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Abstract: Periodontitis is the most common chronic, inflammatory oral disease that affects more than
half of the population in the United States. The disease leads to destruction of the tooth-supporting
tissue called periodontium, which ultimately results in tooth loss if uncured. The interaction between
the periodontal microbiota and the host immune cells result in the induction of a non-protective
host immune response that triggers host tissue destruction. Certain pathogens have been implicated
periodontal disease formation that is triggered by a plethora of virulence factors. There is a collective
evidence on the impact of periodontal disease progression on systemic health. Of particular interest,
the role of the virulence factors of the periodontal pathogens in facilitating the evasion of the host
immune cells and promotion of carcinogenesis has been the focus of many researchers. The aim of
this review is to examine the influence of the periodontal pathogens Aggregatibacter actinomycetemcomi-
tans (A. actinomycetemcomitans), Porphyromonas gingivalis (P. gingivalis), and Fusobacterium nucleatum
(F. nucleatum) in the modulation of the intracellular signaling pathways of the host cells in order
to evade the host immune response and interfere with normal host cell death and the role of their
virulence factors in this regard.

Keywords: Aggregatibacter actinomycetemcomitans; Porphyromonas gingivalis; Fusobacterium nucleatum;
carcinogenesis; immune response

1. Introduction

Despite being mostly preventable/manageable [1,2], periodontitis is universally preva-
lent, on a large scale [3,4]. Severe periodontitis has been declared the 6th most common
human chronic disease [5], with an estimated prevalence of about 10–13% [5–7]. The collec-
tive direct costs for periodontal therapy in 2018 were estimated to be 2.5 billion Euros in
Europe and 3.4 billion Dollars in the US. Further aggravating, the indirect costs (including
loss of productivity, etc.) were estimated to be 21 and 14 times more in Europe and USA,
respectively [8].

Periodontitis is a dental biofilm dysbiosis-induced, host-modified inflammatory dis-
ease that results in the breakdown of soft and hard periodontal tissues (attachment loss) [9]
that is modified by various local and systemic risk drivers [10,11]. Periodontitis pro-
gression is accompanied by an exaggerated host immune response that has a significant
pro-inflammatory disposition and was found to impact systemic health, and vice versa [12].
It is hence hardly surprising that several authors postulated that rebalancing metabolic
cofactors help in mitigating the inflammatory cascade in periodontal disease [13].

Early onset periodontitis occurs in individuals < 20 years old and is characteristically
associated with the bacterium Aggregatibacter actinomycetemcomitans (A. actinomycetemcomi-
tans). Adult periodontitis has been linked to two bacteria, in particular, Porphyromonas
gingivalis (P. gingivalis) and Tannerella forsythia. Both bacteria are found at higher levels
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in individuals with recent episodes of attachment loss and have been indicated to cause
tissue destruction in animal models [14,15]. In particular, P. gingivalis is a highly adapted
pathogen, equipped with many of putative virulence factors such as fimbriae and lectin-
type adhesins, a polysaccharide capsule, lipopolysaccharides, potent proteinases, toxic
products of metabolism, hemagglutinins, and numerous enzymes [16]. It is noteworthy that
the terms early onset and adult periodontitis are no longer used according to the current
classification of periodontal disease [17].

Many leukocytes have been hypothesized to play a role in periodontitis. These include
neutrophils, lymphocytes, plasma cells, and monocytes. Additionally, resident gingival
fibroblasts, periodontal ligament, and osteoblasts partake. Most involved cells produce
chemokines [e.g., monocyte chemoattractant protein (MCP)-1], cytokines (e.g., interleukin
(IL)-1, -6, and TNF), matrix metalloproteinases (e.g., MMP-1 and -8), and products of
arachidonic acid metabolism (e.g., prostaglandin E2) [18]. Of note, P. gingivalis, was found
to induce high levels of MCP-1 and IL-8 production in osteoblastic cells and leukocytes [19].

