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Abstract: Genome-scale metabolic models (GEMs) play an important role in the phenotype prediction
of microorganisms, and their accuracy can be further improved by integrating other types of biological
data such as enzyme concentrations and kinetic coefficients. Enzyme-constrained models (ecModels)
have been constructed for several species and were successfully applied to increase the production of
commodity chemicals. However, there was still no genome-scale ecModel for the important model
organism Bacillus subtilis prior to this study. Here, we integrated enzyme kinetic and proteomic data
to construct the first genome-scale ecModel of B. subtilis (ecBSU1) using the ECMpy workflow. We
first used ecBSU1 to simulate overflow metabolism and explore the trade-off between biomass yield
and enzyme usage efficiency. Next, we simulated the growth rate on eight previously published
substrates and found that the simulation results of ecBSU1 were in good agreement with the literature.
Finally, we identified target genes that enhance the yield of commodity chemicals using ecBSU1,
most of which were consistent with the experimental data, and some of which may be potential
novel targets for metabolic engineering. This work demonstrates that the integration of enzymatic
constraints is an effective method to improve the performance of GEMs. The ecModel can predict
overflow metabolism more precisely and can be used for the identification of target genes to guide
the rational design of microbial cell factories.

Keywords: enzyme-constrained model; Bacillus subtilis; metabolic engineering

1. Introduction

Bacillus subtilis is a model organism of choice for the industrial production of various
valuable compounds, such as biopolymers and proteins, due to its excellent capacity
for protein secretion, good growth characteristics, distinct endogenous metabolism, and
robustness in industrial fermentation [1]. Genome-scale metabolic network models (GEMs)
of B. subtilis have been successfully applied to guide the production of riboflavin [2],
isobutanol [2], 2,3-butanediol [3], and 3-hydroxypropionic acid [4]. The first B. subtilis GEM
was published in 2008 [5], and several models were subsequently reported [2,6–8], which
were updated in terms of reactions, metabolites and genes. The iBsu1147 model constructed
by our team [2] has the highest number of reactions, metabolites and genes of all models
reported to date (Figure S1). However, GEMs only consider stoichiometric constraints,
making them unable to reflect the true state of the cell and locate kinetic bottlenecks limiting
the flux through specific product synthesis pathways.
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By contrast, enzyme-constrained models (ecModels) introduce enzyme kinetic infor-
mation into a GEM, thus reflecting the protein resource limitation faced during cell growth,
enabling them to identify the rate-limiting enzymes in the pathway and further guide ratio-
nal metabolic engineering. As a consequence, ecModels have been successfully applied to
guide the production of L-lysine [9], poly-glutamic acid [10], heme [11] and recombinant
proteins [12]. Currently, three methods exist to automate the construction of ecModels,
including GECKO [13], AutoPACMEN [14] and ECMpy [15]. GECKO is the earliest auto-
mated approach for the introduction of protein resource constraints into GEMs, which intro-
duces average enzyme saturation coefficients and enzyme usage constraints from proteomic
data [13]. However, GECKO adds many pseudo-metabolites representing enzymes, signifi-
cantly increasing the complexity and scale of the model. Inspired by GECKO, Bekiaris et al.
developed the AutoPACMEN automated workflow for the construction of ecModels, which
introduces only one pseudo-reaction and pseudo-metabolite [14]. Recently, we developed
the simplified Python-based workflow ECMpy, which allows the construction of an ec-
Model by directly adding a total enzyme amount constraint into a GEM [15]. Recently,
ecModels have been constructed for several species, including Escherichia coli [9,12,15],
Saccharomyces cerevisiae [13], Aspergillus niger [16], Corynebacterium glutamicum [17] and
B. subtilis [10]. The first ecModel for B. subtilis (ec_iYO844) only integrated enzyme kinetic pa-
rameters for 17 reactions located in the central carbon metabolism using the GECKO method,
but this model allowed more accurate prediction of the flux distribution and growth rate of
wild-type and single-gene/operon deletion strains compared to the GEM [10].

