medium-
to-flask ratio is not conducive to the growth of strain JMF-01.
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The findings revealed that the spore concentration and mycelial biomass of the strain
both reached their maximums when the incubation time was 6 days, the initial pH value
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was 5, the medium-to-flask ratio was one-third, and the primary inoculum density was
1 × 107 conidia/mL.

3.2. Box–Behnken Design

The optimal values for the four variables, incubation time, initial pH, medium-to-flask
ratio, and primary inoculum density, were chosen as the center level based on the findings
of the single factor studies, and the spore concentration and mycelial biomass of strain
JMF-01 were used as the response values. The response surface optimization of the four
factors and three levels was carried out using Design Expert 12, and the central point
experiment was repeated five times for a total of 29 experiments. The coding of each factor
is shown in Table 2, and the experimental design and results are shown in Table 3. Multiple
regression fitting was performed on the experimental results in Table 3:

YS (Spore concentration) = 6.06 + 0.0799A − 0.6576B − 0.0361C + 0.7542D − 0.4437AB
+0.2521AC + 0.4896AD − 0.5292BC − 0.0833BD − 0.2396CD − 1.05A2 − 0.8847B2−
0.4544C2 − 0.7190D2

YM (Mycelial biomass) = 0.3053 − 0.0175A + 0.0013B + 0.0851C + 0.0036D + 0.0176AB
+0.0009AC − 0.0059AD + 0.0110BC + 0.0062BD − 0.0095CD − 0.0224A2 − 0.0287B2−
0.0405C2 − 0.0251D2

Table 3. BBD and the experimental results.

Experimental
Serial No.

Incubation
Time (d)

A

Initial pH
B

Medium-to-
Flask Ratio

C

Primary Inoculum
Density (107

Conidia/mL)
D

Spore
Concentration

108 (Blas-
tospores/mL)

Mycelial
Biomass
(g/mL)

1 6 4 0.33 0.5 4.55 0.24
2 6 6 0.43 1 3.41 0.35
3 6 5 0.33 1 6.01 0.31
4 7 5 0.23 1 4.58 0.12
5 7 6 0.33 1 3.22 0.26
6 7 4 0.33 1 5.35 0.22
7 6 5 0.33 1 5.84 0.28
8 6 5 0.33 1 5.98 0.29
9 6 5 0.33 1 5.86 0.31
10 6 4 0.33 1.5 6.01 0.24
11 6 5 0.43 1.5 5.27 0.32
12 5 4 0.33 1 4.50 0.29
13 6 5 0.23 1.5 6.06 0.18
14 6 4 0.43 1 5.63 0.34
15 5 6 0.33 1 4.14 0.26
16 6 6 0.23 1 4.41 0.13
17 6 5 0.43 0.5 4.55 0.32
18 6 6 0.33 0.5 3.18 0.24
19 6 5 0.23 0.5 4.38 0.14
20 7 5 0.33 1.5 5.58 0.26
21 5 5 0.33 1.5 4.58 0.27
22 6 6 0.33 1.5 4.31 0.26
23 5 5 0.33 0.5 3.52 0.26
24 5 5 0.43 1 4.13 0.35
25 7 5 0.43 1 5.13 0.28
26 6 5 0.33 1 6.63 0.33
27 5 5 0.23 1 4.60 0.19
28 6 4 0.23 1 4.52 0.16
29 7 5 0.33 0.5 2.57 0.28
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The analysis of variance for the spore concentration of strain JMF-01 (Table 4) showed
that the fitted model was highly significant (p < 0.0001), and the out-of-fit term (p = 0.4028)
was greater than 0.1. The out-of-fit test was not significant, indicating that the model was
built to cover all of the data. The difference between the coefficient of determination of
the regression model (R2 = 0.9355) and the corrected coefficient of determination (adjusted
R2 = 0.8709) was less than 0.2, indicating that the equation fit well with the experimental
results [55]. The significance test of the coefficients in the regression equation showed that
B, D, A2, B2, C2, and D2 were highly significant (p < 0.01), AB, AD, and BC were significant
(p < 0.05), and the rest were insignificant. The analysis of the F-value showed that the main
and secondary factors affecting the spore concentration of strain JMF-01 were primary
inoculum density (D) > initial pH (B) > incubation time (A) > medium-to-flask ratio (C).

Table 4. Analysis of variance of the spore production response surface model of the strain JMF-01.

