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Abstract: Nematophagous fungi (NF) are a group of diverse fungal genera that benefit plants. The
aim of this review is to increase comprehension about the importance of nematophagous fungi
and their role in phosphorus solubilization to favor its uptake in agricultural ecosystems. They
use different mechanisms, such as acidification in the medium, organic acids production, and the
secretion of enzymes and metabolites that promote the bioavailability of phosphorus for plants. This
study summarizes the processes of solubilization, in addition to the mechanisms of action and use
of NF on crops, evidencing the need to include innovative alternatives for the implementation of
microbial resources in management plans. In addition, it provides information to help understand the
effect of NF to make phosphorus available for plants, showing how these biological means promote
phosphorus uptake, thus improving productivity and yield.

Keywords: biocontrol; nematophagous fungi; phosphorus; solubilization

1. Introduction

Pathogenic threats and nutritional deficiency are the main problems that affect yield
and productivity in plant crops [1], increasing the need to apply new microbial agents to
solve both obstacles [2]. Thus, NF have been investigated because of their dual ability as
nematode controllers and as plant growth promoters that increase the bioavailabilty of
nutrients [3].

Phosphorus (P) is the second most important element for plants after nitrogen. It
regulates metabolism and plant development and growth, and an adequate supply is needed
to keep these metabolic functions [4]. In addition, it is found in abundance in soil, although
its uptake is low, which results in a limitation for the productivity of agricultural crops [5].

P can be solubilized by several soil microorganisms (saprotrophic bacteria and fungi) [6].
Phosphate-solubilizing microorganisms (PSM) play an important role in soil by mineralizing
organic P, solubilizing inorganic P minerals, and storing P in biomass [7], thus improving
plant growth and yield [8]. PSM can solubilize phosphorus by secreting protons and
producing organic anions, such as citrate, oxalate, and gluconate [9]. However, the amount
of P solubilization depends on the microbial strain and the relationship between carbon
sources, P, and organic acid production [10].

Bacteria can release organic acids that solubilize P or produce acid and alkaline
phosphatases that mineralize organic P [11]. There are bacterial genera that are known to
be very efficient in these mechanisms, such as Arthrobacter, Bacillus, Burkholderia, Natrinema,
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Pseudomonas, Rhizobium, and Serratia [12]. Bacteria are superior to fungi in colonizing
plant roots, but are less tolerant to acids [13], so fungi have great potential to solubilize
P in acidic conditions [14]. Fungi, in fact, have a higher capacity to release P compared
with bacteria [15]. They use different mechanisms such as the secretion of fatty acids, the
production of enzymes, and the discharge of metabolic substances (siderophores) that can
rapidly metabolize P [16].

Despite the numerous studies on NF as biocontrol agents, the comprehensive and
complete understanding of the mechanisms of action is still incipient [17]. In general,
the interactions of NF have been evaluated to reduce the densities of plant pathogenic
nematodes [18]. Yet, they present other benefits such as the synthesis of phytohormones, as
well as favoring the absorption of P [19]. The inoculation of P solubilizing microbial agents
in seeds, crops, and soil aims at improving agricultural production without affecting soil
health [20]. Bioformulations based on fungal strains that increase plant yield and are also
effective at solubilizing nutritional elements are needed [21]. Therefore, the objective of this
review is to broaden the understanding of NF and their potential use in P solubilization,
focusing on their mechanisms of solubilization and the benefits provided in the nutrition
of agricultural crops.

2. Mechanisms of P solubilization by NF

Plants can harness various forms of P; nevertheless, roots take up negatively charged
forms of orthophosphate ions (HPO4

2−- and HPO4
−) depending on the soil pH [22].

