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Abstract: Gut microbiota play vital roles in human health, utilizing indigestible nutrients, producing
essential substances, regulating the immune system, and inhibiting pathogen growth. Gut micro-
bial profiles are dependent on populations, geographical locations, and long-term dietary patterns
resulting in individual uniqueness. Gut microbiota can be classified into enterotypes based on their
patterns. Understanding gut enterotype enables us to interpret the capability in macronutrient diges-
tion, essential substance production, and microbial co-occurrence. However, there is still no detailed
characterization of gut microbiota enterotype in urban Thai people. In this study, we characterized
the gut microbiota of urban Thai individuals by amplicon sequencing and classified their profiles into
enterotypes, including Prevotella (EnP) and Bacteroides (EnB) enterotypes. Enterotypes were associated
with lifestyle, dietary habits, bacterial diversity, differential taxa, and microbial pathways. Microbe–
microbe interactions have been studied via co-occurrence networks. EnP had lower α-diversities
than those in EnB. A correlation analysis revealed that the Prevotella genus, the predominant taxa of
EnP, has a negative correlation with α-diversities. Microbial function enrichment analysis revealed
that the biosynthesis pathways of B vitamins and fatty acids were significantly enriched in EnP and
EnB, respectively. Interestingly, Ruminococcaceae, resistant starch degraders, were the hubs of both
enterotypes, and strongly correlated with microbial diversity, suggesting that traditional Thai food,
consisting of rice and vegetables, might be the important drivers contributing to the gut microbiota
uniqueness in urban Thai individuals. Overall findings revealed the biological uniqueness of gut
enterotype in urban Thai people, which will be advantageous for developing gut microbiome-based
diagnostic tools.

Keywords: gut microbiome; gut microbiota; enterotype; Ruminococcaceae; baseline gut microbiome;
urban; co-occurrence network; 16S rRNA sequencing; Thai
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1. Introduction

A hundred trillion microorganisms inhabiting the gastrointestinal tract play pivotal
roles in maintaining and improving human health, including the utilization of indigestible
nutrients [1], production of essential metabolites, e.g., short-chain fatty acids (SCFAs) [2,3],
improvement of the immune system [4], reduction of inflammation [4], and elimination of
toxins and pathogens [5–7]. Throughout the lifespan of a human, several factors, including
mode of birth, breastfeeding, heredity, pathogenic infections, surgical procedures, antibiotic
use, long-term dietary habits, behavioral changes, and geographical locations, can affect
the composition and structure of these gut microbial communities [8–11]. The alteration
of the microbial communities can lead to an imbalanced ecosystem known as dysbiosis.
This can result in either an increase in harmful microorganisms or a decrease in beneficial
bacteria and microbial diversity, raising the risk of various diseases [3,12]. Gut dysbiosis is
known to be the starting point of various diseases. Therefore, understanding the normal
state of gut microbiota is important to interpret health status.

The gut microbiota is personalized and varies widely among people, even in the same
individual at different periods of time; nevertheless, the communities of the human gut
microbiota are generally dominated by a few bacterial taxa [13]. In 2011, the enterotyping
method was introduced to classify individuals based on common patterns and was named
after the main feature of the microbiome profile [14]. Subsequently, extensive studies have
revealed Bacteroides, Prevotella, and Ruminococcus as the three major enterotypes [14–33].
Enterotypes of the gut microbiota are relatively constant and strongly associated with repet-
itive dietary patterns. In other words, individuals who prefer a meat-rich diet belong to the
Bacteroides-dominant enterotype, a high-carb diet is associated with the Prevotella-dominant
enterotype, and high fruit or vegetable diet is relevant to the Ruminococcus-dominant
enterotype [14,34–38]. Notably, biotin (vitamin B7), thiamine (vitamin B1), and heme
biosynthetic pathways were discovered to be enriched in Bacteroides, Prevotella, and Ru-
minococcus dominant enterotypes, respectively [14]. These enriched synthetic pathways
indicate the biochemical activities of the enterotype including nutrient synthesis, mod-
ulation of immunity, antibiotic production, and others. Understanding enterotypes and
their characteristics can help us develop early diagnostic tools for disease prevention and
personalized nutrition based on the gut microbiota profile. Although the predominant
genera in the gut microbial community and the main functions of each enterotype have
been discovered in healthy and dysbiotic individuals in many countries, the enterotypes
and their characteristics in Thai individuals have not yet been well defined in detail. In
addition, gut microbiota characteristics have also been influenced by ethnicity [39–41].

However, within the same ethnicity, people from distinct regions, especially between
urban and rural areas, have different dietary patterns. Urban people have a tendency to
consume western diets, which are high in meats, processed meats, refined grains, etc.,
rather than rural people [42]. Moreover, the prevalence of metabolic syndrome has also
increased in the urban population [43–45]. Understanding the relationship between gut
microbiota and health parameters in urban people may lead to guideline developments
for disease prevention. In this study, we characterized the composition of the gut micro-
biota in 96 Thai urban individuals using fecal 16S rDNA amplicon-based metagenomics
sequencing. The enterotyping method was used to stratify the profiles of the gut microbiota
into enterotypes. Microbial co-occurrence networks were established for both enterotypes
using Spearman’s correlation coefficient. Associations between the gut microbiota and
host lifestyle parameters were statistically tested to determine specific features in a given
enterotype. We compared enterotypes in various aspects of microbial markers, including di-
versity, host-associated lifestyle, enriched predicted functions, and co-occurrence networks
leading to enhancing health based on the characteristics of enterotypes.
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2. Materials and Methods
2.1. Study Design and Cohort