Source Sum of Squares df Mean Square F-Value p-Value Significance

Model 27.04 14 1.93 14.49 <0.0001 significant
A 0.077 1 0.077 0.57 0.4611
B 5.19 1 5.19 38.94 <0.0001
C 0.016 1 0.016 0.12 0.7370
D 6.83 1 6.83 51.21 <0.0001

AB 0.79 1 0.79 5.91 0.0291
AC 0.25 1 0.25 1.91 0.1889
AD 0.96 1 0.96 7.19 0.0179
BC 1.12 1 1.12 8.40 0.0117
BD 0.028 1 0.028 0.21 0.6550
CD 0.23 1 0.23 1.72 0.2105
A2 7.17 1 7.17 53.79 <0.0001
B2 5.08 1 5.08 38.09 <0.0001
C2 1.34 1 1.34 10.05 0.0068
D2 3.35 1 3.35 25.16 0.0002

Residual 1.87 14 0.13
Lack of Fit 1.45 10 0.15 1.39 0.4028 Not significant
Pure Error 0.42 4 0.10
Cor Total 28.91 28

Note: A, incubation time; B, initial pH; C, medium-to-flask ratio; D, primary inoculum density.

By analyzing the regression equation for the mycelial biomass of strain JMF-01
(Table 5), the model was found to be highly significant (p < 0.0001), and the difference
in the out-of-fit term was not significant (0.3428), indicating that the model was reliable.
The coefficient of determination of the model, R2 = 0.9450, was similar to the corrected
coefficient of determination, adjusted R2 = 0.8900, indicating that the predicted values
of mycelial biomass in the model were highly correlated with the experimental values.
In the model, C, B2, C2, and D2 were highly significant, A and A2 were significant, and
the rest were not significant. The analysis of the F-value showed that the main and sec-
ondary factors affecting the mycelial biomass of strain JMF-01 were medium-to-flask ratio
(C) > incubation time (A) > primary inoculum density (D) > initial pH (B).

3.3. 3D Response Surfaces and 2D Contour Analysis

The response surface and contour plots were drawn by the software Design Expert
12, which could directly reflect the effects of various submerged culture conditions on
the spore concentration and mycelial biomass of strain JMF-01 (Figure 5). The more the
research factors influence the response value, the steeper the three-dimensional map is
in the response surface graphic. When the contour shape is oval, the interaction between
factors is significant, and when the contour shape is round, the interaction is not significant.
For the contour line, the farther the distance between the center and the surrounding
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contour line, the greater the slope of the three-dimensional surface map, and the more
significant the impact [56].

Table 5. Analysis of variance of the mycelial biomass response surface model of the strain JMF-01.

Source Sum of
Squares df Mean Square F-Value p-Value Significance

Model 0.11 14 0.0078 17.18 <0.0001 significant
A 0.0037 1 0.0037 8.15 0.0127
B 0 1 0 0.044 0.8374
C 0.087 1 0.087 192.17 <0.0001
D 0.0002 1 0.002 0.35 0.5635

AB 0.0012 1 0.0012 2.72 0.1211
AC 0.0000034 1 0.0000034 0.0076 0.9319
AD 0.0001 1 0.0001 0.31 0.5862
BC 0.0005 1 0.0005 1.07 0.3175
BD 0.0002 1 0.0002 0.34 0.5707
CD 0.0004 1 0.0004 0.80 0.3868
A2 0.0032 1 0.0032 7.18 0.0179
B2 0.0053 1 0.0053 11.80 0.0040
C2 0.011 1 0.011 23.55 0.0003
D2 0.0041 1 0.0041 9.02 0.0095

Residual 0.0063 14 0.0005
Lack of Fit 0.0051 10 0.0005 1.61 0.3428 Not significant
Pure Error 0.0013 4 0.0003
Cor Total 0.12 28

Note: A, incubation time; B, initial pH; C, medium-to-flask ratio; D, primary inoculum density.

The effects of the incubation time (A) and the initial pH (B) on the mycelial biomass
(Figure 5a) and spore concentration (Figure 5g) of strain JMF-01 were investigated when
the medium-to-flask ratio (C) and the primary inoculum density (D) were constant. The
mycelial biomass reached its maximum in the interval of an incubation time of 5–6 days
and an initial pH of 4.5–5.5, while the spore concentration of strain JMF-01 reached its
maximum in the interval of an incubation time of 5.5–6.5 days and an initial pH of 4–5.
The spore concentration and mycelial biomass both showed a tendency of growing and
then declining with the increase in initial pH when the incubation period was constant,
and the spore concentration and mycelial biomass likewise showed this trend when the
initial pH was constant. The contours of the spore concentration and mycelial biomass
of strain JMF-01 were elliptical, and the response surfaces were parabolic and opened
downward, indicating that the incubation time and initial pH had significant effects on the
spore concentration and mycelial biomass of the strain.