Although agriculture practices introduce considerable amounts of phosphate in soil, only
15 to 30% of P is taken up by plants [23]. It generally binds to iron and aluminum oxides
and hydroxides, or to calcium in calcareous soils, becoming unavailable for roots due to
chemical precipitation or physical adsorption [24]. Therefore, the application of P itself
does not contribute to the improvement of agricultural production systems (Figure 1).
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Figure 1. Systematic diagram of P solubilization by fungi used in the biological control of nematodes.
(a) Nematodes can be parasitized and predated by (in clockwise order) trapping fungi, egg-parasite
fungi, special device-producing, or toxin-producing and endoparasitic species. (b) Compounds
produced by fungi. (c) Chemical reactions of P in soil, binding with elements such as calcium, iron,
and aluminum that can then be mineralized or solubilized by the NF compounds. (d) Roots absorbing
negatively charged orthophosphate ions.
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Several microorganisms have been studied in relation to the solubilization of P. Fungi
and bacteria use different mechanisms on soluble phosphates, especially acidification of the
medium, chelation, exchange reactions, and the production of solubilizing enzymes and of
various organic acids [4,8,20,25]. Therefore, some species are able to solubilize and mobilize
P for plants, including, several nematode controlling fungi. An example is Trichoderma
harzianum, which can acidify the medium, produce chelating metabolites, and produce
a redox activity (capable of reducing Fe and Cu) [26].

2.1. Organic Acids

Organic acids or anions range from fatty acids to secondary metabolites [22]. They
are by-products derived from bacteria and fungi that are able to mobilize P in their mi-
croenvironment. Organic acids improve P release so that it can be absorbed by plants [27].
Filamentous fungi use several mechanisms to solubilize minerals and they produce high
amounts of organic acids [28]. Species of the genera Aspergillus, Penicillium, Trichoderma, and
Fusarium solubilize P by producing different types of organic acids [14,29–32]. Furthermore,
it is possible that some filamentous fungi such as Aspergillus niger solubilize P when exposed
to high salt contents (4% NaCl) [33]. Even on ferric phosphate substrates, A. niger can
secrete large amounts of citric and oxalic acids to release P [34]. Therefore, the potential of
filamentous fungi in the agrobiotechnology industry is increased, especially because of their
properties, for the production of organic acids [35].

2.2. Solubilizing Enzymes

Organic P from animal and plant residues can be mineralized by the action of phos-
phatases [36], such as phytases that hydrolyze the phospho-monoester bonds present in
phytates [37]. Nematode controlling fungi can produce phytases during their development
or the production of trapping structures [38]. The nematode-capturing fungus Arthrobotrys
oligospora forms phytases while building adhesive networks, significantly increasing the re-
lease of P [39]. Among the genera of NF that mainly produce phytases and phosphatases under
laboratory conditions are the filamentous fungi Aspergillus, Penicillium, and Trichoderma [40].

2.3. Siderophore Production

These are low molecular weight organic iron chelating compounds. They can be
produced by bacteria, fungi, and plants [40]. Among the most studied fungi for siderophore
production are Aspergillus fumigatus and Aspergillus nidulans, which have 55 similar types of
siderophores [41,42]. In addition, Penicillium produces siderophores, capable of solubilizing
tricalcium phosphate, even in contaminated soils, opening new opportunities in the field
of phytoremediation and agrobiotechnology [43]. Therefore, the use of siderophores is
increasing in use as a new alternative for agriculture, to replace pesticides and synthetic
fertilizers [44].

3. Potential of NF in P Solubilization

NF can be used in agriculture through the massive production of infective spores or
through formulations that improve growth, viability, and efficacy [45]. They use several
mechanisms of recognition, signaling, differentiation, and penetration of the cuticle or egg
shell of nematodes through mechanical and enzymatic actions [46]. For the purposes of
this study, NF are classified according to their mechanism of attack, including trapping,
endoparasitic, egg parasitic, toxin-producing, and special device-producing species [47].
NF interact with the environment, performing essential functions to maintain the stability
of food webs and the cycling of nutrients in soil [48].

