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Abstract: Mammalian tuberculosis (TB) is a zoonotic disease mainly due to Mycobacterium bovis
(M. bovis). A current challenge for its eradication is understanding its transmission within multi-
host systems. Improvements in long-read sequencing technologies have made it possible to obtain
complete bacterial genomes that provide a comprehensive view of species-specific genomic features.
In the context of TB, new genomic references based on complete genomes genetically close to field
strains are also essential to perform precise field molecular epidemiological studies. A total of
10 M. bovis strains representing each genetic lineage identified in France and in other countries were
selected for performing complete assembly of their genomes. Pangenome analysis revealed a “closed”
pangenome composed of 3900 core genes and only 96 accessory genes. Whole genomes-based
alignment using progressive Mauve showed remarkable conservation of the genomic synteny except
that the genomes have a variable number of copies of IS6110. Characteristic genomic traits of each
lineage were identified through the discovery of specific indels. Altogether, these results provide new
genetic features that improve the description of M. bovis lineages. The availability of new complete
representative genomes of M. bovis will be useful to epidemiological studies and better understand
the transmission of this clonal-evolving pathogen.

Keywords: Mycobacterium bovis; mammalian tuberculosis (TB); complete de novo assembly;
transmission; pangenome

1. Introduction

Mammalian tuberculosis (TB) is a zoonotic disease mainly due to Mycobacterium bovis
(M. bovis). Within M. bovis, four major clonal complexes were defined by the lack of certain
specific regions, single nucleotide polymorphism (SNP), and genetics signatures in the DR
region [1–4]. These four groups are the European 1 clonal complex (Eu1) mainly present
in the British Islands, and the former British empire colonies [4], the European 2 clonal
complex (Eu2), dominant in the Iberian Peninsula [3], the African 1 clonal complex (Af1)
present in Mali, Cameroon, Nigeria and Chad [2], and the African 2 clonal complex (Af2)
mostly found in East Africa [1].

The generalization of genome sequencing in the last years has made it possible to
obtain several thousands of short-reads whole genome sequences of M. bovis [5–10]. These
data are useful to propose M. bovis classification [7,10,11], such as that of Zwyer et al.
proposing to classify this species into eight sublineages named La1.1 to La1.8 [11]. The
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M. bovis French diversity has been divided into nine clusters (Cluster A to I, cluster D
represents Eu1 and cluster F represents Eu2), which have been defined by specific SNPs,
particular signatures in the DR region and in certain VNTR loci [7]. Strains belonging to
cluster A, cluster I, and cluster C provoked the majority of outbreaks detected in France
in the last 20 years [7,12–14]. New complete genomes belonging to these different groups
could help improve the description of M. bovis clusters defined previously. Indeed, most
sequenced genomes are drafts. These genomes are incomplete and contain indels which
can bias genetic structure studies or pangenomic studies [15]. Genome sequencing using
long-read technologies now makes it possible to correct these errors and complete the
genome at a lower cost [16].

Until recently, only AF2122/97 (NC_002945.4), the complete genome of a Eu1 field
strain isolated in the UK, was used as a reference in whole genome SNP (wgSNP) stud-
ies [17,18]. Even though this reference genome is well adapted for epidemiological studies
where Eu1 strains are common [11,19–23], it could be less fitted for studies in France and
other mainland European countries where strains belonging to this clonal complex are not
frequent [3]. Recently, a new complete genome, Mb3601, has been published [24]. Mb3601
was obtained by combining short-reads (Illumina) and long-read (PacBio) sequencing tech-
nologies. This new genome is specific to one of the most widespread genotypes in France
in the last years, SB0120-CO [25]. The study of this complete genome has highlighted the
presence of a significant number of IS6110 copies and the presence of several indels in its
genome. Its description led to the proposal of a new clonal complex, European 3, to replace
Cluster I.