In this study, we first systematically updated the iBsu1147 model through GPR update,
biomass reaction standardization, etc., after which we established a comprehensive collection
of parameters that affect the prediction accuracy of the ecModel (e.g., the enzyme kinetics
data and quantitative information on enzyme subunit composition), and constructed the
first genome-scale ecModel of B. subtilis (ecBSU1), using an updated ECMpy workflow [17].
Subsequently, we used ecBSU1 to accurately predict the growth rate of B. subtilis on different
carbon sources, simulate the overflow metabolism, and explain the trade-off between biomass
yield and enzyme usage efficiency. Finally, we predicted the target genes of B. subtilis for
enhancing the production of industrial chemicals (e.g., riboflavin, menaquinone 7, and acetoin,
etc.), and the predictions were in good agreement with the literature.

2. Methods
2.1. Model Update

The model iBsu1147, which has the most reactions and genes, was selected as the
initial model for the integration of enzymatic constraints. Since the iBsu1147 model was
released in 2013, we performed quality control on the model, covering substrate utilization,
redox balance, energy balance, biomass reaction standardization, and mass balance. Our
previous results shown that the kcat and molecular weight (MW) of an enzyme affect the
prediction accuracy of the ecModel [15]. For example, the correctness of the EC number
affects the correctness of the corresponding kcat, and the GPR relationship affects the
accuracy of MW calculation. Accordingly, we systematically corrected the EC number
and GPR relationships. We used the GPRuler tool [18] and protein homology similarity to
uncover the potential GPR errors present in the reaction (see [17] for details). In order to
meet the requirements of AutoPACMEN processes for metabolic network format input, we
converted most of the KEGG IDs and ModelSEED [19] IDs (both metabolites and reactions)
into BiGG [20] IDs. Finally, we named the modified model iBsu1147R (Revised iBsu1147).

2.2. Data Acquisition

The molecular weight (MW) of each enzyme was downloaded from the UniProt
database according to the gene ID, and the quantitative subunit information was obtained
by parsing the ‘Interaction information’ in UniProt [17]. For example, P39119 is described
in UniProt as a ‘homodimer’, so its subunit number is 2 (all corresponding information
is listed in Table S1). The kcat values were obtained from the BRENDA [21] and SABIO-
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RK [22] databases according to the EC numbers using AutoPACMEN. B. subtilis protein
abundance data were obtained from the PAXdb [23] database, and enzyme mass fraction
was calculated according to Equation (1):

f = ∑p_num
i=1 Ai MWi/ ∑g_num

j=1 Aj MWj (1)

where Ai and Aj represented the abundance of the i-th protein (p_num represents proteins
expressed in the model) and j-th protein (g_num represents proteins expressed in the
whole proteome).

2.3. Construction of ecBSU1

The enzyme-constrained model was constructed based on iBsu1147R following the
ECMpy workflow and named ecBSU1 (Figure 1). Firstly, we divided reversible reactions
in iBsu1147R into pairs of irreversible reactions, and split reactions catalyzed by multiple
isoenzymes into different reactions (append num in reaction ID, e.g., GLCpts_num1), so
that each reaction only has one corresponding enzyme. Next, we calculated the MW of each
enzyme. For reactions catalyzed by enzyme complexes, we used the total sum of proteins
in the complex (MW = ∑m

j=1 Nj ∗MWj, where m is the number of different subunits in
the enzyme complex and Nj is the number of jth subunits in the complex). Finally, a new
enzymatic constraint (∑n

i=1
vi∗MWi
σi∗kcat,i

≤ ptot ∗ f ) was introduced into the model, where ptot, f,
and σi represent the total protein fraction in B. subtilis, the mass fraction of enzymes, and
the saturation coefficient of the i-th enzyme, respectively (see [15] for details).
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2.4. Calibration of Enzyme Kinetic Parameters