The effects of the incubation time (A) and the medium-to-flask ratio (C) on the mycelial
biomass (Figure 5b) and spore concentration (Figure 5h) of strain JMF-01 were investigated
when the initial pH (B) and the primary inoculum density (D) were constant. The spore
concentration of strain JMF-01 had the highest value at an incubation time of 5.5–6.5 days
and a medium-to-flask ratio of 0.28–0.38. And the contour line was elliptical, indicating that
the interaction between incubation time and medium-to-flask ratio was more significant.
When the incubation time was constant, the mycelial biomass showed an increasing trend
with the increase in the medium-to-flask ratio. The response surface curve had a large
slope, and the central contour was far away from the surrounding contours, indicating that
the effect of the medium-to-flask ratio on the mycelial biomass was highly significant.
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the figure, (a–f) are the response surface diagrams of each factor on the mycelial biomass of strain
JMF-01; and (g–l) are the effects on spore concentration.

When the initial pH (B) and the medium-to-flask ratio (C) were constant, the effects
of the incubation time (A) and the primary inoculum density (D) on the mycelial biomass
(Figure 5c) and spore concentration (Figure 5i) of strain JMF-01 were investigated. The spore
concentration of strain JMF-01 reached its maximum at an incubation time of 5.5–6.5 days,
and the primary inoculum density was between 0.9 × 107 and 1.5 × 107 conidia/mL. The
3D surface plot showed a parabola with a large slope and an elliptical contour, indicating
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that the incubation time and primary inoculum density had a significant effect on the spore
concentration. The contour of the mycelial biomass was nearly elliptical, indicating that the
interaction between the incubation time and the primary inoculum density was significant.

When the incubation time (A) and the primary inoculum density (D) were constant,
the effects of the initial pH (B) and the medium-to-flask ratio (C) on the mycelial biomass
(Figure 5d) and spore concentration (Figure 5j) of strain JMF-01 were investigated. At a
constant initial pH, mycelial biomass increased with increasing the medium-to-flask ratio,
while spore concentration increased and then decreased. The slope of the response surface
of mycelial biomass was large, while the slope of the surface of spore concentration was
small, indicating that the effect of the medium-to-flask ratio on mycelial biomass was larger
than that of spore concentration.

When the incubation time (A) and the medium-to-flask ratio (C) were constant, the
effects of the initial pH (B) and primary inoculum density (D) on the mycelial biomass
(Figure 5e) and spore concentration (Figure 5k) of strain JMF-01 were tested. At a constant
primary inoculum density, the mycelial biomass and spore concentration both grew and
then dropped with the rise in initial pH. However, the spore concentration increased with
the increase in the inoculum level at a constant initial pH, indicating that the effect of the
inoculation level on spore concentration was greater than that of the mycelial biomass. The
contour plot was elliptical, indicating that the interaction between the initial pH and the
primary inoculum density was more significant.

When the incubation time (A) and the initial pH (B) were constant, the effects of the
medium-to-flask ratio (C) and the primary inoculum density (D) on the mycelial biomass
(Figure 5f) and spore concentration (Figure 5l) of strain JMF-01 were investigated. The slope
of the 3D surface plot of the spore concentration and mycelial biomass of strain JMF-01
was large, which indicated that the medium-to-flask ratio and primary inoculum density
significantly affected the submerged culture growth of strain JMF-01.

3.4. Verification Test

The model calculated the optimal submerged culture conditions for the mycelial biomass;
the incubation time was 5.68 days, the initial pH was 5.11, the medium-to-flask ratio was 0.43,
and 1 mL of the primary inoculum with a spore density of 0.97 × 107 conidia/mL was added,
and the highest value of 0.35 g was obtained. The actual incubation time was 5.7 days, the
initial pH was 5, the medium-to-flask ratio was 0.43, and the primary inoculum density was
1 × 107 conidia/mL. The mycelial biomass was experimentally verified to be (0.29 ± 0.066) g.