The aim of this work was to obtain new complete genomes that represent M. bovis
lineages identified in France selected among the main genotypes responsible for TB in
the last years to refine our genomic knowledge of M. bovis via pangenome analysis and to
provide better resolution of the phylogeny needed to study the epidemiology, transmission,
and evolution of this clonal pathogen.

2. Materials and Methods
2.1. Mycobacterium bovis Strains

A total of 10 strains that cover all M. bovis lineages identified in France and repre-
senting the main genotypes responsible for TB outbreaks were selected from the National
reference laboratory strain collection (Table 1). These strains were grown in Middlebrook
7H9 + ADC enrichment supplement as described previously [7].

2.2. Additional Genomes

To improve pangenomic and SNP studies, 86 genomes representative of the M. bovis
French diversity obtained by Illumina technology in a previous study [7] and 2 complete
genomes (Mb3601 and AF2122/97) were included [18,24].

2.3. DNA Extraction

DNA extraction was performed on 40 mL of stationary phase culture using CTAB
and phenol chloroform [7,26,27]. DNA concentration was measured with Qubit 2.0 Flu-
orometer (Thermo Fisher Scientific, Rodano, MI, Italy) using the “dsDNA BR Assay” kit
(Thermo Fisher Scientific). For MinION sequencing, DNA qualities were checked with
Nanodrop and DNA integrity was checked with an Agilent 4200 Tapestation. For Illumina
sequencing, control quality was performed by Genoscreen (Lille, France) by SybrGreen
assay (Thermofisher scientific) and qualitatively controlled by agarose gel electrophoresis.
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Table 1. Information on the 10 M. bovis strains selected and sequenced in this study.

Name Mb2487 Mb3602 Mb2269 Mb0820 Mb0531 Mb0486 Mb2377 Mb1101 Mb1855 Mb3114

Accesion
Number CP096839 CP096843 CP096840 CP096841 CP096847 CP096848 CP096846 CP096845 CP096844 CP096842

Host species Cattle Deer Cattle Cattle Cattle Cattle Cattle Cattle Cattle Cattle
Spoligotype ID SB0999 SB0134 SB0134 SB0840 SB0826 SB0821 SB0853 SB0120 SB0120 SB0120
MLVA profile * 6 4 5 2 8 2 4 7 7 4 5 3 10 4 5 10 6 5 5 3 6 4 5 6 7 5 5 3 8 2 5 s 4 6 7 3 3 10 2 5 s 8 6 5 5 3 11 2 5 s 4 3 6 5 2 9 3 4 6 5 2 3 3 10 3 3 10 5 3 5 3 9 4 5 6 5 5 5 3 11 3 5 4

Cluster F C C A A A G I I I
Alias Eu2 CC SB0134 family SB0134 family F4 family F4 family F4 family F9 family Eu3 CC Eu3 CC Eu3 CC

Lenght (bp) 4,344,516 4,343,218 4,351,057 4,344,564 4,342,977 4,340,629 4,338,946 4,343,846 4,362,894 4,353,147
GC (%) 65.62 65.65 65.64 65.64 65.64 65.65 65.65 65.64 65.64 64.65

CDS 4012 3999 4014 4006 4005 3991 3986 4014 4034 4015
rRNA 3 3 3 3 3 3 3 3 3 3
tRNA 52 52 52 52 52 52 52 52 52 51

tmRNA 1 1 1 1 1 1 1 1 1 1
IS6110 Nb 3 1 3 2 4 3 1 truncated 1 12 1
IS1561 Nb 1 1 1 1 1 1 1 1 1 1
IS1081 Nb 5 + 1 truncated 5 + 1 truncated 5 + 1 truncated 5 + 1 truncated 5 + 1 truncated 5 + 1 truncated 5 + 1 truncated 5 + 1 truncated 5 + 1 truncated 5 + 1 truncated

* MLVA loci: ETR A, ETR B, ETR C, ETR D, QUB 11a, QUB 11b, QUB 26, QUB 3232.
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2.4. MinION Sequencing

Each DNA sample was purified with AMPure XP beads (Beckman coulter, Villepinte,
France). Samples were adjusted to 2 µg in 50 µL with Qubit (dsDNA BR Assay) quantifi-
cation and diluted with DNAse, RNAse-free water. The MinION library was prepared
according to Nanopore’s protocol “Native barcoding genomic DNA (with EXP-NBD104,
EXP-NBD114, and SQK-LSK109)” (Version: NBE_9065_v109_revV_14Aug2019). DNA pool
of 324 ng was loaded on an (R9.4.1) flow cell and was sequenced with Oxford Nanopore
MinION sequencer for 48h (Table S1).