NF widely used in management plans as biological control agents include Purpureocillium
lilacinum, Pochonia chlamydosporia, Trichoderma harzianum, Arthrobotrys spp., Hirsutella spp.,
etc. [49]. Some of these fungi are widely used in agriculture due to their ability to infect and
kill arthropods [50]. They are recognized as biopesticides in the management of destructive
pests. Some notable examples include Beauveria bassiana [49], Aspergillus fijiensis [51], Cladospo-
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rium tenuissimum, and Penicillium citrinum [52]. Among NF, some have been reported as P
solubilizers. Trichoderma is one of the most studied genera and is considered as a growth
promoter, pathogen controller, and nutritional promoter of plants [53,54]. Furthermore, some
NF can solubilize P, even under low temperature conditions [55].

4. Trapping Nematodes—Predatory Fungi

Fungi that capture nematodes have a double function: controlling the populations
of infective nematodes and also acting as biofertilizers when applied in soil, being able to
solubilizing and mobilize some important nutrients [56,57]. The adhesive networks build-
ing fungus Duddingtonia flagrans have been shown to solubilize P both in laboratory [56]
and in greenhouse conditions [2]. Likewise, A. oligospora has been used successfully in
the solubilization of phosphate rock in in vitro and in vivo conditions (Figure 2), showing
promising results in the uptake of P by plants [58].
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Figure 2. Nematode-capturing fungus Arthrobotrys oligospora. Phosphate solubilization zone on
Pikovskaya agar plates, as shown by the halo (arrows).

5. Endoparasitic and Egg-parasitic Fungi

Endoparasitic fungi are obligate pathogens that infect nematodes. Conidia of the ob-
ligate endoparasitic fungus Drechmeria coniospora are ingested or adhere to the cuticle of
its hosts [59]. The spores produce a germination tube that enters the nematode, producing
a mycelium that, by degrading internal tissues, exploits the host nutrients for growth [60].
One of the most studied fungal parasites of nematode eggs is the fungus Pochonia chlamy-
dosporia, able to reduce populations of several plant parasitic nematodes, including species of
Globodera, Heterodera, Meloidogyne, Nacobbus, and Rotylenchulus [61]. Pochonia chlamydosporia
benefits the plant, as it is able to control nematode infections, shortening the flowering and
fruiting times (up to 5 and 12 days), as well as significantly increasing root growth [62]. This
parasitic fungus produces phosphatases, organic acids, and propionic acid, which promote
the depolymerization of phosphate compounds [63,64]. Furthermore, in association with the
predatory fungus D. flagrans, they can significantly increase nutrient uptake, especially P, by
up to 70% in tomato plants [3]. Therefore, research studies suggest the use of bioformulated
P. chlamydosporia for the management of phytoparasitic nematodes, with the potential to
support plant nutrition [65].

Purpureocillium is a further fungal genus used for the reduction of phytoparasitic
nematode eggs and females. Some species attack the gall-forming nematodes Meloidog-
yne spp. [66], and show a P solubilization capability in laboratory conditions [67], as well as
promoting tomato seedling growth in greenhouse conditions [68]. These fungi may secrete
hydrolytic enzymes and siderophores that solubilize P and promote plant growth [69].
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6. Toxin Production

Toxin-producing fungi are characterized by the release of compounds that paralyze
nematodes and produce a rapid and systemic cell necrosis in multiple tissues throughout
their bodies. In the order of the Agaricales, one representative is Pleurotus ostreatus, which is
a toxin-producing fungus capable of producing necrosis after the contact of hyphae with the
cilia of the sensory system of nematodes [70]. The fungus has P solubilizing properties [71]
and is applied as a biofertilizer based on biomasses obtained as mycelial by-products [72].

Piriformospora indica is an endosymbiotic fungus belonging to the order Sebacinales
(Basidiomycota), capable of producing metabolites that inhibit nematode populations [73].
This species has shown synergy with phosphate-solubilizing bacteria, sustaining the growth
of chickpea plants [74]. Studies have indicated that the transfer of P by P. indica to the host
plant has a significant effect on its development [75].