To improve the agreement of model predictions with experimental data, the enzyme-
constrained model required further adjustment of the original kcat values, analogous to
GECKO, AutoPACMEN and ECMpy. For model calibration, GECKO used a manual
calibration approach (GECKO 2.0 updated to automatic calibration) and AutoPACMEN
was a direct 10-fold expansion without an automated process. In contrast, ECMpy identify
the most likely wrong parameters and corrected them through an automatic process based
on the cost of enzymes. The process includes the following steps: First, we calculated the
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enzyme cost of each reaction in the pathway with biomass maximization as the objective
(see [15] for details). Subsequently, we ranked the reactions by enzyme cost and selected
the reactions with the largest enzyme costs as potential reactions that need correction.
Next, we modified the reaction kcat to the maximal corresponding kcat in the BRENDA and
SABIO-RK databases. We reiterated the above correction until the growth rate reached a
reasonable steady state (For example, the experimentally reported values), as described in
GECKO 2.0 [24].

2.5. Phenotype Phase Plane (PhPP) Analysis

Different rates of substrate uptake and oxygen supply affect the cellular metabolic
phenotype, leading to different maximal growth rates. We performed PhPP analysis
on iBsu1147R and ecBSU1 as described in the literature [16] to obtain a global view of
how optimal growth rates are affected by varying glucose and oxygen uptake rates. To
implement the PhPP analysis, the reaction fluxes of oxygen and glucose were, respectively,
varied in the range of 0–50 mmol/gDW/h and 0–15 mmol/gDW/h, after which pFBA
calculations were performed with biomass maximization as the objective.

2.6. Prediction of Growth Rates on Different Carbon Sources

To evaluate the ability of ecBSU1 to predict phenotypes, we simulated the growth rate
of B. subtilis on 8 different carbon sources, and compared the prediction results of iBsu1147R

and ecBSU1 with reported values [25]. Next, the model and experimental results were used to
calculate the estimation error of the growth rate and normalized flux error (see [15] for detail).

2.7. Simulation of Overflow Metabolism

Overflow metabolism refers to the seemingly wasteful strategy in which cells use
fermentation instead of the more efficient respiration to generate energy, despite the avail-
ability of oxygen [26]. As a result of employing this metabolic strategy, cells excrete (or
“overflow”) metabolites such as lactate, acetate, and ethanol. We explored the overflow
metabolism of the B. subtilis using ecBSU1 by setting the substrate uptake rate on a gradient
of 0 to 10 mmol/gDW/h and solving for pFBA to maximize the biomass. To further ex-
plain the metabolic overflow phenomenon, we analyzed the biomass yield, enzyme usage
efficiency, reaction enzyme cost, energy synthesis enzyme cost, and oxidative phosphoryla-
tion ratio (proportion of glucose used for the oxidative phosphorylation pathway to total
glucose) (see [15,27] for details).

2.8. Prediction of Metabolic Engineering Targets

Compared to GEMs, ecModels can calculate enzyme costs in addition to reaction
fluxes, which is useful for identifying key enzymes in the pathway [9]. In this work, we
analyzed the enzyme cost of each reaction to identify kinetic bottleneck reactions (the
reactions with the largest enzyme cost) (Equation (2)) by setting glucose as the substrate,
the product as the objective, and the low bound of biomass reaction as 10% of the maximal
growth rate, as described in the literature [9]. Finally, we selected the Top 15 reactions with
the highest enzyme cost as potential metabolic engineering targets.

