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Abstract: Vaccines have allowed for a significant decrease in COVID-19 risk, and new antiviral med-

ications can prevent disease progression if given early in the course of the disease. The rapid and 

accurate estimation of the risk of severe disease in new patients is needed to prioritize the treatment 

of high-risk patients and maximize lives saved. We used electronic health records from 101,039 in-

dividuals infected with SARS-CoV-2, since the beginning of the pandemic and until 30 November 

2021, in a national healthcare organization in Israel to build logistic models estimating the probabil-

ity of subsequent hospitalization and death of newly infected patients based on a few major risk 

factors (age, sex, body mass index, hemoglobin A1C, kidney function, and the presence of hyper-

tension, pulmonary disease, and malignancy) and the number of BNT162b2 mRNA vaccine doses 

received. The model’s performance was assessed by 10-fold cross-validation: the area under the 

curve was 0.889 for predicting hospitalization and 0.967 for predicting mortality. A total of 50%, 

80%, and 90% of death events could be predicted with respective specificities of 98.6%, 95.2%, and 

91.2%. These models enable the rapid identification of individuals at high risk for hospitalization 

and death when infected, and they can be used to prioritize patients to receive scarce medications 

or booster vaccination. The calculator is available online. 
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1. Introduction 

Since the start of the COVID-19 pandemic, over 500 million individuals have been 

infected and over 6 million individuals have died (https://coronavirus.jhu.edu/map.html, 

accessed on 24 May 2022). Since late 2020, vaccines have been developed [1,2], and more 

recently, new and promising anti-viral medications (Paxlovid and Molnupiravir) have re-

ceived FDA approval [3]. Unfortunately, supply for these treatments is currently limited. 

Our duty as clinicians is to make sure that the available resources are used fairly and 

appropriately to save lives. There is therefore an urgent need to estimate objectively pa-

tients’ risk for severe disease so that patients who need these treatments the most would 

receive the scarce medicines or booster vaccine doses which can save their lives [4–6]. 

For this purpose, we used retrospective data from Leumit Health Services (LHS), one 

of the four main health maintenance organizations (HMOs) in Israel, which has over 

700,000 members. Israel was one of the first countries to implement a large-scale vaccina-

tion plan (using the Pfizer/BioNTech BNT162b2 vaccine) [7] and to deploy a third vaccine 

Citation: Israel, A.; Schäffer, A.A.; 

Merzon, E.; Green, I.; Magen, E.;  

Golan-Cohen, A.; Vinker, S.; Ruppin, 

E. A Calculator for COVID-19  

Severity Prediction Based on Patient 

Risk Factors and Number of  

Vaccines Received. Microorganisms 

2022, 10, 1238. https://doi.org/ 

10.3390/microorganisms10061238 

Academic Editors: Johan Neyts and 

Rana Abdelnabi  

Received: 25 May 2022 

Accepted: 14 June 2022 

Published: 16 June 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Microorganisms 2022, 10, 1238 2 of 13 
 

 

booster dose. The variations in vaccination uptake [8] provide an opportunity to assess 

the beneficial effects of different vaccination doses after accounting for patient risk factors. 

Among the factors known to affect COVID-19 severity are advanced age [9–12], type II 

diabetes [10,13–17], kidney disease [10,17–19], chronic obstructive pulmonary disease 

(COPD) [19–23], obesity [10,14,15,24,25], hypertension [26–28], and malignancy [29]. 

We constructed predictive models that estimate the risks that patients newly infected 

with SARS-CoV-2 (as reflected by positive PCR tests) would require hospitalization dur-

ing the disease course and die from COVID-19. The predictions are based on patient age, 

sex, the clinical factors mentioned above, and vaccination status at the time of infection (0, 

1, 2, or 3 doses). Importantly, all the included factors were part of patients’ medical records 

and measured in routine laboratory testing. To keep the models simple and interpretable, 

and to allow for deployment in any health provider, we used multivariable logistic re-

gression models based on the most essential risk factors. Regression coefficients and odds 

ratios (OR) for each factor are provided, together with a formula to obtain risk estimates 

for any newly infected individual. These risk estimates allowed us to identify patients at 

high risk who would benefit from antiviral medications given early in the course of the 

disease. A web-based calculator is provided, and the approach to run or adapt the models 

is fully described. The calculator is available online at: https://covidest.web.app/, accessed 

on 24 May 2002. 

2. Methods 

2.1. Study Subjects and Study Design 

This is a population study performed on Leumit Health Services (LHS), a national 

healthcare provider in Israel, which provides services to around 700,000 members 

throughout the country. LHS uses centrally managed electronic health records (EHRs), 

which are continuously updated regarding subjects’ demographics, medical diagnoses, 

medical encounters, hospitalizations, and laboratory tests. All LHS members have similar 

comprehensive health insurance and similar access to healthcare services, as determined 

by Israel’s ministry of health for the four national healthcare providers. 