Two hundred urban volunteers who were living in Bangkok, which is the capital city
of Thailand, and its vicinity, were recruited by the Systems Biology and Bioinformatics Unit,
Pilot Plant Development and Training Institute, KMUTT in 2018. Volunteers were divided
into 5 different age groups: 18–25, 26–35, 36–45, 46–55, and over 55 years old. Volunteers
were asked to (i) sign an informed consent, (ii) complete questionnaires, (iii) collect their
stool samples, and (iv) return their stool samples to the laboratory. The questionnaires
consisted of sociodemographic and lifestyle factors, including health profile, e.g., gender,
age, body mass index, delivery procedure, antibiotic use, smoking, alcohol consumption,
allergies, type of diet, and probiotic use (see Table S9 for the questionnaire). Of the
200 participants, 131 participants returned stool samples to the laboratory and signed
informed consent, while 69 participants who did not complete the whole procedure were
excluded. In this study, 96 out of 131 samples were selected based on DNA quality.

2.2. DNA Extraction, Library Preparation, and 16S rDNA Gene Sequencing

DNA samples were extracted from stool samples using the QIAamp Fast DNA Stool
Mini Kit (Qiagen, Hilden, Germany) based on enzymatic and mechanical lysis of cells.
DNA samples were qualified using the NanoPhotometer® N60/N50 spectrophotometer.
The criteria were a DNA concentration of at least 10 ng/µL, OD 260/280 of 1.8–2.0, and
OD 260/230 of 2.0–2.2. The hypervariable V4 regions of the 16S rDNA genes were am-
plified from the DNA samples using four sets of adapters and primers 515F and 806R
(Data S1). DNA libraries were prepared according to the MiSeq Reagent Kit V2 protocol
and sequenced with 250 bp paired-end reads on the Illumina MiSeq platform at the Quebec
Genome Institute, Canada.

2.3. Microbiome Data Analysis

Raw data quality was assessed using FastQC (v0.11.8) and MultiQC (v1.7) [46,47]. QI-
IME2 (v2019.7) was used to perform the microbiome analysis. Briefly, the adaptor and any
preceding bases were trimmed at the 5’ end of the reads using the q2-cutadapt plugin [48].
Reads were truncated at the position where quality scores were reduced by less than 30.
Paired-end reads were merged with an overlap of 25 nucleotides between forward and
reverse reads, and chimeric sequences were filtered out using the q2-dada2 plugin [49].
Sequences were dereplicated into amplicon sequence variants (ASVs) using the q2-dada2
plugin, resulting in a feature table, representative sequences, and frequency of remaining
sequences in each step [49]. The V4 hypervariable regions were extracted from 16S rDNA
full-length sequences of the SILVA v132 SSURef NR99 using 515F and 806R primers. The
taxonomic classifier was trained using the V4 sequences based on the naive Bayes classifier
model using the q2-feature-classifier plugin [50,51]. ASVs were assigned for taxonomies
based on the sklearn method using the q2-feature-classifier plugin. Unassigned, mito-
chondria, and chloroplast sequences were removed using the q2-taxa plugin. The feature
table containing absolute abundances of samples and taxa was normalized using a rarefy-
ing method with a sequencing depth of 25,000 reads per sample and 5000 bootstrapping
iterations to improve the reproducibility of the data using the q2-feature-table plugin.

2.4. Enterotyping

Enterotyping was used to classify samples into clusters based on the similarity of
microbiome profiles [14]. The taxonomic abundance table at the genus level normalized
by the rarefying method was used as input for enterotyping. The square root of Jensen–
Shannon divergence (JSD) was used to measure dissimilarity between communities. The
Calinski–Harabasz index (CH), the ratio of the sum of squares of dissimilarity between
clusters to the sum of squares of dissimilarity within clusters, was calculated to determine
the optimal number of clusters.
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The silhouette coefficient was used as an indicator to calculate the goodness of the
clustering technique from −1 (data were assigned to the wrong group) to 1 (clusters
were separated) [52–54]. The clustering algorithm, partitioning around medoids (PAM), a
supervised method, was used to group the taxonomic profiles according to the estimated
number of clusters. Dissimilarities between communities were examined and visualized
using PCoA, and the clustering results were overlaid on the graph.

2.5. Statistical Analysis

Kolmogorov–Smirnov tests were conducted to test the normality of the lifestyle-
related data. The independence of lifestyle-related data between groups was examined
using Fisher’s exact test. Differences in the relative abundance of each genus between
enterotypes were examined using the Mann–Whitney U test. Chi-square tests with a cutoff
p-value of less than 0.05 were performed to examine the association between lifestyle
parameters and enterotypes.