2.5. Illumina Sequencing

Nextera XT sequencing libraries were generated with the “Nextera XT DNA Library
Prep” kit according to the supplier’s recommendations, except for the equimolar pool
preparation (GenoScreen optimization). Whole genome paired end 2 × 150 bases pairs (bp)
sequencing was performed using Illumina MiSeq technology by Genoscreen (Lille, France)
(Table S1). To avoid PCR overrepresented fragments during the library preparation, the
paired-end FASTQ files were filtered, leaving only one pair of replicated short reads.

2.6. Genome Assembly Method

The quality of sequencing reads was evaluated using FastQC (Version 0.11.9) (https:
//www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 10 August 2021)).
Reads were trimmed with Sickle (Version 1.33) (https://github.com/najoshi/sickle (ac-
cessed on 10 August 2021)) using a quality Phred-score of Q20 [28,29] and Nanoflit (ver-
sion 1.1.0) [30] with -q 8 and -l 500 options for long-read sequencing. For each genome,
Trycycler [31] subsample was used to perform 12 different read sets from initial long
reads. These data were assembled with Flye (version 2.8.3-b 1695) [32], Raven (ver-
sion 1.50) [33], and Unicycler (version v0.4.9b) tools [34]. These tools give different as-
semblies, and a consensus assembly was obtained for each strain using Trycycler (ver-
sion v0.5.0) [31]. The consensus assemblies were polished with Medaka (version 1.4.3)
(https://github.com/nanoporetech/medaka (accessed on 10 August 2021)) to create con-
sensus sequences and variant calls from long-read sequences against the previously assem-
bled genome. Assemblies were corrected using short-reads and Pilon (version 1.24) [35].
Pilon was executed until 2 runs returned no corrections when the reference genome and
short-reads were aligned. A circulator (version 1.5.5) [36] was used on the genomes to
change the start position to the dnaA gene (with –min_id 70 option) (available at GitHub
https://github.com/CiriacC/Hybrid_bacterial_genome_assembly (accessed on 4 Septem-
ber 2022)). Assemblies’ statistics of new complete genomes were calculated using Quast
(version 5.0.2) [37].

2.7. Genome Comparison

IS6110, IS1081, and IS1561 insertion sequences were screened on genomes using
Bionumerics (version 7.6.2) software created by Applied Maths NV and available from
http://www.applied-maths.com (accessed on 10 June 2022). Genomes were aligned with
progressiveMauve (version 2.4.0) [38] to determine the genomic structure. The list of indels
was obtained using progressiveMauve for each complete genome in comparison to genome
reference (Mb3601). In this study, we selected indels of at least 10 bp. Genes involved
in these genetic events were inferred in comparison to the reference genome annotation
(Mb3601). A comparison of these genetic events and the already known RDs was performed
according to the Bespiatykh study [39].

2.8. Pangenomic Analysis

Genomic annotation was carried out with the Prokka (version 1.14.6) [40] tool using
prodigal [41] and Mb3601 genbank file to predict ORF (open reading frame).

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/najoshi/sickle
https://github.com/nanoporetech/medaka
https://github.com/CiriacC/Hybrid_bacterial_genome_assembly
http://www.applied-maths.com
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The pangenomic study was performed with Panaroo (version 1.2.8) [42] with –merge_p-
aralogue and –clean-mode strict options on 12 complete genomes (10 new complete
genomes and 2 reference genomes). Visualization of the pangenome, core genome, and
new genes accumulation curves were computed using the “gene_presence_absence. Rtab”
matrix provided by Panaroo analysis and PanGP software [43] with Distance Guide sample
Algorithm, 500 samples size, 100 samples repeat, and 100 amplification coefficients. Acces-
sory genes were aligned with the reference genome (Mb3601) using blastn [44] to search for
events that could explain their affiliation to the accessory genome.