The study is based on members of LHS of age ≥ 5 (eligible for vaccination) who had 

at least one positive PCR test for SARS-CoV-2 between April 2020 and 30 November 2021. 

Patients’ data were extracted from the LHS central data warehouse on 3 January 2022. For 

each COVID-19 episode, the date of the first positive PCR test was taken as the index date. 

The number of vaccine doses received were calculated at the index date. Diagnosis and 

laboratory data were queried as known 15 days before the index date. The following fac-

tors were included in the analysis: sex, age, Body Mass Index (BMI) as a categorical vari-

able (<18.5; 18.5–25; 25–30; 30–35; and ≥35), hemoglobin A1C range (<6.5; 6.5–8; 8–10; and 

≥10), and last glomerular filtration rate (GFR) as an estimate of kidney function as a cate-

gorical variable (categories: ≥90; 60–89; 45–59; 30–44; and <30). The presence of comorbid-

ity conditions was assessed by the presence of an active chronic diagnosis at this date. 

Chronic diagnoses, coded according to the International Classification of Diseases 9th re-

vision (ICD-9), are regularly added, updated, or ended by the treating physician at each 

encounter. The validity of chronic diagnoses in the registry has been previously examined 

and confirmed as high [30–32]. 

To keep the models as simple as possible, we deliberately limited the models to the 

conditions that we identified as having the most significant effect on disease severity: hy-

pertension, chronic obstructive pulmonary disease (COPD), and malignancy (solid or he-

matologic). Individuals who had a pregnancy diagnosis up to 210 days before the PCR 

test were excluded as hospitalization would often pertain to pregnancy surveillance or 

delivery and not reflect disease severity. 
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2.2. Ethics Statement 

The study protocol was approved by the statutory clinical research committee of 

Leumit Health Services and the Shamir Medical Center Institutional Review Board (129-

2-LEU). Informed consent was waived because this is a large-scale retrospective study and 

all data were deidentified. 

2.3. SARS-CoV-2 Testing by Real-Time RT-PCR 

Nasopharyngeal swabs were taken and examined for SARS-CoV-2 by real-time RT-

PCR performed with internal positive and negative controls, according to World Health 

Organization guidelines, using the TaqPath™ COVID-19 Combo Kit (Thermo Fisher Sci-

entific, Waltham, MA, USA) and COBAS SARS-CoV-2 6800/8800 (Roche Diagnostics, Ba-

sel, Switzerland) assays. 

2.4. Statistical Analyses 

Standard descriptive statistics were used to present the demographic characteristics 

of individuals included in the study cohort. Statistical analyses were done with R version 

4.0.4 (R Foundation for Statistical Computing). Multivariable logistic regression models 

were fitted using the “glm” procedure with age as a continuous variable, sex as a binary 

variable, and number of vaccine doses, BMI category, hemoglobin A1C range, and GFR 

estimate [33] as categorical variables, and the presence of hypertension, pulmonary dis-

ease, or malignancy as binary variables. Receiver operating characteristic (ROC) curves 

were used to assess the model’s performance [34] using 10-fold cross-validation. A two-

sided p < 0.05 was considered statistically significant. Missing values, which appeared 

only in BMI, kidney function, and hemoglobin A1C variables, were treated by two differ-

ent approaches. We used k-nearest-neighbors imputation to replace missing values and 

also performed an alternative analysis in which the missing values were treated as sepa-

rate “missing” categories. We display here the regression coefficients obtained after im-

putation. Both methods resulted in very similar classifier performance. 

3. Results 

3.1. Factors Associated with Hospitalization of SARS-CoV-2-Positive Individuals 

A total of 101,039 COVID-19 episodes were included based on a positive test for 

SARS-CoV-2 obtained between 1 April 1 2020 and 30 November 2021. Of that total, 393 

(0.4%) resulted in patient death during hospitalization or within 30 days of contracting 

the disease, and 1752 (1.7%) required patient hospitalization for COVID-19 that did not 

end in patient death. Table 1(A) shows the baseline characteristics of individuals included 

in the cohort according to their outcomes. Table 1(B) displays the distribution of categor-

ical variables after imputation of missing values. Generally, the hospitalized patients who 

died of the disease were older, had a greater proportion of males, had higher BMIs and 

hemoglobin A1C values, and were more likely to be affected with hypertension, pulmo-

nary disease, malignancy, and impaired kidney function. 

Table 1. (A) Demographic and clinical characteristics of the study population. (B) Clinical charac-

teristics of the study population after missing variables imputation. 