2.6. Microbial Diversity Analysis

Alpha diversity was calculated at the genus level using Simpson’s diversity, Shannon’s
diversity, Chao1 richness, and Pielou’s evenness indices via the package vegan (v2.4.2)
and visualized using the package ggplot2 implemented in the R environment (v3.6.2). The
difference in alpha diversity between two enterotypes was statistically tested using the
Mann–Whitney U test with a cutoff p-value of less than 0.05. Correlation between alpha
diversity indices and microbial abundance was performed using Spearman’s correlation
in the SPSS program (v26) with a cutoff p-value of less than 0.05. Beta diversity was
used to cluster the samples according to their microbiome profiles using PCoA based
on Bray–Curtis distances [55]. PCoA plots were then overlaid with metadata from the
questionnaires to classify groups of participants using the QIIME2 EMPeror plugins [56].
PERMANOVA tests were employed to assess whether the microbial communities in each
lifestyle parameter are different with a cutoff p-value < 0.05 using the vegan (v2.5.7) and
phyloseq (v1.36.0) packages in the R environment (v4.1.1).

2.7. Differential Abundance Analysis

The description of the experimental linear discriminant analysis effect size (LEfSe) on
the Galaxy v1.0 platform was used to detect significantly differential abundant features
between enterotypes at the genus level, where the linear discriminant analysis (LDA)
criterion had a value of 2.0 or greater [57].

2.8. Co-Occurrence Network Construction and Network Property Measurement

In each enterotype, microbe–microbe interactions were determined by Spearman’s
rank correlation coefficient [58] and filtered by the cutoff criteria of |ρ| ≥ 0.5, and p-value < 0.05.
Microbe–microbe interactions that met the criteria were used to create a co-occurrence
network in which nodes and edges represent microbes and interactions, respectively. Co-
occurrence networks were evaluated using several network property parameters, including
the number of nodes, number of edges, hubs, degree, clustering coefficient, network
diameter, the average number of neighbors, network density, network heterogeneity, and
network centralization using CytoCluster v2.1.0 [59] and NetworkAnalyzer v4.4.6 [60]
packages in Cytoscape v3.8.0 [61]. Hierarchical clustering analysis based on complete-
linkage was performed to cluster taxa similarity using stats (v4.1.1), Hmisc (v4.5.0), and
NetCluster (v0.2) [62] packages in the R environment (v4.1.1).

2.9. Microbial Function Prediction and Pathway Enrichment Analysis

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States
(PICRUSt2 v2.3.0b0) [63] was applied to predict microbial metabolic functions including
KEGG pathways, KEGG orthologs, and EC numbers. Pathway and gene abundances were
estimated for each sample, based on the copy numbers of 16S rDNA genes of microbes
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found in the sample [64]. Statistical Analysis of Taxonomic and Functional Profiles (STAMP
v2.1.3) was then employed to test whether functional abundances differed significantly
between enterotypes using Welch’s t-test for unequal variance. The Benjamin–Hochberg
(BH) correction for multiple hypotheses was used to estimate the false discovery rate (FDR).
Functions were found to be significantly different between enterotypes when the q-value
was less than 0.05 and the absolute value of the effect size was greater than 0.1 [65,66]. The
value of the mean proportion indicates which functions are enriched in which enterotype.

3. Results
3.1. Demographic Data of Enrolled Participants from the MODGUT Project

The ninety-six participants who joined this project were divided into 5 age groups:
20 individuals aged 18–25 years, 29 individuals aged 26–35 years, 31 individuals aged
36–45 years, 6 individuals aged 46–55 years, 4 individuals aged over 55 years, and 6 individuals
with no recorded data. In total, 61, 29, and 6 individuals were female, male, and unknown
gender, respectively. The mean age of all participants was 34.17 ± 10.57 years. Participants
were classified into 4 categories based on body mass index (BMI): 9 underweight (less than
18.5), 48 normal weight (18.5–24.9), 23 overweight (25.0–29.9), 10 obese (at least 30.0), and
6 unknown data. The mean BMI was 22.58± 3.68 kg/m2. A total of 62 of the 96 individuals
had normal dietary patterns, 27 did not consume raw foods, and only one person had a
vegan diet (Table 1). Further metadata were shown in Table S1.

Table 1. Characteristics of participants in each enterotype.

Lifestyle Variables N
(n = 96)

EnP
(n = 32)

EnB
(n = 64) p-Value 1

Gender

0.339Male 29 12 17

Female 61 17 44

Age (years) 34.17 ± 10.57 34.31 ± 10.75 34.10 ± 10.56

0.972

18 to 25 20 6 14

26 to 35 29 10 19

36 to 45 31 10 21

46 to 55 6 2 4

Over 55 4 1 3

BMI 2 (kg/m2) 22.58 ± 3.68 22.78 ± 3.40 22.48 ± 3.82

0.884

Underweight 9 2 7

Normal 48 16 32

Overweight 23 8 15

Obese 10 3 7

Types of diets

0.586
Vegetable and animal meat 62 22 40

Vegetable and animal meat
but not consume raw meat 27 7 20

Vegan 1 0 1
1 p-values were derived from Fisher’s exact test for testing the difference of lifestyle variables between enterotypes.
2 BMI stands for Body Mass Index.