Enzyme costi =
vi ∗MWi
σi ∗ kcat,i

(2)

2.9. Software

The described ecBSU1 model generator is written in Python 3.6.5. Aside of Python’s
standard library, the model generator also uses the modules biopython, cobrapy (ver-
sion = 0.13.3) [28], scipy, openpyxl, and requests. The metabolic pathway simulations were
performed using pFBA (parsimonious Flux Balance Analysis), which seeks to minimize the
flux associated with each reaction in the model while maintaining optimum flux through
the objective function [29].
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3. Results
3.1. GPR Correction of iBsu1147

EC numbers affect the extraction and assignment of kcat data in the workflow, ultimately
affecting the prediction accuracy of the ecModel. Consequently, we replaced the old EC num-
bers in the model based on BRENDA, updating a total of 38 reactions (Table S2). MW is also
an important factor affecting the prediction accuracy of ecModels. Two major factors influence
the final MW of the enzyme assigned to a specific reaction: whether the protein is composed
of subunits (GPR relationship) and the number of each subunit. We systematically corrected
the GPR relationships in the model by referring to the methods used in ecCGL1 (GPRuler tool
and protein homology similarity) [17]. We first identified 146 reactions containing protein
complex information using the GPRuler tool, 80 of which were consistent with the model. For
the remaining 66 reactions in the model that contained “and” relationships, we performed a
manual check using the UniProt, KEGG, and BioCyc databases, and found that 27 reactions
were correct in the model, 6 reactions were correct in the GPRuler tool, and the remaining
33 reactions were incorrect in both (Table S3). For example, the GPR relationship of the ribose
ABC transport system is ‘BSU35930 and BSU35940 and BSU35950 and BSU35960′ in the
model, but the GPRuler tool did not include ‘BSU35930′. By searching UniProt, we found that
‘BSU35930′ encodes D-ribose pyranase, which catalyzes the interconversion of beta-pyran and
beta-furan forms of D-ribose, indicating that the result of GPRuler tool is correct. In addition,
when verifying the results of the GPRuler tool, some reactions in the model were modified
based on the annotation information of the proteins in the databases, including the deletion
of 7 reactions (e.g., PDHbr and AKGDb), the addition of 4 new reactions (e.g., AKGDH and
FCLT3), and the modification of GPR relationships for 5 reactions (e.g., RBFSb and 26DPAi).

We also observed that there were 58 reactions in the model for which the “and”
relationships were not identified by the GPRuler tool, and only 9 reactions had more than
25% similarity (Table S4). By searching the database, we found that 7 reactions needed to
be corrected, 3 of which needed to be changed from “or” to “and” relationships, and 4 in
which the proteins needed to be replaced (Table S4). For example, the GPR relationship
for NADH-dependent butanol dehydrogenase (BTS) is ‘BSU31360 and BSU31370′, which
has 74% sequence similarity. By further searching the BioCyc database for verification, we
found that the protein encoded by BSU31370 is a bifunctional enzyme that catalyzes two
reactions (NADPH-dependent furan aldehyde reductase and NADPH-dependent butanol
dehydrogenase), whereas the protein encoded by BSU31360 catalyzes only the NADPH-
dependent butanol dehydrogenase reaction. They are more likely to be two isoenzymes,
and therefore the correct GPR relationship for BTS should be ‘BSU31360 or BSU31370′.
Finally, 1736 reactions, 1459 metabolites, and 1155 genes were included in iBsu1147R.

3.2. Other Modifications of iBsu1147

After running quality control of the iBsu1147R model in terms of substrate utilization,
redox balance, energy balance, biomass reaction standardization, and mass balance, we
found that all these aspects led to abnormalities in the metabolic pathways generated by
the simulation. The boundary of 6 reactions was modified in terms of substrate utilization
(e.g., EX_chor_e and MALt2r). For example, experiments have shown that B. subtilis can
grow using malate [25], so the upper and lower boundaries of the malate transport reaction
(MALt2r) in the model should not be 0. From a reducing power perspective, we modified
the catalytic orientation of 4 reactions (e.g., NODOx and P5CR) based on BioCyc [30]
to avoid pathway calculation errors. For example, P5CR (1pyr5c_c + h_c + nadph_c –>
nadp_c + pro__L_c) is reversible in the model, but a search by BioCyc revealed that the
reaction acts as the final step of the L-proline synthesis pathway I, which is unidirectional.
In addition, the catalytic orientations of 3 respiratory chain-related reactions were also
modified (e.g., CYOR3m and CYTB_B2). In total, 13 reactions in the model were corrected
for the boundaries (Table S5).