(A) 

   Not Hospitalized 
Hospitalized  

(Not Deceased) 
Deceased 

N (%) 98,894 (97.9%) 1752 (1.7%) 393 (0.4%) 

Vaccines doses 

0 82,261 (83.2%) 1405 (80.2%) 295 (75.1%) 

1 4732 (4.8%) 138 (7.9%) 32 (8.1%) 

2 10,436 (10.6%) 176 (10.0%) 61 (15.5%) 

3 1465 (1.5%) 33 (1.9%) 5 (1.3%) 
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Sex Female 48,565 (49.1%) 798 (45.5%) 169 (43.0%) 

Age Mean (SD) 29.44 (19.17) 58.44 (19.03) 75.27 (13.06) 

Age category 

5–11 19,603 (19.8%) 19 (1.1%) 0 (0.0%) 

12–17 15,999 (16.2%) 30 (1.7%) 0 (0.0%) 

18–39 34,374 (34.8%) 245 (14.0%) 6 (1.5%) 

40–59 20,361 (20.6%) 561 (32.0%) 44 (11.2%) 

≥ 60 8557 (8.7%) 897 (51.2%) 343 (87.3%) 

Comorbidities 

Hypertension 9321 (9.4%) 880 (50.2%) 301 (76.6%) 

Pulmonary disease 1592 (1.6%) 167 (9.5%) 74 (18.8%) 

Malignancy 2258 (2.3%) 202 (11.5%) 83 (21.1%) 

BMI category 

Underweight <18.5 22,506 (22.8%) 44 (2.5%) 10 (2.5%) 

Normal 18.5–25 32,373 (32.7%) 283 (16.2%) 83 (21.1%) 

Overweight 25–30 21,396 (21.6%) 566 (32.3%) 126 (32.1%) 

Obese I 30–35 10,763 (10.9%) 444 (25.3%) 85 (21.6%) 

Obese II+ ≥35 5493 (5.6%) 372 (21.2%) 72 (18.3%) 

*missing* 6363 (6.4%) 43 (2.5%) 17 (4.3%) 

Kidney function  

GFR category 

G1 (normal) ≥90 64,097 (64.8%) 850 (48.5%) 95 (24.2%) 

G2 60–89 12,622 (12.8%) 596 (34.0%) 142 (36.1%) 

G3a 45–59 840 (0.8%) 140 (8.0%) 68 (17.3%) 

G3b 30–44 263 (0.3%) 74 (4.2%) 46 (11.7%) 

G4/G5 <30 151 (0.2%) 45 (2.6%) 37 (9.4%) 

*missing* 20,921 (21.2%) 47 (2.7%) 5 (1.3%) 

Hemoglobin 

A1C  

range 

<6.5 38,743 (92.2%) 1106 (72.2%) 268 (70.7%) 

[6.5, 8.0] 2129 (5.1%) 253 (16.5%) 70 (18.5%) 

[8.0, 10.0] 815 (1.9%) 115 (7.5%) 31 (8.2%) 

≥10.0 328 (0.8%) 58 (3.8%) 10 (2.6%) 

*missing* 56,879 (57.5%) 220 (12.6%) 14 (3.6%) 

(B) 

   Not Hospitalized 
Hospitalized  

(Not Deceased) 
Deceased 

BMI category 

Underweight <18.5 25,090 (25.4%) 47 (2.7%) 10 (2.5%) 

Normal 18.5–25 34,615 (35.0%) 294 (16.8%) 85 (21.6%) 

Overweight 25–30 22,687 (22.9%) 593 (33.8%) 139 (35.4%) 

Obese I 30–35 11,006 (11.1%) 446 (25.5%) 87 (22.1%) 

Obese II+ ≥35 5496 (5.6%) 372 (21.2%) 72 (18.3%) 

Kidney function  

GFR category 

G1 (normal) ≥90 84,503 (85.4%) 887 (50.6%) 90 (22.9%) 

G2 60–89 13,124 (13.3%) 590 (33.7%) 144 (36.6%) 

G3a 45–59 860 (0.9%) 141 (8.0%) 71 (18.1%) 

G3b 30–44 256 (0.3%) 87 (5.0%) 47 (12.0%) 

G4/G5 <30 151 (0.2%) 47 (2.7%) 41 (10.4%) 

Hemoglobin 

A1C  

range 

<6.5 95,481 (96.5%) 1322 (75.5%) 282 (71.8%) 

[6.5, 8.0] 2266 (2.3%) 257 (14.7%) 70 (17.8%) 

[8.0, 10.0] 819 (0.8%) 115 (6.6%) 31 (7.9%) 

≥10.0 328 (0.3%) 58 (3.3%) 10 (2.5%) 

We built multivariable logistic regression models to predict both the hospitalization 

and mortality outcomes. The odds ratios from multivariable regression models reflect the 

extent to which each risk factor affects the outcome after adjustment for the others. 