3.2. Thai Gut Microbiota Profiling

The average number of raw paired-end reads per sample was 68,867, and the total
number of raw reads was 6,611,209. After preprocessing, a total of 3,978,787 reads remained,
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and the average number of reads was 41,446 per sample (Table S2). Ninety-one percent of all
sequences had a length of 253 nucleotides, which corresponds to the theoretical length of the
hypervariable V4 region [67] as shown in Table S3. In total, 14 phyla, 22 classes, 35 orders,
79 families, and 271 genera were discovered in this dataset. The relative abundance of
these taxa might be used as a reference range for Thai people, which could be further
applied in health status prediction (Table S4). Characterization of the gut microbiota of Thai
individuals revealed that Bacteroidetes (54.64 ± 19.01%) and Firmicutes (37.26 ± 17.20%)
were mainly found in all samples. In addition, phyla Proteobacteria (5.67 ± 6.11%), Fu-
sobacteria (0.85 ± 3.38%), Verrucomicrobia (0.51 ± 1.83%), Actinobacteria (0.50 ± 0.95%),
and Elusimicrobia (0.12 ± 1.15%) were also detected in this study. Bacteroides, Prevotella,
and Faecalibacterium were identified as the first three predominant genera. Eighty-seven
genera had a relative abundance greater than 1%. Interestingly, about 90% of this cohort
occupied Actinobacteria and about 80 percent of them had the genus Bifidobacterium in their
intestinal tract. The alpha diversity of the gut microbiota based on Shannon’s diversity
index ranged from 0.373 to 3.435, Simpson’s diversity index ranged from 0.118 to 0.943,
Pielou’s evenness index ranged from 0.112 to 0.734, and the Chao1 richness index ranged
from 22 to 109. Statistical tests revealed that there was no significant difference in alpha
diversities including Chao1, Pielou, Simpson, and Shannon indices in age group, BMI cate-
gory, and gender (Table S10). The beta diversity of the gut microbiota profiles based on the
Bray–Curtis’s distance was calculated and ordinated by PCoA (Figure S1). PERMANOVA
revealed that gut microbiota profiles were not significantly associated with any host lifestyle
parameters, e.g., age interval, BMI category, and gender (Table S10). However, Fisher’s
exact test revealed that there were a few highly abundant taxa (at least 1% abundance)
significantly associated with age interval, gender, and BMI category (Table S5).

3.3. Association of Microbes and Diversity in Urban Thai Subjects

To investigate the correlation between microbes and the diversity of the microbiome,
we calculated Spearman’s correlation coefficient between the microbial abundances in the
samples and the diversity indices (Table S6). Forty-nine out of 87 taxa having at least 1%
relative abundance were significantly correlated with at least one diversity index with
the cutoff criteria (|ρ| ≥ 0.35, p-value < 0.05). Bacteroides was negatively correlated with
the Chao1 richness index (ρ = −0.234, p-value = 0.022). Similarly, Prevotella 9 was neg-
atively correlated with Shannon’s diversity index (ρ = −0.316, p-value = 1.73 × 10−3),
Simpson’s diversity index (ρ = −0.336, p-value = 8.20 × 10−4), and Pielou’s evenness index
(ρ = −0.373, p-value = 1.85 × 10−4). This implies that an increased amount of these pre-
dominant bacteria may lead to lower microbial diversity in the gut. Interestingly, microbes
from the Ruminococcaceae family, e.g., Ruminococcaceae NK4A214 group, Ruminococ-
caceae UCG-002, Ruminococcaceae UCG-003, and Ruminocaccaceae UCG-005 had strong
positive correlations with all α-diversity indices with criteria ρ ≥ 0.5 and p-value < 0.05
(Table S6), suggesting that a higher proportion of Ruminococcaceae had a high associ-
ation with the increase of α-diversity. On the other hand, Fusobacterium has negative
correlations with all diversity indices (Shannon, ρ = −0.306, p-value = 0.002; Simpson,
ρ = −0.226, p-value = 0.027; Chao1, ρ = −0.493, p-value = 3.40 × 10−7; Pielou, ρ = −0.237,
p-value = 0.02).

3.4. Stratification and Characterization of Thai Individuals Based on Their Gut Microbiota Profiles

Thai individuals were stratified into two enterotypes based on their gut microbiota
composition: Prevotella- and Bacteroides-dominant enterotypes hereafter referred to as EnP
and EnB, respectively (Figure 1A). Two-thirds of the participants belonged to enterotype B.
More than half (58.90% of the average relative abundance) of total abundance in EnP was oc-
cupied by the genus Prevotella 9 (Figure 1B), while Bacteroides was the most dominant genus
in EnB with an average relative abundance of 37.80% (Figure 1C). According to the result
of differential abundance analysis between two enterotypes by LEfSe, 64 taxa and 24 taxa
were significantly enriched in EnB and EnP, respectively (Figure 2). For example, Prevotella
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9, Elusimicrobium, Anaerovibrio, Succinivibrio, Prevotella 2, Alloprevotella, and Megasphera
genera were significantly enriched in EnP, while Bacteroides, Faecalibacterium, Phascolarctobac-
terium, Sutterella, Alistipes, Lachnoclostridium, Parabacteroides, Roseburia, Streptococcus, Blautia,
Bilophila, Fusicaberibacter, Flavonibacter, Veillonella, Collinsella, Anaerostipes, Butyricicoccus,
Tyzzerella, and Hungatella significantly predominated in EnB. Notably, Fusobacterium, which
was reported to be associated with gut dysbiosis and intestinal inflammation possibly
leading to the development of colorectal cancer and ulcerative colitis [68,69], was found
in 12 individuals with at least 1% relative abundance. Eleven out of twelve participants
belonged to EnB, whereas the remaining one belonged to EnP. Fisher’s exact test also
showed the association between Fusobacterium and EnB (p-value = 0.056). In addition,
Roseburia, the butyrate-producing bacteria, was detected in 19 participants with at least 1%
relative abundance. Fisher’s exact test indicated that Roseburia was significantly enriched
in EnB at the p-value of 0.003 (18 out of 19 participants belonged to EnB whereas one
belonged to enterotype P). On the other hand, 11 participants had at least 1% relative
abundance of Bifidobacterium, a well-known beneficial microbe, but only one belonged to
EnP (p-value = 0.093) (Table S5).