The optimal submerged culture conditions for spore concentration were calculated by
the model: the highest spore concentration of 6.49 × 108 blastospores/mL was obtained
when the incubation time was 6.32 days, the initial pH was 4.46, the medium-to-flask ratio
was 0.35, and the primary inoculum density was 1.32 × 107 conidia/mL of 1 mL. The
actual incubation time was 6.3 days, the initial pH was 4.5, the medium-to-flask ratio was
0.35, and the primary inoculum density was 1.3 × 107 conidia/mL. It was experimentally
verified that the spore concentration was (5.88 ± 0.62) × 108 blastospores/mL.

Compared with the unoptimized medium conditions, the optimized submerged cul-
ture had the highest spore concentration (Figure 6A) and mycelial biomass (Figure 6B),
which were 2.06 and 3.46 times higher, respectively. The validation tests were performed
three times. The model’s ability to accurately represent the growth of strain JMF-01 under
various submerged culture conditions can be seen by the small errors between experimental
values and predicted values.
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3.5. Pathogenicity Test

Optimized submerged culture was obtained by using potato sucrose liquid medium
(pH 4.5), the primary inoculum density was 1.3 × 107 conidia/mL and medium-to-flask
ratio was 0.35 (52.5 mL in each 150 mL flask) for 6.3 days. The survival of the optimized
submerged culture after the treatment of peach aphids is shown in Figure 7.
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4. Discussion

In this paper, the submerged medium suitable for the growth of strain JMF-01 was
first selected, followed by single-factor tests to screen the optimal values of incubation time,
primary inoculum density, medium-to-flask ratio, and initial pH. And then the interaction
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between the factors was evaluated using RSM to obtain a submerged culture process with
a higher yield.

After incubation, the medium with the highest mycelial biomass and spore concen-
tration produced by strain JMF-01 was potato sucrose liquid medium, and the optimal
incubation time was 6–8 days. This result is similar to that of Pradeep et al. [57], who
found that the mycelial dry weight and pigment yield of Fusarium moniliforme remained
essentially constant after 8–10 days of incubation. The spore concentration of strain JMF-01
increased slowly after 6 days, while mycelial biomass showed a slight decrease after 6 days,
probably due to the phenomenon of mycelial autolysis. The optimum incubation time
in this study was similar to Tang et al. [58], who reported an optimum incubation time
of 6 days for Fusarium solani in order to produce vitexin. Anellis et al. [59] found that six
strains of Clostridium botulinum produced the maximum number of spores in 5–6 days, and
Das et al. [60] incubated Purpureocillium lilacinum at 30 ◦C for 6 days to obtain the maximum
number of spores. The creation of an essential medium that supported proper fungal
culture growth and propagule formation was the first step in our optimization method.
Depending on the nutritional needs for sporulation in submerged culture, the maximum
spore concentration for some fungi can be a fixed value. Because of this, the development
of incubation conditions can lead to more rapid sporulation. Therefore, reduced incubation
time can often be the most important fungal biopesticide production method factor in
reducing production costs.

The growth, development, and metabolism of fungi are all significantly influenced by
a medium pH [53]. The results show that strain JMF-01 could grow over a wider medium
pH range of 4.0–8.0. However, the maximum spore concentration and mycelial biomass
of the strain were reached in the medium at pH 5, and the growth was lower outside of
this medium pH range. The response surface optimization of the strain JMF-01 submerged
culture spores and mycelia was optimal at an initial pH of 4.5 and 5.1, respectively, which
is similar to the optimum pH for enzyme production of Fusarium solani, growth of Fusarium
oxysporum, and maximum spore production of Beauveria bassiana [58,61–63]. However, the
optimum pH for mycelial growth of F. equiseti found by Punja et al. [64] was 7.2–7.8. The
capacity of entomopathogens to grow below pH 7 is beneficial during industrial production
even if the pH of entomopathogens is ideal over a wide range because it allows for the
reduction of substrate pH for the suppression of bacterial growth [65]. Moreover, different
strains have different requirements for an initial pH.

Since DO is also likely to affect sporulation, these early flask culture observations may
reflect changes in oxygen supply and demand brought on by biomass [66]. The cost of
oxygen transfer is a significant part of the total production budget for mycelial cultures.
The effect of aeration on the growth of strain JMF-01 was studied by changing the medium-
to-flask ratio (volume of the medium to volume of the flask ratios (v/v)). The maximum
biomass production and spore concentration were observed at a medium-to-flask ratio of
0.43 and 0.35 (v/v), respectively. According to Kumar et al. [67], Aspergillus niger showed
the highest inulinase production at a medium-to-shake flask ratio of 1:20. In a study by
Niaz et al. [68], Aspergillus nidulans recorded the highest extracellular lipase activity at a
medium volume of 45 mL.