Table 2 displays the model for hospitalization risk based on the comparison of 2145 

episodes that resulted either in hospitalization or death vs. 98,894 infections that did not 
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necessitate hospitalization. For each variable, the regression coefficient with the corre-

sponding odds ratio, 95% confidence interval, and p-values are displayed. The footnote 

explains how to calculate the outcome probability for any given patient data. 

Table 2. Logistic regression model for hospitalization risk. 

 Odds Ra-

tio * 

95% Confidence 

Interval 
p 

βi (Coeffi-

cient) 

β0 (Intercept) 0.001  0.0000 −6.754369 

Age Continuous in years 1.061 [1.057–1.064] 0.0000 0.058834 

Sex 
Male 1.000 reference 0 

Female 0.657 [0.598–0.722] 0.0000 −0.420262 

Vaccine doses 

0 1.000 reference 0 

1 0.823 [0.694–0.976] 0.0248 −0.195301 

2 0.602 [0.521–0.697] 0.0000 −0.506982 

3 0.339 [0.241–0.476] 0.0000 −1.082553 

BMI category 

Under-

weight 
<18.5 0.937 [0.697–1.260] 0.6674 −0.064998 

Normal 18.5–25 1.000 reference 0 

Overweight 25–30 1.324 [1.158–1.513] 0.0000 0.280302 

Obese I 30–35 1.664 [1.441–1.922] 0.0000 0.509396 

Obese II+ ≥35 2.932 [2.514–3.419] 0.0000 1.075528 

Kidney func-

tion  

GFR category 

G1 (Normal) ≥90 1.000 reference 0 

G2 60–89 1.058 [0.947–1.183] 0.3197 0.056446 

G3a 45–59 1.568 [1.296–1.898] 0.0000 0.450065 

G3b 30–44 2.774 [2.164–3.555] 0.0000 1.020266 

G4/G5 <30 4.000 [2.952–5.420] 0.0000 1.386290 

Hemoglobin 

A1C  

% 

<6.5 1.000 reference 0 

[6.5, 8.0] 1.454 [1.263–1.673] 0.0000 0.374131 

[8.0, 10.0] 1.908 [1.559–2.334] 0.0000 0.645939 

≥10.0 3.048 [2.284–4.068] 0.0000 1.114620 

Comorbidities 

Hypertension 1.270 [1.130–1.428] 0.0001 0.239212 

Pulmonary disease 1.331 [1.134–1.563] 0.0005 0.286110 

Malignancy 1.197 [1.030–1.390] 0.0188 0.179418 

* Odds ratio is defined as exp (coefficient). The coefficients in the last column are the βi to be used 

to calculate the odds ratio using the following formula: odds ratio = exp (β0 + x1 β1 + x2 β2 + x3 β3 + x4 

β4 + ...). The probability of an event can be obtained from the odds ratio using the formula: p = (odds 

ratio)/(1 + odds ratio). 

We must emphasize a few key findings arising from the multivariable regression 

analysis. First, increased age is significantly associated with the risk of hospitalization: 

each year of age increased the odds for hospitalization by a multiplicative factor of 1.061, 

which means that compared to an individual aged 20 with similar other risk factors, a 

patient aged 60 is 10 times more likely to be hospitalized, and a patient aged 80 is 34 times 

more likely to be hospitalized. Being female reduced the odds for hospitalization by 34%. 

Obesity increased risk in a gradual manner (OR = 1.324 for a BMI of between 25 and 30, 

OR = 1.664 for a BMI of between 30–35, and OR = 2.932 for a BMI of over 35, compared to 

the reference category of a normal BMI, p < 0.001 for all). Diabetes mellitus, as reflected by 

the most recent hemoglobin A1C values, is independently associated with increased risk 

in a gradual manner (OR = 1.454 for an A1C of between 6.5 and 8%, OR = 1.908 for an A1C 

of between 8 and 10%, and OR = 3.048 for an A1C of above 10% compared to the reference 

category of an A1C of below 6.5%, p < 0.001 for all). Impaired kidney function is also 
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associated with increased risk in a gradual manner (OR = 1.568 for a GFR of between 45 

and 59, OR = 2.774 for a GFR of between 30 and 44, and OR = 4.000 for a GFR of below 30 

compared to the reference category of a GFR of above 90, p < 0.001 for all). Hospitalization 

risk significantly increased with hypertension (OR = 1.270, 95% CI [1.130–1.428]), pulmo-

nary disease (OR = 1.331, 95% CI [1.134–1.563]), and cancer (OR = 1.197, 95% CI [1.030–

1.390]). 