In addition, the molar mass of biomass and its components (e.g., proteins, nucleic acids,
etc.) was 1 g/mmol, and deviations from this value will result in errors in the calculated specific
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growth rate. Using the BiomassMW algorithm [31], we examined the biomass equation of the
iBsu1147R model and found that the original molecular mass of the biomass was 1.025 g/mmol,
and H+ was missing in the right side of the biomass equation (the coefficient was 105) produced
by the hydrolysis of ATP for growth-associated maintenance energy. After correction, the
molar mass of the biomass became 0.92 g/mmol. Subsequently, we examined the precursor
metabolites and found that the molar masses of protein, DNA, and RNA were 0.86 g/mmol,
0.95 g/mmol, and 0.95 g/mmol, respectively. We normalized the coefficients so that the molar
masses of all components were 1 g/mmol, and the molar masses of the biomass also became
1 g/mmol. The details of all the modified reactions are listed in Table S6.

Finally, we found that iBsu1147R contains different IDs for metabolites and reactions,
including KEGG IDs and ModelSEED IDs. To meet the input requirements of AutoPAC-
MEN, we converted the KEGG IDs of 1007 metabolites and 785 reactions, as well as the
ModelSEED IDs of 265 metabolites and 542 reactions into BiGG IDs. In addition, we kept
the original IDs for reactions and metabolites that were not included in the BiGG database.

3.3. Basic Information of ecBSU1

We used AutoPACMEN to match 2331 kcat values (439 were obtained by filling, see
Table S7) for 3307 reactions (splitting of reversible reactions and isozymes), accounting for
70.5% of the total reactions and 76.4% excluding exchange reactions. In total, 1892 reactions
were catalyzed by enzymes with 549 different EC numbers, among which oxidoreductases
and transferases accounted for the majority (Figure 2A, inner ring). These kcat values
spanned 9 orders of magnitude, with a median value of 46.17 s−1 (Figure 2B). In total, the
molecular weights for 1155 enzymes were obtained from UniProt based on the correspond-
ing gene IDs, covering 3 orders of magnitude, with a median value of 50.41 kDa (Figure 2C).
The enzyme mass fraction f was calculated from the proteomic data in the PAXdb. For
B. subtilis, we chose the dataset “B. subtilis-Whole organism (Integrated)” with the highest
measurement coverage and evaluation score, and calculated f = 0.588 g enzyme/g protein
according to Eq. 1. Finally, the initial B. subtilis ecModel (ecBSU1) contained 1155 genes,
1459 metabolites, 3307 reactions, and 2331 enzyme kinetic parameters, with a total enzyme
bound of 0.165 g enzymes/gDW.
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numbers, which can also be divided into seven categories. (B) Cumulative distribution of kcat values.
(C) Cumulative distribution of molecular weights.
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3.4. Correction of Enzyme Kinetic Parameters to Overcome Model Over-Constraint

Over-constraint in the initial ecModel is normal due to some reactions with abnormal
kcat values (usually too low), as was reported for ecYeast7 [13], eciML1515 [9], eciJB1325 [16]
and eciJO1366 [32], which all needed kcat correction. We found that the maximal growth
rate calculated by ecBSU1 with glucose as substrate was 0.092 h−1 (Figure 3A), which
was significantly lower than the experimental value of 0.59 h−1 [25]. To overcome this
over-constraint, we modified the kcat values of the reactions with the largest enzyme cost
to the corresponding maximal kcat values in BRENDA and SABIO-RK. After modifying
28 reactions (Table S8), the maximal growth rate on glucose reached 0.612 h−1 (Figure 3B),
which was consistent with the experimental observations. However, the growth rate
predicted by iBsu1147R increased linearly with increasing carbon source consumption
(Figure 3C), which is unrealistic. In addition, PhPP analysis showed that the solution
space of ecBSU1 was significantly reduced compared with the metabolic network model
(Figure 3B,C). These results demonstrated that incorporating enzymological constraints
into a GEM can reduce the flux solution space and enable the model to simulate a more
realistic cellular phenotype.
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3.5. Simulation of Overflow Metabolism