7. Filamentous Fungi with Nematophagous Activity

In addition to the examples mentioned above, there are a variety of fungi that do not
use mechanisms based on capture, parasitism, toxins, or special devices, so it is presumed
that hydrolytic enzymes are a key in the nematode infection process [76]. Among the
known genera that work as both biocontrol and P solubilizers are Trichoderma, Fusarium,
Penicillium, and Aspergillus. Filamentous fungi can secrete hydrolytic enzymes, organic
acids, and low molecular weight natural products, which confer several functions, including
P solubilization [77], and are able to solubilize calcium and iron phosphates [78]. Thus, they
hold great potential for the development of biofertilizers, contributing to soil fertility and
promoting plant growth [79], which are essential in sustainable agriculture (Table 1) [80].

Filamentous fungi such as Trichoderma spp. are often dominant in soil microbial
communities and have the ability to colonize roots [81]. Trichoderma spp. are marketed
all over the world for their potential as biocontrol and biostimulant agents for numerous
agricultural crops. The application of Trichoderma spp. and related metabolites allegedly
improves crop productivity, nutrient supply, and defense against plant pathogens [54,82],
as it combines P solubilization and nematode predation.

Table 1. Fungi known as nematophagous and P solubilizers.

Type of
Fungi Fungi Structure

Involved
Substance That
Is Solubilized

Solubilization
Mechanism Reference

Predatory

Arthrobotrys oligospora Adhesive networks Phosphate rock pH of the culture medium. [58]

Arthrobotrys conoides and
Duddingtonia flagrans

Adhesive networks
Adhesive networks

Tricalcium, zinc, and
aluminum phosphate
phosphate rock

pH of the culture medium.
Production of organic acids [56]

Duddingtonia flagrans Adhesive networks Phosphorus - [2,3]

Nematode
egg-
parasitic

Pochonia chlamydosporia Appressoria
and hyphae Phosphorus Phosphatases and

organic acids [3,62,63]

Purpureocillium variotii Toxic metabolites Phosphorus Siderophores and pH of the
culture medium [68]

Purpureocillium hepiali Toxic metabolites Phosphate pH of the culture medium [67]

Purpureocillium lilacinum Toxic metabolites Calcium and iron
phosphate

pH of the culturemedium
and organic acids [83]

Toxin
producing

Piriformospora indica Metabolites Organic and inorganic
phosphorus pH of the culture medium [73,75,84]

Pleurotus ostreatus Toxins Phosphate rock
Organic acids: tartaric,
malic, citric, lactic, succinic
and four unknown acids

[71,85]
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Table 1. Cont.

Type of
Fungi Fungi Structure

Involved
Substance That
Is Solubilized

Solubilization
Mechanism Reference

Filamentous
fungi with
indeter-
mined
ne-
matophagous
mechanism

Trichoderma harzianum Hydrolytic enzymes Calcium phosphate
pH of the culture medium,
production of chelating
metabolites, and redox
activity

[26]

Trichoderma asperellum Hydrolytic enzymes

Monopotassium
phosphate
Phytate
Phosphate rock

pH of the culture medium
and organic anions [86]

Trichoderma spp. Hydrolytic enzymes Phosphate Organic acids [87]

Aspergillus niger,
Penicillium canescens,
Eupenicillium ludwigii,
and Penicillium islandicum

Hydrolytic enzymes Phosphate rock
pH of the culture medium,
acids: oxalic, citric, and
gluconic

[31]

Aspergillus, Penicillium,
Trichoderma, Fusarium,
Mucor, Ovularopsis,
Tritirachium, and
Geotrichum

Hydrolytic enzymes Phosphate rock
Tricalcium phosphate

Acids: fumaric, acetic,
gluconic, lactic, and
succinic

[29]

Penicillium expansum,
Mucor ramosissimus, and
Candida krissii

Hydrolytic enzymes Phosphate rock Acids: citric, oxalic, and
gluconic [79]