As expected, as compared to unvaccinated patients, being vaccinated significantly 

decreased the hospitalization risk (OR = 0.602, 95% CI [0.521–0.697] for two vaccine doses 

and OR = 0.339, 95% CI [0.241–0.476] for three vaccine doses, p < 0.001 for both categories), 

even for the relatively small group of single-vaccination individuals (OR = 0.823, 95% CI 

[0.694–0.976], p = 0.025). 

The ROC shows the diagnostic ability of a classifier as its discrimination threshold is 

varied. We performed a 10-fold cross validation and calculated the ROC to estimate the 

performance of our model (Figure 1). The performance of the hospitalization risk model 

was remarkably accurate, with an area under the curve (AUC) of 0.889. The model was 

able to predict 50%, 80%, and 90% of hospitalizations, with respective specificities of 

95.3%, 82.2%, and 70.2%. 

 

Figure 1. Receiver operating curve for the hospitalization risk model. The ROC shows the sensitivity 

and the specificity of the hospitalization model as its discrimination threshold is varied. With a 

threshold of 8.71% for risk, 50% of the COVID-19 episodes necessitating hospitalization can be iden-

tified (sensitivity = 50%), and specificity is 95.3% (false positive rate = 4.7%); with a risk threshold of 

2.39%, sensitivity is 80% and specificity is 82.2% (false positive rate = 7.8%); and with a risk threshold 

of 1.14%, sensitivity is 90% and specificity is 70.2% (false positive rate = 30.8%). 



Microorganisms 2022, 10, 1238 7 of 13 
 

 

3.2. Factors Associated with Mortality for SARS-CoV-2-Positive Individuals 

Table 3 displays the model for mortality risk. It is based on the comparison of 393 

fatal cases of COVID-19 compared to 101,039 disease episodes that did not end in patient 

death. The smaller size of the outcome group limits the power of the model; nevertheless, 

a few factors are associated with a large statistically significant effect, and advanced age 

is even more strikingly associated with increased mortality risk. Each year of age in-

creased the odds for death by a factor of 1.105. Compared to an individual aged 20 with 

similar other risk factors, a patient aged 60 is 54 times more likely to die of the disease, 

and a patient aged 80 is 393 times more likely to die. Being female is also associated with 

a reduced risk of death, reducing this risk by about half. 

Table 3. Logistic regression model for mortality risk. 

 Odds Ra-

tio * 

95% Confidence 

Interval 
p 

βi (Coeffi-

cient) 

β0 (Intercept) 0.000  0.0000 –11.227376 

Age Continuous in years 1.105 [1.095–1.115] 0.0000 0.099573 

Sex 
Male 1.000 reference 0 

Female 0.500 [0.401–0.625] 0.0000 –0.692446 

Vaccine doses 

0 1.000 reference 0 

1 0.921 [0.627–1.354] 0.6771 –0.081842 

2 0.936 [0.698–1.254] 0.6561 –0.066541 

3 0.223 [0.091–0.551] 0.0011 –1.498783 

BMI category 

Under-

weight 
<18.5 2.179 [1.056–4.496] 0.0350 0.778997 

Normal 18.5–25 1.000 reference 0 

Overweight 25–30 0.979 [0.733–1.307] 0.8866 −0.021027 

Obese I 30–35 1.085 [0.785–1.500] 0.6196 0.081961 

Obese II+ ≥35 1.963 [1.383–2.786] 0.0002 0.674479 

Kidney func-

tion  

GFR category 

G1 (Normal) ≥90 1.000 reference 0 

G2 60–89 1.283 [0.965–1.705] 0.0861 0.249162 

G3a 45–59 2.000 [1.390–2.878] 0.0002 0.693180 

G3b 30–44 3.097 [2.035–4.715] 0.0000 1.130578 

G4/G5 <30 6.888 [4.389–10.810] 0.0000 1.929831 

Hemoglobin 

A1C  

% 

<6.5 1.000 reference 0 

[6.5, 8.0] 1.137 [0.851–1.518] 0.3842 0.128408 

[8.0, 10.0] 1.479 [0.983–2.226] 0.0602 0.391618 

≥10.0 1.782 [0.905–3.510] 0.0948 0.577767 

Comorbidities 

Hypertension 1.348 [1.011–1.797] 0.0421 0.298497 

Pulmonary disease 1.475 [1.113–1.956] 0.0069 0.388824 

Malignancy 1.138 [0.868–1.491] 0.3489 0.129199 

* Odds ratio is defined as exp (coefficient). The coefficients in the last column are the βi to be used 

to calculate the odds ratio, using the following formula: odds ratio = exp (β0 + x1 β1 + x2 β2 + x3 β3 + 

x4 β4 + ...). The probability of an event can be obtained from the odds ratio using the formula: p = 

(odds ratio)/(1 + odds ratio). 