Numerous studies described the association of periodontitis with chronic systemic
diseases, also revealing potential two-way relationships between periodontitis and over-
all health and systemic well-being [20–22]. The interconnectivity of systemic diseases
including diabetes mellitus, cardiovascular diseases, metabolic syndrome, rheumatoid
arthritis, Alzheimer’s disease, and different cancers with periodontitis is of chief research
interest [23]. Such interconnectivity in some instances can be multi-modal/bi-directional.
Proposed mechanisms of these relations include but are not limited to genetic factors,
environmental factors (stress, smoking, and high-fat diet), bacteremia/viremia, and an
altered host immune response [23].

These findings were evaluated in 2012 at a joint consensus from the European Fed-
eration of Periodontology and the American Association of Periodontology (EFP/AAP).
Focusing on the most studied associations, the consensus concluded that periodontitis
contributes to the systemic inflammatory responses, likely to act as a contributing factor in
the pathophysiology of these morbidities. The consensus also highlighted that the role of
systemic inflammation is a recurring theme in oral-systemic associations [24–27].

It has been hypothesized that periodontitis may increase the risk for cancer develop-
ment (locally and distantly) due to its long-standing inflammatory nature [28]. Studies
demonstrated the role of viruses such as Human Papillomavirus (HPV) and Epstein-Barr
virus (EBV), which are detected in periodontal pockets, through activation of specific
oncogenes (e.g., E6 and E7 for HPV) [29,30]. Again, P. gingivalis was proven to prevent cell
apoptosis, thus favoring cancer initiation [31,32]. P. gingivalis and similar pathogens could
be found in gingival cancers [31] and could also be linked to distant tumors [33].

As mentioned, periodontitis may provoke a significant surge in inflammatory markers,
aggravating the inflammatory reaction. This results in the release of reactive oxygen species
and other metabolites that could promote cancer initiation [34]. Besides, the inflammatory
process and presence of cell-stimulating signals create an ideal milieu for cell proliferation
and differentiation [34,35]. Such a mechanism could act both locally and at a distance [35].

Two relatively recent systematic reviews found a positive association between peri-
odontitis and any type of cancer [28,36].

Hence the aim of this article is to review the knowledge of the immunomodulatory
roles of the virulence factors of the periodontal pathogens A. actinomycetemcomitans, P. gin-
givalis, and F. nucleatum. In addition, we will examine the complex interplay between
these virulence factors and the host cells, particularly evasion of the host immune response
and promotion of carcinogenesis and discuss the role of the manipulation of intracellular
signaling pathways in this regard.
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2. Virulence Factors of Periodontal Pathogens and Their Association with Immune
Escape and Carcinogenesis
2.1. A. actinomycetemcomitans

A. actinomycetemcomitans is a Gram-negative, facultative anaerobe, non-motile bac-
terium that is implicated in sever forms of periodontal disease that affects young in-
dividuals. Upon invading host cells via endocytosis, A. actinomycetemcomitans secretes
phospholipase C to destroy membrane vesicles and release themselves into the cytoplasm.
Six different A. actinomycetemcomitans serotypes have been identified based on LPS anti-
genicity. Of which, serotypes a-c are the most frequently isolated from Caucasians, Asians,
Africans and Latin Americans, with serotype c being the most frequently isolated from
periodontitis patients in general [37–41]. These different serotypes have been shown to
induce differential DC and T-cell responses. DCs stimulated with serotype b produce
high levels of IL-1β, IL-10, IL-12, IL-23, CCR5, and CCR6, relative to DCs stimulated with
serotypes a and c [42]. In addition, DCs infected with serotype b have been shown to prime
T cells to Th1 and Th17 phenotypes [42].

A. actinomycetemcomitans produces a variety of virulence factors such as adhesion
proteins, lipopolysaccharides (LPS), and toxins to evade host innate defense mechanisms
and promote carcinogenesis. Two toxins have been described for A. actinomycetemcomitans,
leukotoxin (LtxA) and cytolethal distending toxins (CDT).

LtxA is a member of the RTX (Repeats in ToXin) toxins, membrane-damaging proteins
secreted by Gram-negative bacteria. RTX toxins are secreted across the bacterial envelope
via the type I secretion system as a mode of export. RTX toxins are divided into three
categories, broadly cytolytic RTX hemolysins, species-specific RTX leukotoxins, and large
(>3200 amino acid residues), multifunctional, auto processing RTX toxins (MARTX) [43].
RTX leukotoxins are characterized by a cell type and species specificity, attributed to its
cell-specific binding through the β2 integrin receptors, a family of receptors expressed on
the surface of leukocytes and share a common β2 subunit, CD18, which is combined with
either one of the unique α chains, αL (CD11a), αM (CD11b), αX (CD11c), or αD (CD11d) [44].