Penicillium guanacastense Hydrolytic enzymes Organic and
inorganic phosphorus

Acids: gluconic, oxalic,
lactic, and malonic [32]

Penicillium bilaji and
Penicillium cf.fuscum Hydrolytic enzymes Phosphate rock Organic acids [30]

Aspergillus niger Hydrolytic enzymes
Various forms of
soluble P calcium iron
aluminum phosphate

Acids: gluconic, oxalic,
tartaric [14,33]

Aspergillus aculeatus Hydrolytic enzymes Phosphate rock pH of the culture medium [88]

Rhizopus stolonifer,
Aspergillus niger, and
Alternaria alternata

Hydrolytic enzymes Calcium phosphate Organic acids [89]

Aspergillus tubingensis Hydrolytic enzymes Phosphate rock pH of the culture medium [90]

Penicillium oxalicum and
Aspergillus niger Hydrolytic enzymes Tricalcium phosphate Organic acids [91]

Penicillium bilaii Hydrolytic enzymes Calcium phosphate Acids: citric and oxalic [92]

Aspergillus niger and
Penicillium italicum Hydrolytic enzymes Tricalcium phosphate pH of the culture medium [93]

Penicillium oxalicum,
Trichoderma virens, and
Aspergillus

Hydrolytic enzymes

Insoluble tricalcium
phosphate, soluble
dipotassium
hydrogen phosphate

pH of the culture medium
and organic acids [94]

Penicillium Hydrolytic enzymes Phosphate pH of the culture medium [95]

Penicillium oxalicum Hydrolytic enzymes Phosphate Organic acids [96]

Paecilomyces, Trichoderma,
Aspergillus, Fusarium, and
Gongronella

Hydrolytic enzymes Calcium phosphate
Iron phosphate [78]
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8. Agricultural Solutions: Application of NF in P Solubilization

Although P is added to the soil of agricultural crops, chemical fertilizer synthesis
is an energy-consuming process with long-term impacts on the environment in terms of
eutrophication, fertility decrease, and carbon footprint [97]. Nematophagous species have
been used for plant growth promotion and to sustain yields, especially members of the
genera Trichoderma, Purpureocillium, Pochonia, Fusarium, Arthrobotrys, and Verticillium [98].

Several NF are beneficial because of the production of phytohormones, antibiotics,
or siderophores, which benefit long-cycle and short-cycle crops [99] (Table 2), as shown
by the P solubilization activity in alkaline soils, which increase the yields of corn and
wheat [100,101]. These NF potentially shorten the maturity period of crops, improve fruit
quality, increase the availability of soluble P, and improve soil biodiversity [102]. Thus,
there is a positive link between the application of these fungal strains and the P content in
soil and plants [103].

Currently, several investigations suggest the use of fungi as bioinoculants to increase
the yield in agricultural crops [104], as well as ornamentals. P solubilization has been in fact
also reported in shrubs within ornamental greenhouses, as demonstrated by the application
of Mortierella sp. on seedlings of Leucaena leucocephala [105].

Table 2. List of P-solubilizing NF and related benefits in agricultural crops.

P-Solubilizing Species Crop Plant Benefits Reference

Geomyces pannorum,
Paecilomyces carneus Avena sativa Increase availability of phosphorus in the soil and

mitigate phytoparasitic nematodes [106]

Duddingtonia flagrans
Pochonia chlamydosporia Soy bean and tomato Reductions in the number of eggs and galls per gram of

root and increased nutrient content in roots [2,3]

Pochonia chlamydosporia Tomato

Increase in secondary roots and increase in the total
weight root of seedlings
Reduction in flowering and fruiting times and greater
weight of mature fruits

[62]

P. chlamydosporia Maize
Cowpea Promoting root growth [107]

Purpureocillium lilacinum
Purpureocillium lavendulum
Metarhizium marquandii

Maize
Beans
Soy bean

Plant growth promotion and availability of P and N [104]