Being extremely obese and underweight both increased the risk of death (OR = 1.963 

for a BMI of above 35 and OR = 2.179 for a BMI of below 18.5, compared to a normal BMI), 

while other BMI categories were not significantly associated with death. Impaired kidney 

function was also associated with an augmented mortality risk in a gradual manner (OR 

= 2.000 for a GFR of between 45 and 59, OR = 3.097 for a GFR of between 30 and 44, and 

OR = 6.888 for a GFR of below 30 compared to the reference category of a GFR of above 
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90, p < 0.001 for all). Diabetes mellitus, as reflected by the last hemoglobin A1C, also in-

creased mortality risk in a gradual manner, although more moderately than for hospital-

ization. The other comorbidity coefficients are, overall, similar to those for hospitalization, 

although the smaller outcome group allowed us to detect a statistical significance only for 

hypertension and pulmonary disease. Vaccination with a booster dose significantly de-

creased mortality risk by 78% (OR = 0.223, 95% CI [0.091–0.551], p = 0.001). 

We performed a 10-fold cross validation and plotted the ROC to estimate the perfor-

mance of the mortality risk model (Figure 2). The model was very accurate, with an AUC 

of 0.967, and was able to predict 50%, 80%, and 90% of death events, with respective spec-

ificities of 98.6%, 95.2%, and 91.2%. 

 

Figure 2. Receiver operating curve for mortality risk model. The ROC shows the sensitivity and 

the specificity of the mortality model as its discrimination threshold is varied. With a threshold of 

5.42% for risk, 50% of the COVID-19 episodes ending in patient death can be identified (sensitivity 

= 50%), and specificity is 98.6% (false positive rate = 1.4%); with a risk threshold of 1.32%, sensitivity 

is 80% and specificity is 95.2% (false positive rate = 4.8%); and with a risk threshold of 0.57%, sensi-

tivity is 90% and specificity is 91.2% (false positive rate = 8.8%). 

3.3. Risk Calculators 

Tables 2 and 3 provide all the coefficients, as well as the formula that is used to cal-

culate the absolute risk of a given individual, using the regression models described 

above. Basically, the coefficients are to be multiplied by the corresponding variables and 
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summed to obtain the natural logarithm of the odds ratio. After exponentiation, the odds 

ratio can be converted to a probability by dividing it by its value plus one. This calculator 

is available online and can be used to calculate hospitalization and mortality probabilities 

for any given individual. 

4. Discussion 

This study developed models that can estimate the risks of subsequent hospitaliza-

tion and death for any individual newly infected with SARS-CoV-2 using health records 

from a large healthcare provider in Israel. On 30 December 2021, the first batch of Pfizer’s 

Paxlovid anti-COVID-19 medication arrived in Israel. We were immediately faced with 

the practical question: which COVID-19 patients should be prioritized to receive 

Paxlovid? These models are being used to answer this question rapidly and fairly by 

providing estimates of the hospitalization and mortality risks for each newly infected pa-

tient using information extracted from electronic medical records—notably, the patient’s 

age, sex, number of vaccine doses received so far; baseline BMI, HBA1C, and estimated 

glomerular filtration ranges; and the presence of hypertension, immune deficiency, and/or 

pulmonary disease diagnoses. These calculated risk estimates are remarkably accurate 

and help identify which patients are at high risk of severe and potentially lethal disease 

and should, therefore, be prioritized for early antiviral treatment. 

Our study capitalizes on the centrally managed, comprehensive electronic health rec-

ords maintained in our health organization that are continuously updated with hospital-

ization and death from COVID-19; the early adoption of a homogenous vaccination pro-

gram in Israel, and of the booster dose; and the relatively large number of individuals that 

have tested positive for COVID-19. We deliberately opted for model simplicity by limiting 

the number of input variables to recognized clinical factors associated with disease sever-

ity that are documented in most health organizations. We intentionally did not include 

country-specific demographic variables to generate a model that is generalizable to other 

populations. Even with these limited inputs, the resulting AUCs are highly accurate, 

achieving 0.889 for hospitalization and 0.967 for mortality. The better AUC performance 

of the model for mortality risk likely reflects that death is mostly determined by the pa-

tient’s health status, while the decision to hospitalize a patient is additionally impacted by 

the availability of family or social supports at home and the patient’s own preferences, 

which are not accounted for in our model. Importantly, these mortality and hospitaliza-

tion risk estimates can be given as soon as the disease is diagnosed, allowing us to identify 

which patients are most at risk for a severe outcome so that they can be given treatment 

early in the infection. The models can also prioritize which populations to vaccinate or to 

urge to receive booster doses to maximize lives saved and reduce the load on hospitaliza-

tion facilities. Several attempts have already been made to build predictive models for 