The inoculum size not only has a direct impact on the overall production yield,
but it also affects the production cost [69–71]. We set the primary inoculum density
to five values and screened the most suitable strain, JMF-01, by single-factor experi-
ment to 1 × 107 conidia/mL of spore suspension. The response surface optimization
found that the optimum primary inoculum density for mycelium-producing biomass was
0.97 × 107 conidia/mL, and the spore concentration was highest at 1.32 × 107 conidia/mL.
Our results were consistent with those of Santa et al. [72]. Alabdalall et al. [73] found that
the optimum primary inoculum density for extracellular lipase production by A. niger was
2.5 × 107 spores/mL. However, the mycelial biomass and spore concentration of strain
JMF-01 decreased when the primary inoculum density was higher than 1 × 107 conidia/mL
or lower than 1 × 107 conidia/mL. To balance the levels of nutritional components present
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in the submerged environment for ideal fungal development, the proper primary inoculum
density is a crucial factor [73]. With a small inoculum size, it’s possible that there aren’t
enough cells in the submerged culture to make use of the substrate needed to encourage the
growth of fungal mycelium and the production of conidia. However, with a large inoculum
size, the submerged medium may become more viscous due to the rapid growth of fungi,
which could lead to a nutritional imbalance in the medium or excessive nutrient intake
before the cells in the submerged culture are physiologically prepared to begin fungal
production [34,74].

The beginning of sporulation is influenced by a wide range of environmental and nu-
tritional conditions, and each species has unique characteristics. RSM is a well-established
statistical technique that makes statistical predictions and evaluations while using econom-
ical experimental designs [75]. In this paper, BBD in RSM was applied to optimize the
submerged culture conditions of strain JMF-01 to screen for optimal submerged culture
conditions. The response surface methodology simplifies the experimental design into
an optimization process of 29 trials, yet many factors and their interrelationships can be
studied in less time with less labor.

The multiple coefficients of correlation, R and F values, were assessed in order to test
the goodness of fit of the regression equation for strain JMF-01 submerged culture using the
uniform design approach. The stronger the correlation between the obtained and predicted
values, the closer R is to 1. Mycelial biomass and spore concentration both had R values
of 0.9450 and 0.9355, respectively, indicating good agreement between experimental and
predicted values. The F value is calculated as the ratio between the regression’s mean
square and the real error’s mean square. In general, if the model accurately predicts the
experimental data and the estimated factor effects are valid, the computed F value should
be several times higher than the tabulated F value [76]. The estimated F values in this
instance, which were 17.18 for the mycelial biomass and 14.49 for the spore concentration,
exceeded the tabulated F values.

In this study, three-dimensional surface plots could clearly show that the medium-to-
flask ratio significantly affected the mycelial biomass production of strain JMF-01, while
the primary inoculum density and the initial pH significantly affected the spore production
of the strain. The effect of medium and submerged culture conditions on the production
of the entomopathogenic fungus, F. equiseti, has not been studied in depth. However, in
other fungi, the positive induction of fungal production of spore and other metabolites
by appropriate inoculum and an acidic initial pH has been documented. Santos et al. [77]
reported that an acidic pH tends to increase the production of bikaverin by F. oxyspo-
rum. Chi et al. [78] found that a higher medium-to-flask ratio was more favorable for
liquid culture aimed at obtaining mycelial biomass, and for liquid culture production in
which spores have been obtained, the initial inoculum had a greater impact. According to
Srivastava et al. [79], fungal growth appeared to be inversely correlated with pH variation
since more fungal growth was observed when the pH was lowered.

5. Conclusions

The improvements in mycelial biomass and spore concentration that were attained
through further optimization phases were around 3.46 and 2.06 times, respectively, larger
than those attained under unoptimized conditions. Therefore, the optimization of sub-
merged culture conditions had a great impact on the growth of strain JMF-01. Moreover, the
optimized submerged culture was highly virulent against M. persicae, with a 95% mortality
rate after 7 days (LT50 = 3.74 days). The results clearly support the previous conclusions of
other researchers that optimized medium and submerged culture conditions are the main
control for the entomopathogenic F. equiseti, as the main control factor for the production of
biocontrol preparations [34,80].
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