In addition to its crucial role in immune evasion, LtxA is suggested to be linked to the
progression of periodontal disease through its effects on inducing pathogenic mechanisms
in leukocytes [45]. LtxA induces humoral as well as cellular host immune response in
periodontally diseased individuals [46]. The cytotoxic effects of LtxA against immune
cells protects the bacterium from phagocytic killing. Exposure of neutrophils to LtxA
results in activation of degranulation of neutrophils and extracellular release of proteolytic
enzymes, such as elastase and matrix metalloproteases (MMPs) [47,48]. In addition, it
has been reported that LtxA which results in increased production of pro-inflammatory
cytokines (i.e., IL-1β and IL-18) and activation of the inflammasome complex through its
action on macrophages [49]. Furthermore, A. actinomycetemcomitans expresses an outer
membrane protein, called bacterial interleukin receptor I (BilRI), which binds to host
cytokines, including IL-1β [50]. BilRI was also shown to play a role in the internalization of
IL-1β by A. actinomycetemcomitans and that deletion of the bilRI gene results in significant
decrease in internalization of IL-1β [50]. Recently, a study has shown that LtxA can
hijack the endocytic trafficking pathways in lymphocytes via LtxA/LFA-1 internalization
complex without damaging the plasma cell membrane [51]. LtxA follows the lysosomal
degradation pathway in colocalization with LFA-1 and dissociates from it in the low
PH of the endosomal environment, causing rupture of the lysosomal membrane at the
terminal step of the lysosomal degradation [51], resulting in protecting the bacterium from
phagocytic killing [52]. Collectively, the ability of LtxA to create a proteolytic environment
that results in degradation of the host’s immunoproteins, internalize pro-inflammatory
cytokines, degrade the host’s lysosomal and endosomal vesicles, and kill immune cells
may all contribute to hijacking the host immune system by A. actinomycetemcomitans and
survival within it.

Cytolethal distending toxins (CDT) is a bacterial toxin produced by several Gram-
negative pathogenic bacteria. CDT was first identified in the 1980s in some Escherichia coli
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strains, Shigella and Campylobacter species [53–55]. Later, CDT was found to be produced
by several other Gram-positive bacteria, including A. actinomycetemcomitans [56,57]. CDT
is a heterotrimeric toxin composed of three subunits, CdtA, CdtB and CdtC [58]. CDT is
considered AB2 trimer toxin with two regulatory subunits (CdtA and CdtC) responsible
for the transport of the thirds, enzymatically active subunit CdtB. CtdB functions as a
DNase causing DNA damage which triggers activation of the G2/M checkpoint, resulting
in induction of cell cycle arrest followed by apoptotic cell death [59,60]. While CdtA
and CdtC play a role in anchoring CdtB on host cell membrane, CdtC is considered to
be a chaperone for CdtB transfer. CDT binds to the host cell membrane via CdtA and
CdtC, a step that depends on the presence of intact lipid rafts. Upon entering the host
cell by dynamin-dependent endocytosis, cdtB translocates to the endoplasmic reticulum
and subsequently to the nucleus [61]. The potent DNase activity of CDT induces DNA
damage by causing single-strand breaks (SSB) and stalling of the replication forks, which
ultimately leads to double-strand breaks (DSB), causing replication stress response and cell
cycle arrest or even apoptotic death via CDT-mediated apoptosis [62,63]. DSB is detected
via The Mre11-Rad50-Nbs1 (MRN) complex. Nbs1 recruits ATM (ataxia-telangiectasia
mutated) kinase to damaged DNA, where it undergoes autophosphorylation [64]. ATM-
dependent cell cycle arrest involves phosphorylation of p53 by Activated ATM, resulting
in induction of p21 which upregulates cyclin E-CDK2, blocking cells from entering the
S phase (G1/S blockade). In addition, the cell is prevented from entering the M phase
(G2/M blockade) through accumulation of phosphorylated cyclin B-CDK1 complex that
results from inactivation cell division cycle 25 (CDC25) C phosphatase by activated Chk2.
Ultimately, the cell cycle arrest results in the formation of microenvironment that promotes
survival and proliferation of transformed, senescent cells and carcinogenesis [65].