2.9. Whole Genome SNP Identification and Selection

Genome reads were aligned to Mb3601 using BWA mem and samtools [45,46]. Vcf
files were produced using bcftools mpileup and the SNP calling was made with bcftools
call (with –vm option) [47]. The product was filtered using vcffilter and −f QUAL > 150 −f
DP > 20 −f MQ > 49 options. All SNPs previously detected have been used to list all the
variant positions of the panel. This list was used to make a second calling (using bcftools
mpileup then bcftools call with -m option) only on these positions in order to have the same
information for all strains and facilitate their fusion with bcftools merge. SNP annotation
and effect prediction was performed using SnpEff and Mb3601 reference genome. The
final steps of variant calling were performed with vcflib vcfsnps, vcflib vcffixup, vcflib
vcfnumalt, and vcffilter (−f ‘NUMALT = 1’ option) [48]. SNPs supported by less than
five reads forward and five reads reverse were filtered. Indel and SNPs with ambiguous
nucleotide present on at least one strain have also been filtered. SNPs present in PE/PPE
family protein and pks12 were also filtered because of the low confidence and the higher
error rate of these regions [48–50].

2.10. Phylogeny Based on SNP

Evolutionary trees were inferred on Mega [51] using the maximum likelihood method
(Hasegawa–Kishino–Yano model) based on concatenated and validated SNPs (7023 SNPs
for 98 genomes). The trees were drawn to scale, with branch lengths measured in the
number of substitutions per site. Trees were midpoint rooted. A phylogenetic tree was
visualized using the Interactive Tree of Life [52].

3. Results
3.1. Complete Genomes Features

For each of the 10 genomes, we obtained a complete assembly with 1 circular contig.
Genomic characteristics are consistent with previous reference genomes and show great
stability in genomic characteristics [18,24]. The genetic structure of the complete genomes
has high stability (Figure S1). However, some differences are present especially in length
and coding sequences (CDS) number (Table 1). Mb1855 has an addition of 23,948 bp and
48 CDS in comparison to Mb2377.

All genomes have three rRNA and one tmRNA. Almost all genomes have 52 tRNA,
one of them presenting a mutation in position 77 (C→T) in Mb3114, which has only 51.

Insertion sequence (IS) analyses showed that all genomes have in the same position
one copy of IS1561 and six copies of IS1081, of which one is truncated (Table 1). According
to our previous study [53], the number of IS6110 is variable depending on the genotype.
With 12 copies, Mb1855, which belongs to the Eu3 clonal complex, presents the highest
IS6110 (1355 bp) copy number, which is one of the main reasons for its large genome size. In
Mb0820, in contrast not only to the other two Cluster A genomes Mb0531 and Mb0486 but
also to the rest of the genomes belonging to other clusters, the otherwise ancestral recurrent
copy of IS6110 in the DR locus is absent. In Mb2377genome, representing Cluster G, there
is a large deletion in the DR region which encompasses a portion of IS6110 including orfA.
Almost all IS6110 except for the truncated copy in Mb2377, have a duplication of 2–4 bp in
their insertion sites generated during IS transposition [54,55].
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Together with the presence of IS6110 variable copy numbers, genome size differences
can also be explained by the presence of deletions or insertions (indels).

3.2. Pangenome Analysis and Gene Content Variation

Pangenome analysis on 12 complete genomes (10 described here, plus AF2122/97 and
Mb3601) showed 3996 ortholog clusters and confirmed the high clonality of this species
as regards the high core genome (98%, 3900 core genes) (Figure 1). The analysis showed
78 shell genes and 18 cloud genes (Table S2).
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Figure 1. Pan-genomic histogram of 12 complete genomes of M. bovis. The figure shows the core and
accessory genes proportion in the genome’s panel.