Figure 1. Gut microbiome enterotype and bacterial taxa in each enterotype: (A) gut microbiome
profiles were separated into EnP and EnB based on the enterotyping method and were visualized by
PCoA, in which X-axis and Y-axis represent the first and second principal components. Ten highest
average taxonomic relative abundances at the genus level in EnP (B) and EnB (C) were demonstrated
by boxplots.
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Figure 2. Differential abundance analysis. Differential abundant taxa were identified for EnP (red)
and EnB (green) using LEfSe with the criteria LDA score ≥ 2.0 and p-value < 0.05.
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Diversity analysis between EnB and EnP using the Mann–Whitney U test shows
that EnB had significantly higher α-diversity than EnP based on Pielou’s evenness index
(p-value = 1.37 × 10−5), Simpson’s diversity index (p-value = 8.26 × 10−5), and Shannon’s
diversity index (p-value = 1.82× 10−4), while the Chao1 richness index (p-value = 0.71) was
not significantly different between both enterotypes (Figure 3). Moreover, the gut micro-
biota patterns of both enterotypes were significantly distinct according to PERMANOVA
(p-value = 1 × 10−4).

Figure 3. α-diversity analysis of gut microbiome composition in EnP and EnB with (A) Chao1,
(B) Pielou’s evenness, (C) Shannon’s diversity, and (D) Simpson’s diversity indices. The symbols ***
and **** represent p-value < 0.001 and p-value < 0.0001, respectively.

To investigate the association between enterotypes and lifestyle parameters, e.g.,
age, BMI, frequency of exercise, and hours of sleep, Fisher’s exact tests indicate that the
lifestyle variables including consumption of eggs and meat (p-value = 0.060) and poultry
(p-value = 0.040) were statistically different between enterotypes (Table S1). In addition,
the BMIs of EnP were slightly higher than those of EnB ( Tables 1 and S1).

3.5. Microbial Co-Occurrence Network and Clusters of Strongly Related Microbes

The microbial co-occurrence network describes microbe–microbe relationships, where
nodes and edges represent microbial taxa and their interactions, respectively. 87 out
of 271 taxa having at least 1% of relative abundance were included. Microbe–microbe
correlations were calculated using Spearman’s correlation coefficient. From the correlations
of microbiome profiles that met the criteria (p-value < 0.05 and |ρ| ≥ 0.5), the separated
co-occurrence networks of EnP and EnB were constructed, yielding 67 and 42 nodes and
181 and 109 edges, respectively (Figure 4). Based on taxonomic assignment, the majority
of microbes in both networks (39 nodes in p and 29 nodes in B) belonged to the phylum
Firmicutes (Figure S4A,B). Remarkably, Prevotella in EnP had negative interactions with
11 other taxa in EnP (Figure S5A). In contrast, Bacteroides in EnB had only one negative
interaction with Ruminococcaceae UCG-002 (Figure S5B).
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Figure 4. Co-occurrence network. Co-occurrence network of EnP (A) and EnB (B) were con-
structed based on Spearman’s correlation between microbial profiles with the criteria |ρ| ≥ 0.5
and p-value < 0.05. Nodes and edges represent taxa and microbe–microbe relationships, and node
and edge colors denote bacterial phylum and type of correlation, respectively.

Subsequently, network properties including the number of nodes, number of edges,
node degree, clustering coefficient, network diameter, the average number of neighbors,
network density, network heterogeneity, and network centralization were measured to
compare the complexity and robustness of the two ecosystems (Table 2). The nodes
with the 10% highest degrees were identified as hubs, including, Alistipes (13 degrees),
Butyricimonas (15 degrees), Lachnospiraceae UCG-010 (13 degrees), Oscillibacter (17 degrees),
Ruminococcaceae NK4A214 group (17 degrees), Ruminococcaceae UCG-002 (16 degrees),
Ruminococcaceae UCG-005 (21 degrees), and Ruminococcus torques group (15 degrees)
in EnP, and Christensenellaceae R-7 group (13 degrees), Eubacterium coprostanoligenes group
(17 degrees), Ruminococcaceae NK4A214 group (16 degrees), Ruminococcaceae UCG-002
(18 degrees), Ruminococcaceae UCG-005 (13 degrees), and Ruminococcaceae UCG-010
(13 degrees) in EnB. The network of EnP was obviously larger than that of EnB in terms of
the number of nodes, edges, and network diameters, suggesting that microbes in EnP have
more microbial variants than those of EnB to maintain ecological stability. The clustering
coefficient, which indicates how any three nodes interact with each other [70], was higher
in network B, suggesting that EnB has more connectivity than EnP. Both networks had an
average number of neighbors that was approximately equal to 6. The network density,
which approaches zero and mainly describes the density of the edges [71,72], suggests
that microorganisms generally live in the form of clusters. Both communities had network
centralization approaching zero, implying that the microorganisms live together as a
module, with some microbes responsible for the hub as identified previously.
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Table 2. Network properties of enterotypes.