Purpureocillium lilacinum Tomato Plant growth promotion and phosphorus solubilization [69]

Pleurotus ostreatus Maize
Increase in root and shoot lengths, fresh and dry root
weights, fresh and dry shoot weights, chlorophyll content,
and nutrient uptake

[71]

Trichoderma,
Purpureocillium Banana Active production of indole-3-acetic acid IAA and

solubilize insoluble phosphate [99]

Trichoderma Soy bean Plant growth promotion increase of P uptake efficiency [82,87]

Aspergillus niger,
A. fumigatus,
Penicillium pinophilum

Wheat and faba bean Yield of wheat grains and faba bean seed production [108]

Penicillium oxalicum Wheat and maize Replace chemical fertilizer in alkaline soils.
Improved crop production [101]

Penicillium sp.
Penicillium oxalicum Maize Increased uptake of P by plants and increased availability

of P in soil [100]
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Table 2. Cont.

P-Solubilizing Species Crop Plant Benefits Reference

Penicillium sp.
Aspergillus foetidus Sorghum bicolor L. P uptake and increased growth [109]

Penicillium expansum,
Mucor ramosissimus,
Candida krissii

Wheat Plant growth promotion, P available in soil, and P absorption [79]

Penicillium oxalicum Rapeseed Solubilize inorganic P and mineralize organic P [110]

Mortierella capitata Maize Increased biomass, chlorophyll, and gibberellic acid [111]

Mortierella sp. Avocado Plant growth promotion and P uptake [112]

9. Future Research Perspectives

The main P source in the world, phosphate rock, is fundamental for food production.
It is strongly threatened as it is a finite resource. P, for the most part, is limited to a few
countries in the world, particularly Morocco, which holds 75% of the world reserve [113].
Therefore, in recent years, the challenge of ensuring sustainable global P management
to achieve world food security has been evidenced [114]. Given the current agricultural
practices dependent on the continuous supply of commercial P-based fertilizers [115], the
need to search for new sustainable strategies to manage the P availability in agricultural
fields has increased [116]. Therefore, biological activators must be used to accelerate the
bioavailability of P for plants, making NF important not only for the biological control of
nematodes, but also for P solubilization. Their applications are also in accordance with
sustainable agricultural practices for developing countries [117].

Currently, microbial-based fertilizers are not only considered for productivity and
economic benefits, but also for their use as environmental-friendly products [18]. The
aim is to guarantee less damage to water quality, increase nutrients recycling, reduce the
consumption of resources, improve soil health, and increase the biodiversity of beneficial
microorganisms [118]. Therefore, there is a demand to join efforts towards the search and
discovery of microfungi, especially from little-explored natural regions [119], with the
potential to sustain crop nutrition [120]. In fact, the excessive use of fertilizers affects soil
health, adding to the presence of pathogens and pests [121].

Filamentous fungi with a dual activity (nematicide and P solubilizers) have versatile ca-
pacities to synthesize biocompounds such as enzymes, organic acids, and metabolites [122].
Especially, for P bioavailability, they can biologically produce high concentrations of organic
acids, offering new knowledge through the detection of genes related to the mechanisms of
phosphate solubilization [24,120,123]. Biotechnology applications may offer sustainable
solutions based on microorganisms that are tolerant to new environmental conditions,
including the microbiota that favors plant nutrition [124].

10. Conclusions

Several NF have the ability to suppress nematode parasites and improve the uptake
of nutritional elements in order to promote plant growth and development. They have
been successfully applied as biofertilizers and biocontrol agents to establish beneficial
ecological relationships within their environment. For P solubilization, they rely on different
mechanisms, such as a decrease in pH and the production of siderophors, organic acids,
and enzymes. The wide variety of mechanisms for P solubilization in NF can be harnessed
to reduce the dependence on P-based fertilizers in agriculture. The availability of new
enzymes such as phytases promotes the search for beneficial microorganisms to develop
environmentally-friendly and sustainable management plans.
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