Cloud genes are found in seven genomes that belong to three different clusters (A, C
and I) (Figure 2). Cloud genes of Mb0486 and Mb0531 correspond to PE PPE genes and
one hypothetical protein for Mb0486 (Table S2). The cloud genes of Mb1101, Mb3114, and
Mb3602 are annotated as hypothetical proteins. The cloud genes of Mb1855 and Mb3601
are due to IS6110 insertion in the CDS except for folp found in Mb3601 (Table S2).
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Figure 2. The gene distribution of pangenome. Flower plot showing in the center, genes present in
all strains (core-genes), genes present in some strains (shell genes) in the annulus, and strain-specific
genes of the 12 M. bovis complete genomes in the petals (cloud genes). Genomes are grouped in
6 previously described clusters [7].
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The low number of accessory (shell and cloud) genes is consistent with the alpha
diversity of 1.11 which highlights a closed pangenome (Figure 3). In addition, a more
detailed examination of accessory genes shows that some of them are present but pseudog-
enized (Table S2). Indeed, 14 accessory genes have been listed due to an IS6110 insertion
which interrupts CDS. For example, the rpfD_2 orthologous gene present in Mb3601 is due
to IS6110 insertion, in rpfD. Fourteen other accessory genes were implied in the putative
PhiRv1 phage protein (RD3) [39]. RD3 is present in the three complete genomes of Cluster
A, Mb3602 (Cluster C), and Mb2377 (Cluster G). Two of the ortholog clusters present in
RD3 are absent in Mb1101 but this genome has the other 12.
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accumulation curves for pangenome (blue) and core genome (green). (B) Evolution of new gene
cluster numbers over genome number. The trend line (in orange) defines the curve equation and the
alpha diversity.

The other 16 accessory genes concern PE and PPE genes. These genes are known to
be highly polymorphic and are often excluded from analyses [56]. They were excluded
from our wgSNP study but not from the indel analysis. The region with the most indels
found in our study, located at position 3,890,000 bp in Mb3601 genome, encompasses PE
PGRS genes (pe_pgrs 59, pe_pgrs 54, pe_pgrs 56 and pe_pgrs53). Other regions presenting
numerous indels are CRISPR-Cas (position 3,090,000 bp in Mb3601) or a region including
PPE genes (position 2,165,000 bp in Mb3601). This result shows that the indel distribution
is not random (Table S3).

The comparison of complete genomes against Mb3601 as reference genome shows
72 indels for Mb2487, 56 for Mb1101, 54 for Mb1855, 34 for Mb3114, 74 for Mb0820, 88 for
Mb0531, 83 for Mb0486, 58 for Mb2377, 77 for Mb2269, and 69 for Mb3602 (Table S3).

Some large indels (more than 2 kb) were identified in the complete genomes
(Tables 2 and S3).

3.3. Contribution of the Complete Genome to M. bovis Lineages Definition

Obtaining complete genomes was an opportunity to revisit the population structure
of French M. bovis strains by looking at the topology of the SNP-based phylogenetic tree
and identifying genetic traits that could complete the new nomenclature covering the
main M. bovis phylogenetic groups [11]. 7023 SNPs were found among the 98 genomes
(12 complete and 86 draft genomes) (Table S4). The majority (87.7%) of SNPs were present
in CDS and 12.3% are intergenic. The analysis showed that 31.4% are synonymous variants
and 56.3% are non-synonymous variants. The phylogenetic distribution of SNPs, shown in
Figure 4, discriminated M. bovis genomes into 10 clusters well resolved by at least 200 SNP.
This population structure is congruent with previous studies [7,53]. Indeed, the heatmap
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clearly highlights lineages based on the absolute SNP distance between strains, which
supports a very clear separation between the lineage La1.2 (clusters G+H+I) and lineage
La1.8.2 (cluster A+B+C). However, lineages 1.7 or 1.8 are not clearly identified in this figure.