Network Properties EnP EnB

Number of nodes 67 42

Number of edges 181
(Positive: 166, Negative: 15)

109
(Positive: 100, Negative: 9)

Clustering coefficient 0.353 0.485

Network diameter 7 5

Average number of neighbors 6.069 6.516

Network density 0.106 0.217

Network centralization 0.271 0.409

Based on hubs, network density, and centrality, microorganisms generally live as
an interactive community in an ecosystem. To understand the importance of microbial
co-occurrence modules, microbial profiles were clustered using the hierarchical clustering
method with complete linkage in each enterotype (Figure S2), resulting in 4 and 6 highly
correlated clusters for EnP (Figure S2A,C) and EnB (Figure S2B,D), respectively (Table S8A).

3.6. Metabolic Potential Prediction of Prevotella and Bacteroides Enterotypes

Metabolic pathway prediction of microbial communities was performed using PI-
CRUSt [63] on 153 metabolic pathway profiles, which were annotated for the gut mi-
crobiota of all participants based on the KEGG database. The predicted abundance
of metabolic pathways was evaluated for the analysis of the difference in abundance
between both enterotypes. Thirty-eight out of 153 metabolic pathways differed signif-
icantly between both enterotypes (Figure 5), with 26 and 12 metabolic pathways en-
riched in EnP and EnB, respectively. Interestingly, several of these pathways were as-
sociated with the production of B vitamins, including thiamine (B1) metabolism (KO00730,
q-value = 3.33 × 10−8), riboflavin (B2) metabolism (KO00740, q-value = 1.95 × 10−13), pyri-
doxine (B6) metabolism (KO00750, q-value = 1.57× 10−9), nicotinate (B3) and nicotinamide
metabolism (KO00760, q-value = 1.04 × 10−10), pantothenate (B5) and CoA biosynthe-
sis (KO00770, q-value = 1.09 × 10−10), and folate (B9) biosynthesis pathway (KO00790,
q-value = 3.97 × 10−6). In addition, amino acid biosynthetic pathways were also en-
riched in enterotype P, i.e., alanine, aspartate, and glutamate metabolism (KO00250,
q-value = 5.06 × 10−7); cysteine and methionine metabolism (KO00270, q-value = 8.69× 10−13);
valine, leucine, and isoleucine biosynthesis (KO00290, q-value = 3.42 × 10−6); phenylala-
nine, tyrosine, and tryptophan biosynthesis (KO00400, q-value = 1.58 × 10−9); D-glutamine
and D-glutamate metabolism (KO00471, q-value = 1.70× 10−14); and D-alanine metabolism
(KO00473, q-value = 2.34× 10−5). However, ansamycin biosynthesis (KO01051), which is re-
sponsible for antibiotic production, was significantly enriched in EnB (q-value = 1.99 × 10−3).
Secondary bile acid biosynthesis (KO00121) was another metabolic pathway that was
significantly enriched in EnB (q-value = 7.34 × 10−13). Biotin (vitamin B7) metabolism
(KO00780), already known to be relevant to carbohydrate utilization and to reduce in-
flammation of human dendritic cells [73], was also significantly overrepresented in EnB
(q-value = 9.10 × 10−9). Furthermore, PICRUSt2 indicates that SCFA-producing bacteria in-
cluding acetate, butyrate, and propionate presented in both enterotypes. STAMP shows that
the bacterial abundances of these SCFA-related pathways were not significantly different
between enterotypes.



Microorganisms 2023, 11, 136 12 of 21

Figure 5. Enrichment analysis of microbial metabolic function. A comparison of predicted metabolic
functions between enterotypes was performed by enrichment analysis. Bar plots display the mean
proportion (%) of metabolic pathways for EnP and EnB. Differences in mean proportions were
conducted using two-sided Welch’s t-test and multiple hypothesis correction by Benjamin’s test with
the criteria of difference in mean proportion > 0.1% and q-value < 0.05. The enriched pathways in
EnP and EnB were denoted by pink and orange dots, respectively.
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4. Discussion