2.2. P. gingivalis

P. gingivalis is a major etiological agent in periodontal disease [66,67]. It is an asac-
charolytic, non-motile, non-spore forming, short, pleomorphic, gram-negative, black-
pigmented, anaerobic rod [68]. It forms a substantial population of the microflora of
subgingival sites, buccal mucosa, tongue and tonsillar area in both diseased and healthy
individuals [69]. P. gingivalis has been shown to present in periodontal pockets of peri-
odontitis patients as well as in healthy individuals [70]. The role of P. gingivalis in the
development of periodontal disease can be attributed to the many virulence factors that
contribute to its defense and destruction against host tissue and epithelial cells. These
include fimbriae, hemagglutinin, capsule, lipopolysaccharide, the outer membrane vesicle,
and protease gingipains [69,71,72]. The effects of this arsenal of virulence factors extends
far beyond the periodontium and the oral cavity, as this species disseminates to distant
sites. P. gingivalis has been associated with many systemic diseases such as cardiovascular
disease, rheumatoid arthritis, preterm birth weight, and diabetes mellitus [73,74]. In ad-
dition, studies have shown that periodontitis and P. gingivalis are significant risk factors
for the development of amyloid-β plaques, dementia and Alzheimer’s disease [75–79].
More recently, post-mortem analysis of brain samples from Alzheimer’s disease patients
with periodontitis has shown a genomic fingerprint of P. gingivalis along with the protease
gingipains localized to the brain [80].

Fimbriae are appendages present on the outer surface of P. gingivalis and are involved
in cell membrane and crucial to its virulence [68]. P. gingivalis fimbriae play a crucial role
in nearly all interactions of P. gingivalis with not only the host, but also other bacteria.
Moreover, fimbriae play a crucial role in P. gingivalis adhesion, invasion and colonization
of the oral mucosa [69,81]. P. gingivalis expresses two types of fimbriae, long and short
fimbriae, that are involved in initial attachment and organization of biofilm and attachment
to other bacteria [71,82,83]. The long fimbriae, encoded by FimA gene, is known as major
fimbriae whereas, the short fimbriae, encoded by Mfa1 gene, is known as minor fimbriae.
Interestingly, both fimbriae of P. gingivalis have been shown to be important for invasion
of dendritic cells (DCs) and induction of differential host immune responses. The minor



Microorganisms 2023, 11, 115 5 of 15

fimbriae, comprised of a 67-kDa glycoprotein has been shown to be targeting the C-type
lectin DC-SIGN on DCs for entry [83,84] and promotion of a pro-survival environment
within the DCs [85]. On the other hand, the major fimbriae are composed of a 41 kDa
protein called fimbrillin and target toll-like receptor (TLR1) and TLR2 on DCs [86].

The interaction of P. gingivalis fimbriae with DCs has been of interest to many re-
searches. More notably, studies on human samples as well as on experimental models, both
in vivo and in vitro, have shown that P. gingivalis fimbriae play a major role in shaping the
host immune response by modulating DCs immune homeostatic functions, mostly favoring
P. gingivalis invasion and survival within the host. Analysis of CD1c+(BDCA-1) CD209+