COVID-19 severity, notably [4,9,19,35–38]. Among the five models cited in the preceding 

sentence, only the models of Iannou and colleagues [4] and of Experton and colleagues 

[27] predict at least one of risk of hospitalization or risk of death in a newly infected indi-

vidual. However, these two models achieve much lower AUCs than our models and do 

not take vaccination into account. Furthermore, both models use more than 10 variables, 

some of which are non-clinical variables that are specific to the United States. Thus, there 

is still an unmet need for simple and internationally applicable models, which are analo-

gous to CURB-65 [39], and could allow the instant triage of new patients using few essen-

tial parameters, including vaccination status. This approach allowed us to produce mod-

els with remarkably high accuracy. 

Our study also provides further large-scale confirmation of recently published stud-

ies that showed that a third booster vaccine provides a sharp and almost immediate in-

crease in protection [35,36]. The risk reduction from each additional vaccine dose rigor-

ously and quantitively substantiates the public health message that the primary benefits 

of current COVID-19 vaccinations are protecting against death and severe disease, and 

protection against any infection is a secondary goal [40]. Since vaccination has also been 
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shown to substantially decrease the risk for symptomatic infection, its overall cumulative 

effect on hospitalization and death are even greater than the odds ratio reported here. 

Importantly, in contrast to what we and others found for the infection risk [30], we 

did not observe that time elapsed since vaccination significantly increased hospitalization 

and mortality risks. For these outcomes, the protective effect of vaccination was largely 

determined by the cumulative number of vaccine doses received. This may indicate that 

the immune system response elicited by mRNA vaccine injection has a more lasting effect 

on hospitalization and mortality risk than on the risk of symptomatic infection following 

exposure to the virus. 

Our study has several limitations. First, it is based on a population which was vac-

cinated almost exclusively with the Pfizer/Biotech BNT162b2 vaccine, with the first two 

doses spaced by 21 days. It is uncertain how the estimated effect of vaccination under 

these conditions would apply to populations vaccinated using different vaccines or using 

a different vaccination schedule. Moreover, factors specific to our health organization may 

have affected the results, such as the level of education, ease of access to care, ethnicity, 

criteria for hospital admission, and treatment decisions that influence mortality. Evolving 

patient management policies could have a confounding effect on the number of vaccine 

doses at different times. In addition, the data on which our models rely were collected 

mostly before the Omicron variant of SARS-CoV-2 emerged. Initial reports suggest that 

infections with the Omicron variant may be less severe [41,42], and so hospitalization and 

death risks for Omicron may be lower than those calculated by our models. Nevertheless, 

as long as Omicron is affected by the same risk factors as previous variants, the ranking 

of patients by risk is expected to remain similar. In our health organization, we use these 

models as tools to identify new COVID-19 patients who are most at risk for severe disease 

and could therefore benefit from the new antiviral treatments. We continuously monitor 

the hospitalization and mortality outcomes of COVID-19 infected individuals, and if we 

identify a different effect of risk factors specific to new viral variants, we will update our 

models accordingly. Additional studies on different populations would help to ascertain 

the validity of our models in different settings. To enable such validation studies, we pro-

vide the full model formulas and encourage their use. 

In conclusion, the models described here, available online as a calculator, allow for 

the identification of individuals most at risk for severe disease or death if infected by using 

very few essential parameters and vaccination status. This approach can guide public 

health decisions to optimally allocate vaccines and scarce medicines to maximize lives 

saved [5]. 
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Abbreviations 

AUC Area under the curve 

BMI Body mass index 

COPD Chronic obstructive pulmonary disease 

COVID-19 Coronavirus disease of 2019 

GFR Glomerular filtration rate 

LHS Leumit Health Services 

OR Odds ratio 

ROC Receiver operating characteristic 

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 

References 

1. Fan, Y.; Chan, K.H.; Hung, I.F.N. Safety and efficacy of COVID-19 vaccines: A systematic review and meta-analysis of different 

vaccines at phase 3. Vaccines 2021, 9, 989. https://doi.org/10.3390/vaccines9090989. 

2. Samaranayake, L.P.; Seneviratne, C.J.; Fakhruddin, K.S. Coronavirus disease 2019 (COVID-19) vaccines: A concise review. Oral 

Dis. 2021, in press. https://doi.org/10.1111/odi.13916. 

3. Dyer, O. Covid-19: FDA expert panel recommends authorising molnupiravir but also voices concerns. BMJ 2021, 375, n2984. 

https://doi.org/10.1136/bmj.n2984. 