The profiles of the gut microbiota are personalized relying on various factors, but they
often share common patterns that are co-existing with the same microbes with similar rela-
tive abundance, enabling us to cluster these profiles into groups. Enterotyping, a clustering
method based on Jansen–Shannon distance, was introduced to partition microbiome pro-
files based on their general patterns. The clusters were then named after the predominant
genus normally found in the imbalanced gut microbiota [74]. Prevotella enterotype (EnP)
and Bacteroides enterotype (EnB) have been detected in the human gut microbiota of differ-
ent populations [14–33]. In this study, one-third of all participants belonged to EnP, while
the remaining two-thirds were corresponding with EnB, respectively. This is consistent with
other studies that reported that gut microbiota of urban people occupied Bacteroides rather
than Prevotella [32,75,76]. Other enterotypes could not be detected in our dataset. This could
be due to the limited sample size or because the individuals were not distinct groups [33].
Moreover, it might depend on traditional dietary patterns, genetics, and lifestyle habits.
Ruminococcus and other enterotypes were identified in other studies and the Ruminococcus
enterotype was found in some populations [14,19–33]: Blautia enterotype was predominant
in Japanese people [29]; Bifidobacterium enterotype in Thai and Dutch children [31,32];
Escherichia enterotype in Taiwanese people [21,28]; Ruminococcus-Bifidobacterium enterotype
in Chinese people [14,33]; and Prevotella-Bacteroides enterotype in Americans [27]. In order
to understand the characteristics and roles of gut enterotypes derived from this cohort, we
investigated the relationship between enterotypes and microbiome diversity. Interestingly,
we observed significantly higher α-diversity of gut microbiota communities in EnB than in
EnP, which was consistent with a previous study [21] but also in contrast to some previous
reports [31,32]. Moreover, the Prevotella to Bacteroides (P/B) ratio, another health indicator
used to determine the ability to reduce weight on a specific food, was completely different
between the EnP (59.85 ± 122.86) and the EnB (0.06 ± 0.21) [74,77,78]. Therefore, the P/B
ratio can be used as a marker for the separation of EnP and EnB. EnP was observed to
have a slightly higher BMI than EnB, which is consistent with the previous report [74].
Specifically, we found that EnB individuals consumed significantly more eggs, meat, and
poultry than those of EnP, as revealed by statistical tests. Similarly, western individuals,
who are predominantly of the Bacteroides-based enterotype, have a relatively low P/B ratio
because the western diet is rich in red meat from terrestrial food animals. These results are
consistent with previous findings suggesting that the Bacteroides genus may be increased in
the intestinal tract by the consumption of a meat-rich diet, while Prevotella may be enriched
by a high-fiber diet [34,36,37]. The discovery and characterization of enterotypes could
bring benefits to the healthcare system.

Differential abundance analysis based on LEfSe revealed the microbial signature of
each enterotype. Remarkably, the number of significantly enriched taxa in EnB was clearly
greater than that in EnP. This can be explained that the α-diversity of EnB was significantly
higher than that of EnP. In the EnB, the genus Ruminococcus, one of the resistant starch
degraders as well as producers of SCFAs and natural antibiotics responsible for improv-
ing and maintaining the human gut symbiosis [79–84], was significantly predominant.
Moreover, several members of the Ruminococcaceae family were positively correlated
with species richness and evenness (Table S6), which are among the important indices of
human health [85,86], suggesting that microbes from the Ruminococcaceae family might
provide food sources for other microbes leading to an increase of microbial diversity in the
intestinal tract, leading to better health. In general, there are not only beneficial microbes
in the human gut but also harmful microbes at a very low level. Elusimicrobium, which
normally decreases in patients with type 2 diabetes, was enriched in EnP [87,88]. However,
harmful microbes at low levels do not damage the host because their composition is reg-
ulated by other beneficial and commensal microbes. An inappropriate lifestyle, such as
a high-fat diet, can affect the composition of the gut microbiota and lead to an imbalance
(or gut dysbiosis), so that commensal bacteria under certain circumstances become patho-
bionts, which can harm the host, and some harmful or pathogenic bacteria may increase
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and lead to pathogenesis [89,90]. In this study, these harmful and pathogenic bacteria,
including Collinsella, Fusobacterium, Odoribacter, Peptococcus, Tyzzerella, and Veillonella with
low relative abundance, were identified and the association with enterotypes was inves-
tigated. Odoribacter was significantly enriched in EnB (Figure 2), which has previously
been reported to be overrepresented in neurological-related cases, such as attention deficit
hyperactivity disorder (ADHD) [91] and depression [92]. Collinsella was discovered in EnB
(Figure 2), which was strongly correlated with rheumatoid arthritis [93]. Veillonella, known
to cause liver cirrhosis, was significantly enriched in EnB [94]. Interestingly, Tyzzerella
was significantly increased in EnB (Figure 2), which is consistent with the previous study
which reported that Tyzzerella was enriched in individuals at high risk for cardiovascular
disease [95] and rheumatoid arthritis [96]. In addition, Fusobacteria associated with Fu-
sobacterium spp. bacteremia, colorectal cancer, periodontitis, and ulcerative colitis, were
detected with relatively higher abundance in EnB than in EnP [68,69,89,97–101]. Overall,
although a number of beneficial bacteria were enriched in EnB rather than in EnP, some
harmful bacteria were also overrepresented in EnB. The results indicate that urban people
are likely to occupy a higher abundance of harmful bacteria leading to an increased risk
of several diseases, possibly due to the alteration of dietary patterns. Therefore, a balance
between Prevotella and Bacteroides in the gut microbiota is preferable for maintaining the
abundance of beneficial and harmful bacteria, improving the digesting ability of various
food types, and preserving gut microbial diversity.

Functional enrichment analysis was examined to infer enterotype-specific microbial
pathways based on PICRUSt2 and STAMP. Overall, the number of microbial pathways
in the amino acid metabolism, the nucleotide metabolism, and the cofactor and vitamin
metabolism were enriched in EnP more than those in EnB. On the other hand, carbohydrate
and lipid metabolic pathways were overrepresented in EnB more than in those of EnP. The
pathways for B vitamin metabolism, i.e., B1, B2, B3, B5, B6, and B9, and the pathways for
essential amino acids metabolism, i.e., valine, leucine, isoleucine, phenylalanine, and tryp-
tophan, were enriched in EnP compared to EnB (Figure 5). B vitamin metabolic pathways
have been reported to be associated with the genus Prevotella in the previous study [102].
EnB may have the potential to protect against mycobacterial infections due to a significant
enrichment of ansamycin biosynthesis (KO01051, q-value = 1.99 × 10−3), which produces
antibiotics against the mycobacteria [103]. In addition, the glycosaminoglycan (GAG) degra-
dation pathway, which is responsible for maintaining water in tissues and preventing skin
aging, was significantly enriched in EnB (KO00531, q-value = 9.86 × 10−14) [104]. Interest-
ingly, the secondary bile acid (SBA) pathway was significantly enriched in EnB compared
to EnP (q-value = 7.34 × 10−13). SBAs, consisting of deoxycholic acid and lithocholic acid,
are normally absorbed in the colon and flowed in the enterohepatic circulation [105–107].
These metabolites can be increased by high-fat diet intakes, possibly leading to various
conditions, including colonic inflammation, colon cancer, and inflammatory bowel dis-
ease [105,106,108–111]. However, due to the limitation of amplicon-based sequencing,
these predicted pathways could be an inference to the role of enterotypes. Therefore, a
metagenomic approach is required for the functional identification of enterotypes.