blood myeloid DCs from periodontitis subjects have shown an increased expansion of this
DC subset, relative to healthy individuals. In addition, this expansion further increases
24 h after mechanical debridement periodontal plaque and calculus, suggesting a role of
bacteremia induced by periodontal pathogens [85]. More interestingly, a study on peri-
odontitis patients with existing coronary artery disease have shown increased myeloid DCs
population in systemic circulation. Using postmortem analysis of coronary artery samples
of these patients, the study has reported that myeloid DCs are associated with microbial
carriage of P. gingivalis, where myeloid DCs marker, CD209 (DC-SIGN) shown to co-localize
with P. gingivalis minor fimbria protein (mfa-1) in the atherosclerotic plaques [85]. The
implication of DCs in microbial dissemination of periodontal pathogens has been shown in
multiple studies but the mechanism was unclear. Recent studies suggested that P. gingivalis,
through its minor fimbria via targeting the C-type lectin receptor DC-SIGN, evades the
host immune system and manipulates the intracellular signaling pathways in DCs [87].
In addition, it has been shown that the interaction between DC-SIGN receptor on DCs
and P. gingivalis minor fimbria leads to inhibition of apoptosis and autophagy, protecting
the bacteria from antimicrobial clearance and extending survival of P. gingivalis-loaded
DCs [87]. Autophagy is a process whereby the cell disposes its intracellular damaged pro-
teins and organelles through a lysosome-dependent regulated mechanism by sequestering
and directing cargo to the lysosome for degradation. Autophagy is crucial for balanc-
ing sources of energy, maintaining proper cellular homeostasis, and defending against
invading pathogens [88,89]. Autophagy is involved in many aspects of the host immune
response such as clearance of intracellular pathogens by trafficking intracellular pathogens
to lysosomes [90–92], secretion of inflammatory cytokines [93], antigen presentation [94,95]
and development of lymphocytes [96]. Furthermore, autophagy is regulated by a variety
of intracellular signaling pathways that are activated in response to the exposure of the
pattern recognition receptors (PRRs) of immune cells to ligands or to cytokines. Apoptosis
is a programmed cell death that is crucial for elimination of unwanted cells. Apoptosis can
be exploited by certain pathogens to extend the survival of host cells [97]. There are two
main apoptosis pathways, the intrinsic and the extrinsic pathway. The intrinsic pathway
is regulated by intracellular signals that involves B cell lymphoma 2 (BCL-2) family of
proteins in the mitochondria. The pro-apoptotic members of BCL-2 family trigger the
release of molecules by the mitochondria that stimulates apoptosis process [98]. One of
these molecules is cytochrome c which plays an important role in the formation of the
apoptosome. Apoptosome comprises apoptotic protease-activating factor 1 (APAF1), pro-
caspase 9 and cytochrome c. Caspase 9 is activated by the apoptosome, which in turn
cleaves pro-caspase 3 to form active caspase 3 [99]. On the other hand, the extrinsic pathway
is stimulated by external signals that involves binding of the death-inducing factor such as
FAS ligand (FASL) to its receptor (FAS) and recruiting the adaptor FAS-associated death
domain protein (FADD) and pro-caspase 8, forming death-inducing signaling complex
(DISC). Subsequently, pro-caspase 8 is activated in the DISC. The activated caspase 8 then
converts pro-caspase 3 to the executioner form, active caspase 3 [100–102]. Both the ex-
trinsic and intrinsic pathways converge at the activation of caspase 3 activation, which
subsequently cleaves more than 500 cellular substrates to execute the apoptosis process
via multiple aspects such as that interfere with transcription, translation, DNA cleavage,
cytoskeleton assembly, and membrane trafficking.
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P. gingivalis has evolved several immune escape tactics whereby it evades intracellular
killing in DCs by targeting DC-SIGN with its minor fimbria and extends the survival of
the host DCs to live in [90]. The uptake of P. gingivalis by DCs via DC-SIGN-dependent
manner results in a decrease in the intracellular killing and an increase in the intracellular
content of P. gingivalis inside DCs. Autophagy is regulated by the AKT-mTOR signaling
axis which regulates the cell survival mechanisms through mTOR-dependent autophagy
during physiologic as well as pathologic conditions. The inhibition of the AKT-mTOR
pathway in DCs is one of the strategies of P. gingivalis to survive inside DCs and evade
the host immune response [87], where P. gingivalis infection increases expression of the
important downstream elements involved in this pathway such as p-Akt Ser473, p-mTOR
Ser2448, p-Raptor Ser792 and p-ULK1 Ser757 [87]. It is noteworthy that blocking the re-
ceptor DC-SIGN on DCs by HIV glycoprotein 120 results in reduction of survival of P.
gingivalis inside DCs [90]. Furthermore, P. gingivalis minor fimbria induces dysregulation of
apoptosis in DCs. In addition to its role in regulating autophagy, the AKT pathway inhibits
apoptosis via translocation of phosphorylated AKT from the cytoplasm to the nucleus,
where it subsequently phosphorylates FOXO1, leading to translocation of phosphorylated
FOXO1 to the cytoplasm, where it undergoes polyubiquitination and lysosomal degrada-
tion [103] (Figure 1). As a result, apoptosis is inhibited. Surprisingly, targeting the receptor
DC-SIGN on DCs by P. gingivalis minor fimbria results in the activation of the AKT-FOXO1
pathway in addition to upregulation of the expression of pro-apoptotic protein BCL2 and
downregulation of BIM, BAX and cleaved caspase 3 expression [87]. Extended survival of
P. gingivalis-loaded DCs might be contributing to the systemic inflammation and dissemi-
nation of P. gingivalis to distant sites, which could be a result of P. gingivalis exploiting DCs
migratory functions, with impaired pathogen clearance and extended survival. Inhibition
of the host cell programmed cell death is the same tactic that P. gingivalis uses to exploit
gingival epithelial cells for survival within, via manipulation of the JAK-Stat pathway [32].
The influence of P. gingivalis on the modulation of the host cells apoptotic cell death has
been reported on a variety of cells, including immune cells, fibroblasts, epithelial cells and
endothelial cells [104–109].