Table 2. Details of large indels affecting the genomes.

Nomenclature Length (in bp) Number of Locus Tags Associated Genome

Indel-Mb0531-33 2384 5 Mb0531
Indel-Mb0486-6 3148 4 Mb0486

Indel-Mb0486-11 3634 4 Mb0486
Indel-Mb3602-33 2150 2 Mb3602
Indel-Mb2269-1 2122 4 Mb2269

Indel-Mb2269-24 2368 6 Mb2269
Indel-Mb2487-5 2691 3 Mb2487

Indel-Mb2487-36 2387 6 Mb2487
Indel-Mb2487-50/RDBovis 2409 3 Mb2487

Indel-Mb2377-27 5539 6 Mb2377
Indel-Mb1101-1 2966 2 Mb1101
Indel-Mb1101-8 4384 2 Mb1101

Indel-Mb1101-21 1160 1 Mb1101
Indel-Mb1855-26 1730 1 Mb1855
Indel-Mb1855-29 3058 3 Mb1855
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All groups described in this study have specific SNPs (Figure 5). Some groups have
few specific SNP such as Cluster C, and Eu3. Other groups have more than 60 specific
SNPs such as Eu2, Cluster A, or Cluster G.
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Indels were also examined on the 98 genomes and the specificity of an indel for an
M. bovis group was determined when it was identified in all genomes of this group (Figure 5).

3.3.1. Cluster A/F4 Family

Three complete genomes were obtained for Cluster A: Mb0486, Mb0820, and Mb0531.
This cluster is described by 66 specific SNPs and 8 specific indels (Table S4). In comparison
to Mb3601, the deletions involve metk (MBS3601_RS07300) and a leuA (MBS3601_RS19090)
partial deletion. However, leuA was also partially deleted in the different and larger indel of
Mb2487 (cluster F). Two recurrent IS6110 insertions sites were found in the three complete
genomes. Other genomic characteristics of this cluster are the absence of spacer 33 in the
DR region, RD3, and the truncated repetition of QUB26.

3.3.2. Cluster C/SB0134 Family

This cluster is composed of two subgroups and is described by few SNP and only one
deletion of 514 bp (Figures 4 and 5). This group does not present spacers 4 and 5 in their
spoligotypes. Mb3602 and Mb2269 are present in each of these subgroups.

3.3.3. Cluster F/Eu2

Mb2487 is representative of this clonal complex, which is defined by 77 SNPs, including
that in guaA described originally [3] and a lack of spacer 21 in their spoligotypes.

3.3.4. Lineages 1.7 and 1.8

A deletion of 2409 bp (Indel-Mb0486-49, Indel-Mb0531-56, Indel-Mb0820-44, Indel-
Mb3602-44, Indel-Mb2269-47, and Indel-Mb2487-50) which corresponds to RDBovis [39] is
common to genomes of cluster A, C, and F and allow to define the lineage La1.7 + La1.8.
This lineage is also defined by 108 SNPs and an insertion of more than 2000 bp (Indel-
Mb2487-64, Indel-Mb2269-63, Indel-Mb3602-58, Indel-Mb0820-65, Indel-Mb0531-76, and
Indel-Mb0486-49). However, the insertion present in Mb2487 is the largest compared to
those in the other complete genomes. This region contains PPE genes. These two indels
are also present in AF2122/97, as shown in a previous study comparing this genome
to Mb3601.
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3.3.5. Cluster G/F9 Family

Mb2377 is representative of cluster G, which is defined by 83 SNPs. As mentioned
before, this cluster is characterized by the truncated IS6110 in the DR region and the lack of
spacer 1 to 17. These specific genetic characteristics are due to a large indel (Indel-Mb2377-27).