Microbes living in a community normally communicate with each other to produce
and transfer metabolites between themselves and their host [112]. Constructing a micro-
biome network (or co-occurrence network) in which nodes and edges represent microbes
and their interactions may be a promising way to understand how these microbes commu-
nicate and interact with the host. To understand the behavior of bacterial communities,
both enterotype networks were constructed and their network properties, including net-
work size, clustering coefficient, number of nodes, number of edges, node degree, average
correlation, the average number of neighbors, network density, network heterogeneity, and
network centralization were evaluated [113]. Based on the network properties, network P
had more microbial members and interactions than network B, while network B had greater
robustness than network P, as inferred from the clustering coefficient and the average
number of neighbors (Table 2). An individual with higher microbial network diversity
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and robustness could possess more diverse microbial functions, including producing nutri-
ents and vitamins, enhancing host immunity, and decreasing inflammation [114,115]. All
hubs, bacteria having high node degree, discovered in this study, including Ruminococ-
caceae NK4A214 group, Ruminococcaceae UCG-002, Ruminococcaceae UCG-005 from
both enterotypes, and Ruminococcaceae UCG-010 in EnB, belonged to the same family
Ruminococcaceae, which is a resistant starch and dietary fiber decomposer leading to
produce SCFAs, and feeding to other microbes in the same ecosystem [81,116–118]. The
main staple food in Thailand is rice and vegetables, although animal product consump-
tion is on the rise [119]. Westernized dietary habits, consisting of a high-fat, meat-rich,
and high-sugar diet, might induce steatohepatitis [120]. It has been previously reported
that Ruminococcus abundance is reduced in inflammatory bowel disease [121]. This sug-
gests that Ruminococcaceae may be essential bacteria for all humans and contribute to
the stability of the gut ecosystem [122,123]. In addition, the genus Fusobacterium, which
has been associated with various diseases, e.g., colorectal cancer [68], Fusobacterium spp.
bacteremia [89], acute pharyngitis [124], and periodontitis [125], was negatively correlated
with several Ruminococcaceae in both enterotypes (Figure 4), implying that the presence
of Ruminococcaceae may help reduce the abundance of harmful Fusobacterium. In the
network P, Prevotella had only negative interactions with other bacteria (Figure S5A). Fur-
thermore, the relative abundance of Prevotella in EnP was negatively correlated with the
species evenness (Table S6), indicating that the presence of Prevotella led to a decrease in
microbial diversity. The co-occurrence network of gut microbiota can provide us with an
understanding of microbe–microbe and microbe–host interactions through the enterotypes,
facilitating further applications regarding gut microbiota intervention and early screening
diagnostic tools.

5. Conclusions

Enterotypes of Thai urban individuals were identified and characterized based on
microbial profiles, host lifestyle, and dietary habits to understand the health benefits and
the disease risks. A comparison of gut enterotypes in Thai urban people revealed higher
diversity in EnB, higher abundance of beneficial and harmful bacteria in EnB, enriched B
vitamin and amino acid biosynthesis in EnP, enterotype-specific differential abundant taxa,
and unique microbial communities. Ruminococcaceae, the pivotally important microbes
in a Thai cohort, might contribute to the stability of the gut ecosystem by degrading
cellulose, cross-feeding, and cross-talking with SCFA producers. Nevertheless, further
investigation into metabolomics and metagenomics is warranted for confirming microbial
functions and microbe–microbe interactions. The overall results of this study may be
useful to develop personalized nutrition for enhancing human health and preventing gut
dysbiotic-driven disorders.
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microbiome profiles using hierarchical clustering analysis; Figure S3: identification of the highest
correlated cluster in enterotypes; Figure S4: co-occurrence network of highly correlated clusters in
both enterotypes; Figure S5: microbe–microbe interactions of dominant taxa; Table S1: characteristics
of lifestyle variables in Thai individuals; Table S2: the number of reads remaining in each step
of microbiome analysis; Table S3: amplicon sequence length distribution; Table S4: taxonomic
abundance and diversity Table S5: Fisher’s exact test of bacteria at least 1% abundance with age
group, BMI level, gender, and enterotype; Table S6: association between microbial taxa and diversity
indices using Spearman’s correlation coefficient; Table S7: cluster number of belonging taxa; Table S8:
number of taxa (nodes), interactions (edges), and average correlation in individual clusters; Table S9:
questionnaire; Table S10: statistical test for differences in diversity of age, BMI, and gender.
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