Microorganisms 2023, 11, x FOR PEER REVIEW 7 of 9 
 

 

cells via activation of the ERK1/2-Ets1, p38/HSP27, and PAR2/NFκB pathways to induce 
proMMP9 expression [115]. Recently, a study has reported that wild-type P. gingivalis 
33,277 can promote colorectal cancer cell proliferation via activation of the MAPK/ERK 
signaling pathway, comparing to the gingipain-deficient mutant KDP136, suggesting an 
important role of gingipain in colorectal cancer [116]. 

 
Figure 1. Manipulation of the AKT-FOXO1 pathway and AKT-mTORC1 pathway by P. gingivalis 
fimbriae. 

2.3. F. nucleatum 
F. nucleatum is a Gram-negative anaerobic filamentous spindle-shaped rod. Unlike 

other strict anaerobic bacteria, F. nucleatum possess NADH oxidase endowing them with 
a limited ability to survive in oxygenated environment [117]. In addition to its implication 
in periodontal disease [118], F. nucleatum is capable of systemic dissemination and causing 
extra-oral infections, such as brain, liver, spleen, and lung abscesses, septicemia related 
infections, pelvic inflammatory disease, and intrauterine infections [119–124]. F. nucleatum 
is equipped with a variety of adhesins that enable it to adhere to various microorganisms. 
These adhesion proteins are considered the main virulence factors. Among all the adhe-
sins expressed by F. nucleatum, only Fusobacterium adhesin A (FadA), has been identified 
to be capable of binding to host cells. FadA exists in two forms; non-secreted, intact pre-
FadA and secreted, mature FadA (mFadA). pre-FadA is anchored to the to the inner mem-
brane of F. nucleatum while mFadA is secreted outside of the bacterium [125]. Pre-FadA 
and mFadA together form a complex called FadAc that is required for F. nucleatum attach-
ment and invasion of the host cells. FadA binds to cadherin family receptors, mainly E-
cadherin and vascular endothelial (VE) cadherin (CDH5), for adhesion and invasion of 
the host [126]. Binding of FadA to E-cadherin on epithelial cells results in phosphorylation 
and internalization of E-cadherin and the activation of the canonical Wnt pathway, one of 
the key signaling cascades regulating development and stemness, and has also been 
tightly associated with promotion of carcinogenesis. Furthermore, FadA binds to VE-cad-
herin on vascular endothelial cells, resulting in migration of the endothelial cells, increas-
ing endothelial permeability. Therefore, FadA plays a role not only in the invasion of host 
cells but also allow in microbial dissemination to blood circulation by increasing endothe-
lial permeability, contributing to spread of infection and immune escape [126]. Modula-
tion of E-cadherin/β-catenin signaling by FadA has been implicated in the promotion of 
colorectal carcinogenesis [127] (Figure 2). 