Enzyme-constrained models have been used to simulate overflow metabolism in
S. cerevisiae [13,33], C. glutamicum [17], and E. coli [15]. It has been reported in the literature
that B. subtilis exhibits overflow metabolism in the presence of excess glucose [34]. We
explored the phenomenon of overflow metabolism in B. subtilis using ecBSU1, and the
simulation results showed that at a high glucose uptake rate of 8 mmol/gDW/h, B. subtilis
was indeed able to engage metabolic overflow into acetate at high glucose uptake rate
(Figure 4A). By contrast, in iBsu1147R, glucose increased linearly with the growth rate
and could not simulate the phenomenon of overflow metabolism (Figure 4A). We then
calculated the energy synthesis enzyme cost and oxidative phosphorylation ratio to explore
the pathway adjustment strategy of overflow metabolism in B. subtilis. The simulation
results indicated that at high growth rates, the acetate-producing fermentation pathway was
activated to maintain growth due to its low enzyme cost in comparison with the energetically
efficient respiratory oxidative phosphorylation pathway (Table S9 and Figure 4B).
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In order to further explain the metabolic overflow phenomenon, we analyzed the
biomass yield and enzyme usage efficiency at different glucose uptake rates. As shown in
Figure 4C, there was a clear trade-off between yield and enzyme usage efficiency, so that
the metabolic processes could be divided into a substrate-limited stage, overflow switching
stage, and overflow stage. At the substrate-limited stage, the glucose uptake rate was low
(less than 2.5 mmol/gDW/h) and did not reach the constraint of protein resources, resulting
in a substrate uptake rate proportional to the growth rate. At the overflow switching phase
(between 2.5 and 8 mmol/gDW/h), the cells redistributed the metabolic fluxes toward
pathways with high enzyme usage efficiency but low biomass yield. Finally, overflow
metabolism occurred in the overflow stage (greater than 8 mmol/gDW/h). That means at
a high glucose uptake rate (8 mmol/gDW/h), B. subtilis needs to activate a fermentation
pathway with low energy production efficiency but high enzyme efficiency to maintain
growth, resulting in the overflow to acetate (Figure 4A–C).

3.6. Enzyme-Constrained Integration Improved the Phenotype Prediction

To further test the enzyme-constrained model, we simulated the growth rates of
B. subtilis on 8 different carbon sources reported in the literature [25], and compared the
prediction results of iBsu1147R and ecBSU1 (Table S10). As shown in Figure 5A,B, the pre-
dicted growth rates of ecBSU1 were lower than those of iBsu1147R due to the introduction
of enzymatic constraints. Especially for the two experiments using malate alone or malate
and glucose as substrates, the prediction results of iBsu1147R were unreasonably higher
than the experimental results (Figure 5A). By contrast, the predicted rates of ecBSU1 were
closer to the experimental values (Figure 5B,C). For all other carbon sources, the prediction
results of ecBSU1 were also similar to or better than those from iBsu1147R. Moreover,
we identified errors in some reactions of ec_iYO844 (the first ecModel for B. subtilis), as
17 reactions with kcat values were unidirectional, resulting in its ability to simulate growth
using only glucose as a substrate (Figure S2).