3.3.6. Cluster I/Eu3

In addition to Mb3601, three complete genomes were obtained for this cluster, which is
the most represented among the strains studied in France [12,14]. The Eu3 clonal complex is
only defined by two SNPs. Indeed, Mb1101 is close to BCG vaccine strains and is separated
from other Eu3 strains (Figure 6).
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Figure 6. Phylogenetic tree of 98 M. bovis genomes. The two previous reference genomes (Mb3601
and AF2122/97) are marked in blue. The 10 new complete genomes are indicated in red. The
phylogenetic tree is based on 7023 whole genome SNPs. The strains are grouped according to the
previous classification Hauer et al. 2019, Zwyer et al. 2021 and Guimares et al. 2020 [7,11,16]. The
colors of the M. bovis groups are in accordance with the previously described clusters and lineages
Hauer et al. 2019, Zimpel et al. 2020 and Zwyer et al. 2021 [7,10,11].

We propose to define Cluster I1 which corresponds to Cluster I strains by removing
vaccine strains and Mb1101. Mb3114, Mb3601, and Mb1855 are present in this cluster,
which is defined by 53 SNPs and 3 indels. One of these indels, a deletion of 622 bp, includes
VapB46 (Tables S3 and S4).
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4. Discussion

Using Illumina and MinION sequencing technologies, 10 complete genomes of M. bovis
were obtained and represented—with AF2122/97 and Mb3601—the main M. bovis clusters
described previously [7]. Our analysis showed highly similar genomic features and a
conserved synteny within these new 10 complete genomes. Pangenome established with
the ten complete genomes and the two other available complete genomes [18,24] confirmed
a closed pangenome with a core gene representing 98% of total genes in agreement with
previous studies [4,15,57]. However, a recent study using the “Get-homologues pipeline”
and draft genomes showed an open pangenome and a larger accessory genome in compari-
son to our study [58,59]. This difference can be explained by the short-read sequences data,
which lead to the increase of the accessory genome [15]. To overcome this problem, Panaroo
can be used to clean up annotation errors due to fragmented assemblies or misassem-
bly [42]. Indeed, Panaroo produces superior ortholog clusters, which induce a reduction in
the accessory genome estimate size and an increase in the core genome. The pangenomic
analysis of 12 complete genomes highlighted an alpha diversity of 1.11 consistent with a
closed pangenome [60]. In addition, the presence or absence of certain ortholog clusters in
genomes is due to gene pseudogenization. Our analysis showed that the size of the core
genome decreases more rapidly than the increase in the pangenome size corroborating
that evolution of the MTBC complex members genomes, as recently demonstrated for
M. bovis [61], occurs by gene loss or pseudogenized instead of gene gain. This event could
explain the pathogen’s host specialization as shown in M. tuberculosis [62,63].

Among genomic features, we observed variations in genomes size between the 10 com-
plete genomes. This observation was explained by a variable number of copies of IS6110
according to the genomes and the indel content. Indeed, the 12 copies of IS6110 in Mb1855
represent an addition of 14,905 bp in comparison to genomes with only one copy of IS6110.
The complete genomes allowed us to confirm the presence of multiple copies of IS6110 in
certain M. bovis genotypes according to our previous study [24,53]. The transposition of
this genetic element can play an important role in bacterial evolution by interrupting or
leading to the overexpression of genes [53,64–66]. Indeed, some genetic changes such as
gene deletion or gene pseudogenization that could affect the core genome, can be attributed
to IS6110. Multiple examples are present in literature and show the deletion of some genes
like cas genes in the CRISPR-Cas locus [65]. In our study, one of these examples is present
in Cluster G strains with the absence of Cas genes and the first 17 spoligotype spacers.
However, except for this example, all IS6110 have a duplication of 2–4 bp in their insertion
sites which in the nine other complete genomes shows the absence of IS recombination
events between two IS6110.