F. nucleatum also expresses an outer membrane protein, familial adenomatous poly-
posis 2 (Fap2), that binds to the inhibitory receptor T cell immunoreceptor with Ig and 

Figure 1. Manipulation of the AKT-FOXO1 pathway and AKT-mTORC1 pathway by P. gingivalis
fimbriae.

Abnormal survival of immune cells can lead to dire consequences such as development
of autoimmune diseases and cancer [105]. P. gingivalis has been reported to promote gener-
ation of myeloid-derived suppressor cells (MDSCs), pathologically activated neutrophils
and monocytes with potent immunosuppressive activity. Consistent with the immunosup-
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pressive role of MDSCs is the ability of P. gingivalis-generated MDSCs to inhibit CD8+ T
cells while induce FOXP3 + Tregs through the anti-apoptotic pathway AKT-FOXO1 [110].
In addition, certain intracellular signaling pathways crucial for regulation of apoptosis has
been reported to be influenced by P. gingivalis differential fimbria expression, leading to
promotion proliferation of oral squamous cell carcinomas (OSCCs) [110]. Altogether, these
studies highlight the implication of P. gingivalis fimbria in the induction of immunosuppres-
sion and oncogenic cell proliferation, suggesting implication of P. gingivalis in the prognosis
of oral cancers in patients with periodontitis.

Gingipains are cysteine endopeptidases that play an essential role in the pathogenic-
ity of P. gingivalis in periodontal disease. They are expressed and located on the outer
membranes of P. gingivalis or secreted into the extracellular environment [111]. There are
two types of gingipains, arginine-specific protease (Rgp; encoded by rgpA and rgpB) and
lysine-specific protease (Kgp; encoded by kgp). In addition to their function as a proteolytic
tool for the degradation of proteinaceous nutrients to P. gingivalis for growth, gingipains
are essential for the processing of fimbrial proteins to facilitate bacterial attachment and
adhesion to the host [112,113]. In addition, gingipain can facilitate bacterial evasion of
the host immune response by cleaving surface receptors and cytokines degradation [114].
Gingipain has been shown to promote cellular invasion and metastasis of OSCC cells via ac-
tivation of the ERK1/2-Ets1, p38/HSP27, and PAR2/NFκB pathways to induce proMMP9
expression [115]. Recently, a study has reported that wild-type P. gingivalis 33,277 can
promote colorectal cancer cell proliferation via activation of the MAPK/ERK signaling
pathway, comparing to the gingipain-deficient mutant KDP136, suggesting an important
role of gingipain in colorectal cancer [116].