Further in-depth analysis using the ecModel revealed that the addition of the enzyme
kinetic constraint information allowed ecModel to simulate the overflow of by-products
from cells at high substrate concentrations. For example, the ecBSU1 results showed that it
severe overflow metabolism would occur when utilizing malate at 26.51 mmol gDW−1 h−1,
producing 16.39 mmol gDW−1 h−1 of acetate, thus predicting a biomass growth rate
(0.618 h−1) close to the experimental value [35]. However, although the growth rate was
predicted accurately, the overflow products were different from the experimental results
(9.50 mmol gDW−1 h−1 acetate and 3.93 mmol gDW−1 h−1 pyruvate). The difference in
overflow products is mainly due to the limitations of the current ecModel, as the optimiza-
tion process of the model only supports the pathway that generates the lowest enzyme cost,
so that the current ecModel will only generate one overflow product.
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3.7. The Enzyme-Constrained Model Predicted Target Genes for Improving the Production of
Chemicals

GEMs play a guiding role in predicting metabolic engineering targets. In this work,
we predicted potential target genes for the synthesis of several important chemicals (e.g., ri-
boflavin, menaquinone 7, acetoin, etc.) in B. subtilis based on the enzyme cost of reactions.
We selected 10 products for analysis from 51 commercial chemicals produced using the
B. subtilis platform summarized in the literature [36]. The products were classified according
to the need to introduce exogenous reactions, and the location of the precursor in the central
metabolic pathway (Figure 6A). We set glucose as the substrate and fixed the growth rate at
0.06 h−1 (10% of the maximum) and performed reaction enzyme cost calculations with each
of these 10 products as the objective function, respectively. Subsequently, a literature search
was performed to validate the top 15 reactions in terms of enzyme cost in each pathway.

We found that most of the predicted potential targets for the 10 products have been
reported in the literature (Figure 6B, Table S11). Among them, riboflavin and menaquinone
7 covered the most targets, with more than half of the predicted 15 potential targets (9 and 8,
respectively) having been reported in the literature (Figure 6B). Notably, enzymes with the
highest enzyme cost in the synthetic pathways of riboflavin and uridine are GTP cyclohy-
drolase II (encoded by ribA, ru5p__D_c –> db4p_c + for_c + h_c) and carbamoylphosphate
synthetase (encoded by pyrAA and pyrAB, 2.0 atp_c + gln__L_c + h2o_c + hco3_c –>
2.0 adp_c + cbp_c + glu__L_c + h_c + pi_c), respectively (Table S10). Experiments have
been performed to show that both enzymes are rate-limiting enzymes for their respec-
tive products [37–39]. For example, studies on a riboflavin production strain of B. subtilis
showed that the insertion of an additional copy of ribA led to improved riboflavin titers
and yields on glucose of up to 25% [37]. In addition, Wang et al. released the feedback
inhibition of carbamoylphosphate synthetase encoded by pyrAB, leading to a 245% in-
crease of uridine production, whereby the conversion of glucose to uridine increased by
10.5%, while overexpression of the pyr operon increased the production of uridine by a
further 31% [38]. For 5-methyltetrahydrofolate, GTP cyclohydrolase 1 (encoded by folE,
gtp_c + h2o_c –> ahdt_c + for_c + h_c) caralyzes a limiting step for the synthesis of the
important precursor dihydrofolate (DHF), and co-overexpression of folC, pabB, folE, and
yciA resulted in an additional 66.8-fold improvement of the 5-methyltetrahydrofolate titer,
which reached 960.27 µg/L [40]. Therefore, we can speculate that the reactions with the
highest enzyme cost in the pathways of several other products (e.g., PanB for surfactin,
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Pyc for poly-γ-glutamic acid, MenD for menaquinone 7, etc.) are likely to be bottleneck
reactions and potential targets for metabolic engineering.
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4. Discussion

During the construction of traditional GEMs, not much attention is paid to whether the
GPR relationship is “and” or “or”, but the correctness of these two relationships directly
affects the simulation accuracy of ecModels. In this study, we systematically examined and
corrected the GPR relationships in iBSU1147 by combining the GPRuler tool and protein
homology. In addition, we systematically updated the EC numbers, carbon source utilization
pathways, biomass reactions, mass balance, energy balance, and redox balance in the
iBsu1147 model. This quality checking and correction process has far-reaching implications
for improving the quality of GEMs and the construction of high-quality ecModels.