Indels can also explain length differences among genomes. Some large deletions are
identified in this study as Indel-Mb2377-27 of 5539 bp in Mb2377, Indel-Mb2487-64 of 5166
bp in Mb2487, RDBovis of 2409 bp present in genomes of La1.7 and La1.8 or RD3 of 9253 bp
present in Cluster A and several other genomes [39]. This last indel corresponds to prophage
phiRv1 which seems to have a role in host hypoxia [61,67,68]. However, Mb1101 has a
specific deletion pattern in this region that involves two ortholog clusters instead of 14 in
RD3. In addition, our results showed that indel positions are not random. Many indels are
present in the CRISPR-Cas region [65] but the most polymorphic region is that containing
PE and PPE genes. This high frequency of deletions and insertions in these regions is in
agreement with the previous M. bovis complete genome publication [24]. Further studies
on these indels are needed to better understand their role in bacterial evolution.

In this study, the selected M. bovis strains to obtain complete genomes, represent the
main genotypes responsible for TB outbreaks in France and are also representative of
M. bovis genotypes found in other countries. Indeed, Mb2487 belongs to the lineage 1.7.1,
formerly described as Eu2 clonal complex [3,8,11]. Four complete genomes belong to
lineage La 1.2, 3 of which belong to the Eu3 clonal group (in addition to Mb3601). Mb1855
is representative of highly prevalent strains in France with several copies of IS6110. Mb3114
is representative of a common genotype in Italy with only one copy of IS6110 [69]. Five
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genomes belong to lineage 1.8.2. This lineage had previously been separated in the Hauer
study into Cluster A, B, and C [7]. Harmonization of the nomenclature used to describe
M. bovis lineages may facilitate comparisons of WGS studies. Specific indels and SNPs
were described for complete genomes or M. bovis lineages. Some of these genetic events
such as guaA and other 68 SNPs specific to the Eu2 strains [10], already described in the
literature, were confirmed in this study. Nevertheless, the number of specific SNPs found
for the previously described clusters was larger than what was found in a recent study [11].
These differences can be explained by the smaller number of strains used in our study. This
result shows the importance of using a panel of strains as exhaustive as possible to describe
specific events of the M. bovis lineage. Some indels were found to be specific to M. bovis
lineages, others appear to be specific to certain genomes. They will need to be investigated
in larger panels of strains to determine if they are the signature of groups or subgroups
of M. bovis.

TB cattle outbreaks in France are present in specific regions where M. bovis circulates
in wild and domestic communities of hosts [13,25] where the transmission links between
infected animals remain difficult to establish as M. bovis strains share spoligotype and a
multilocus variable number of tandem repeats analysis (MLVA) identical profiles [70–72].
WGS-SNP can be used to refine these studies but requires adapted reference genomes to
the field strains. Mb3601 and other representative complete genomes could be used to
improve epidemiological studies for the surveillance of TB and contact tracing between
infected animals [16]. The new complete genomes described in this study are closer to field
strains than AF2122/97, the genome used as a reference until now, which will allow better
epidemiological surveillance of the disease based on WGS data.

5. Conclusions

Ten new M. bovis complete genomes were obtained in this study. These new complete
genomes cover the M. bovis French diversity but are also representative of M. bovis lineages
present in other countries. These genomes allow us to better describe M. bovis lineages. A
comparison of these complete genomes confirmed that the global genome organization of
M. bovis is very stable and shows a closed pangenome. The search for indels and SNPs made
it possible to specify certain genomic traits and the absence of certain genes characterizing
each cluster described in this article.

These complete genomes, adapted to M. bovis clusters, will be useful to better under-
stand TB transmission dynamics in multi-host systems and therefore to implement more
effective control measures.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms11010177/s1, Figure S1: Alignments of the
12 M. bovis complete genomes. Table S1: Sequencing metric of the 10 new genomes and obtained with
fastqc. A: Metric provide to Illumina metric. B: metric provide to MinION metric. Table S2: Pange-
nomic study performed on 12 M. bovis complete genomes. The table indicates the genes accessory.
“1” shows the presence of CDS and “0” his absence. Table S3: Indels between the ten new complete
genomes and Mb3601 using progressiveMauve. Table S4: WgSNP analysis performed on 98 M. bovis.
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