2.3. F. nucleatum

F. nucleatum is a Gram-negative anaerobic filamentous spindle-shaped rod. Unlike
other strict anaerobic bacteria, F. nucleatum possess NADH oxidase endowing them with a
limited ability to survive in oxygenated environment [117]. In addition to its implication in
periodontal disease [118], F. nucleatum is capable of systemic dissemination and causing
extra-oral infections, such as brain, liver, spleen, and lung abscesses, septicemia related
infections, pelvic inflammatory disease, and intrauterine infections [119–124]. F. nucleatum
is equipped with a variety of adhesins that enable it to adhere to various microorganisms.
These adhesion proteins are considered the main virulence factors. Among all the adhesins
expressed by F. nucleatum, only Fusobacterium adhesin A (FadA), has been identified
to be capable of binding to host cells. FadA exists in two forms; non-secreted, intact
pre-FadA and secreted, mature FadA (mFadA). pre-FadA is anchored to the to the inner
membrane of F. nucleatum while mFadA is secreted outside of the bacterium [125]. Pre-
FadA and mFadA together form a complex called FadAc that is required for F. nucleatum
attachment and invasion of the host cells. FadA binds to cadherin family receptors, mainly
E-cadherin and vascular endothelial (VE) cadherin (CDH5), for adhesion and invasion of
the host [126]. Binding of FadA to E-cadherin on epithelial cells results in phosphorylation
and internalization of E-cadherin and the activation of the canonical Wnt pathway, one of
the key signaling cascades regulating development and stemness, and has also been tightly
associated with promotion of carcinogenesis. Furthermore, FadA binds to VE-cadherin
on vascular endothelial cells, resulting in migration of the endothelial cells, increasing
endothelial permeability. Therefore, FadA plays a role not only in the invasion of host cells
but also allow in microbial dissemination to blood circulation by increasing endothelial
permeability, contributing to spread of infection and immune escape [126]. Modulation of
E-cadherin/β-catenin signaling by FadA has been implicated in the promotion of colorectal
carcinogenesis [127] (Figure 2).
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F. nucleatum also expresses an outer membrane protein, familial adenomatous polypo-
sis 2 (Fap2), that binds to the inhibitory receptor T cell immunoreceptor with Ig and ITIM
domains (TIGIT), that is expressed by human natural killer (NK) cells and lymphocytes.
Hence, Fap2 influences the NK cells and lymphocytes by suppressing the cytotoxic activi-
ties, ultimately facilitating evasion of the host immune system by tumor cells and promoting
the formation of inflammatory microenvironment [128]. Furthermore, LPS of F. nucleatum
binds to TLR4 on the host cells and interact with Toll/IL-1 receptor (TIR) [129], resulting in
the recruitment of myeloid differentiation primary response protein 88 (MyD88), which
in turn induces phosphorylation of IL-1 receptor–associated kinase (IRAK). Subsequently,
IRAK dissociates from the receptor and interacts with adaptor proteins TNFR-associated
factor 6 (TRAF6) and TAK1 -binding proteins 2 (TAB2) on the cell membrane. TRAF6
becomes targeted for ubiquitination (Ub) and activates TGF-β-activated kinase 1 (TAK1)
and TAB2/3, resulting in the activation of I-κB (IκB) and mitogen-activated protein kinase
(MAPK). Activated IκB and MAPK induce subsequent translocation of nuclear factor-κB
(NF-κB) and AP-1 to the nucleus [130]. NF-κB is involved in the induction of the expression
of many genes, including genes encoding pro-inflammatory cytokines and chemokines,
and inflammasome regulation. In addition, NF-κB plays an important role in regulating
the survival, activation and differentiation of immune cells. Of particular interest, this
signaling pathway is involved in promoting cell proliferation and closely related to cancer
development and progression, of which is promotion of proliferation of pancreatic ductal
adenocarcinoma (PDAC) and colorectal cancer [129,131] (Figure 3).
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3. Conclusions

Periodontal pathogens are equipped with an arsenal of virulence factors. Some of
these factors are attached to the outer membrane of the bacteria and others are secreted
in the inflammatory milieu. These virulence factors play a significant role in the invasion
of the host cells, secretion of inflammatory cytokines and chemokines, and pathogen
dissemination to the blood stream and to distant sites. Some periodontal pathogens have
evolved immune escape tactics the involve not only protecting them from antimicrobial
killing inside host cells, but also extending the survival of such cells and exploiting their
migratory profile to hitch-hike to distant sites. Most of these immune deregulation events
are the result of the modulation of intracellular signaling pathway that is influenced by
the interaction between the virulence factors and immune-receptors of the immune cells.
In addition, some of the affected signaling pathways are suggested to be implicated in
the promotion of carcinogenesis. Most of the studies that reported the association of
periodontal disease with different types of cancer are based on cross-sectional studies,
reporting elevated tumor markers in these individuals. Furthermore, in vitro studies
are still the only tools that dissected the mechanism through which some periodontal
pathogens promote specific types of cancer (Table 1). Interestingly, it is still unknown why
some patients with periodontal disease develop cancer and this aspect should be examined
in future studies.
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Table 1. List of different types of cancer associated with periodontal disease and the proposed
pathomechanisms.

Cancer Type Proposed Pathomechanism

Pancreatic cancer
• Activation of Akt signaling pathway [132]
• Modulation of NF-κB pathway [129,131]

Head and neck SCC

• Activation of AKT-FOXO1 pathway [110]
• Activation of ERK1/2-Ets1, p38/HSP27, and PAR2/NFκB pathways [115]
• Regulation of ATR and NLRP3 Inflammasome [133]

Prostate cancer • Modulation of NOD1/NOD2 signaling pathway [134]

Colorectal cancer
• Activation of the MAPK/ERK pathway [116]
• Modulation of Wnt/β-catenin signaling pathway [127]
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