Using iBsu1147R, we constructed ecBSU1 based on the ECMpy approach, in which
2331 of 3307 reactions were integrated with enzyme constraints according to AutoPACMEN,
and the kcat coverage reached 76.4% after excluding 254 exchange reactions. The coverage of
enzyme parameters was much higher than in ec_iYO844, which integrated only 17 reactions
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(1.67% of the total number of reactions) located in the central carbon metabolism with the
addition of kcat values. However, enzyme kinetic data are sparse, and measured turnover
rates are normally available for only a small fraction of metabolic reactions even in well-
studied organisms [41]. Therefore, even though we covered the kcat data for most of the
reactions in the model, only 163 reactions had kcat values derived from B. subtilis.

Due to the diversity and incomplete coverage of enzyme parameters in the database,
the initial ecModel was over-constrained, but it was able to accurately predict cellular
phenotypes after kcat correction for 28 reactions. The ecBSU1 corrects the problem that the
growth rate of GEMs increases indefinitely with the increase of the carbon source utilization
rate. Next, ecBSU1 and iBsu1147R were, respectively, used to simulate the growth rate of
B. subtilis on different substrates, and the results showed that the accuracy of ecBSU1 was
much better than that of iBsu1147R at the high growth rate stage with enzyme constraints.
In addition, the overflow metabolism of B. subtilis was explored using ecBSU1, which
showed a physiological state of overflow metabolism in the presence of excess substrates,
and demonstrated a trade-off between biomass yield and enzyme usage efficiency.

Thus, ecBSU1 can be used to guide the rational design of microbial cell factories
from a new perspective. The simulation results of GEMs usually only contain reaction
fluxes, which cannot distinguish the physiological characteristics of each reaction. By
contrast, ecBSU1 combines the kinetic characteristics of each reaction based on fluxes, thus
demonstrating the enzyme consumption of each reaction, which can assist us to locate the
kinetic bottlenecks of different metabolic states. We simulated the enzyme consumption
of B. subtilis for the synthesis of several commercial chemicals, and the reactions with the
highest enzyme consumption were identified as metabolic engineering targets, which was
in good agreement with the literature. This provides a new strategy and theoretical basis
for metabolic engineering.

Currently, ecBSU1 has a typical limitation also found in other ecModels, as the im-
plementation of the enzyme abundance constraint is highly dependent on precise kinetic
parameters and abundance data for each enzyme [14], both of which are often inadequate.
Although AutoPACMEN and GECKO adopt automated strategies to supplement the miss-
ing data by fuzzy matching to similar reactions or organisms (based on the EC number
and substrate), this can cause model predictions to deviate significantly from experimental
observations [42]. Machine learning or deep learning tools are valuable for uncovering
global trends of enzyme kinetics and physiological diversity, which can further elucidate
the details of a large-scale ecModel [43,44]. For example, Li et al. provided a deep learning
approach (DLKcat) for high throughput kcat prediction for metabolic enzymes from any
organism merely from substrate structures and protein sequences [44]. Using this approach,
they predict genome-scale kcat values for more than 300 yeast species. In addition, the
integration of enzyme constraints greatly improves the predictive power of GEMs and
brings the model predictions closer to the experimental measurements, but the biological
system is too complex and to be fully described by enzymatic constraints alone. Therefore,
it is necessary to integrate more biological data into novel composite constraints, which
can include data on thermodynamics [45,46] and regulatory networks [47], or construct a
whole-cell GEM [48].

5. Conclusions

This work integrated enzymatic constraints into the GEM of B. subtilis on a genome-
wide scale, which significantly improved its metabolic phenotype prediction ability. The re-
sulting model can be used to explain metabolic overflow phenomena and predict metabolic
engineering targets for the synthesis of commercial chemicals in B. subtilis. This study
has guiding significance for the rational design of microbial cell factories and provides
an important integrated metabolic network model of B. subtilis. Finally, it also offers in-
sights for the improvement of GEMs of other strains, so that the role of such models in the
development of synthetic biology can be broadened in the future.
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