4. Ioannou, G.N.; Green, P.; Fan, V.S.; Dominitz, J.A.; O’Hare, A.M.; Backus, L.I.; Locke, E.; Eastment, M.C.; Osborne, F.T.; Ioannou, 

N.G.; et al. Development of COVIDVax Model to Estimate the Risk of SARS-CoV-2-Related Death among 7.6 Million US Veter-

ans for Use in Vaccination Prioritization. JAMA Netw Open. 2021, 4, e214347. https://doi.org/10.1001/jamanetworko-

pen.2021.4347. 

5. Patel, M.K. Booster Doses and Prioritizing Lives Saved. N. Engl. J. Med. 2021, 385, 2476–2477. 

https://doi.org/10.1056/nejme2117592. 

6. Persad, G.; Peek, M.E.; Shah, S.K. Fair Allocation of Scarce Therapies for COVID-19. Clin. Infect. Dis. 2021, 18, ciab1039. 

https://doi.org/10.1093/cid/ciab1039. 

7. Rosen, B.; Waitzberg, R.; Israeli, A. Israel’s rapid rollout of vaccinations for COVID-19. Isr. J. Health Policy Res. 2021, 10, 6. 

https://doi.org/10.1186/s13584-021-00440-6. 

8. Raz, A.; Keshet, Y.; Popper-Giveon, A.; Karkabi, M.S. One size does not fit all: Lessons from Israel’s Covid-19 vaccination drive 

and hesitancy. Vaccine 2021, 39, 4027–4028. https://doi.org/10.1016/j.vaccine.2021.06.004. 

9. Experton, B.; Tetteh, H.A.; Lurie, N.; Walker, P.; Elena, A.; Hein, C.S.; Schwendiman, B.; Vincent, J.L.; Burrow, C.R. A predictive 

model for severe COVID-19 in the medicare population: A tool for prioritizing primary and booster COVID-19 vaccination. 

Biology 2021, 10, 1185. https://doi.org/10.3390/biology10111185. 

10. Gimeno-Miguel, A.; Bliek-Bueno, K.; Poblador-Plou, B.; Carmona-Pírez, J.; Poncel-Falcó, A.; González-Rubio, F.; Ioakeim-

Skoufa, I.; Pico-Soler, V.; Aza-Pascual-Salcedo, M.; Prados-Torres, A.; et al. Chronic diseases associated with increased likeli-

hood of hospitalization and mortality in 68,913 COVID-19 confirmed cases in Spain: A population-based cohort study. PLoS 

ONE 2021, 16, e0259822. https://doi.org/10.1371/journal.pone.0259822. 

11. Machado-Alba, J.E.; Valladales-Restrepo, L.F.; Machado-Duque, M.E.; Gaviria-Mendoza, A.; Sánchez-Ramírez, N.; Usma-Va-

lencia, A.F.; Rodríguez-Martínez, E.; Rengifo-Franco, E.; Forero-Supelano, V.H.; Gómez-Ramirez, D.M.; et al. Factors associated 

with admission to the intensive care unit and mortality in patients with COVID-19, Colombia. PLoS ONE 2021, 16, e0260169. 

https://doi.org/10.1371/journal.pone.0260169. 

12. Vahey, G.M.; McDonald, E.; Marshall, K.; Martin, S.W.; Chun, H.; Herlihy, R.; Tate, J.E.; Kawasaki, B.; Midgley, C.M.; Alden, 

N.; et al. Risk factors for hospitalization among persons with COVID-19-Colorado. PLoS ONE 2021, 16, e0256917. 

https://doi.org/10.1371/journal.pone.0256917. 

13. Dennis, J.M.; Mateen, B.A.; Sonabend, R.; Thomas, N.J.; Patel, K.A.; Hattersley, A.T.; Denaxas, S.; McGovern, A.P.; Vollmer, S.J. 

Type 2 Diabetes and COVID-19-Related Mortality in the Critical Care Setting: A National Cohort Study in England, March–July 

2020. Diabetes Care 2021, 44, 50–57. https://doi.org/10.2337/dc20-1444. 

14. Drucker, D.J. Diabetes, obesity, metabolism and SARS-CoV-2 infection: The end of the beginning. Cell Metab. 2021, 33, 479–498. 

https://doi.org/10.1016/j.cmet.2021.01.016. 

15. Hamer, M.; Gale, C.R.; Kivimäki, M.; Batty, G.D. Overweight, obesity, and risk of hospitalization for COVID-19: A community-

based cohort study of adults in the United Kingdom. Proc. Natl. Acad. Sci. USA 2020, 117, 21011–21013. 

https://doi.org/10.1073/pnas.2011086117. 



Microorganisms 2022, 10, 1238 12 of 13 
 

 

16. Longmore, D.K.; Miller, J.E.; Bekkering, S.; Saner, C.; Mifsud, E.; Zhu, Y.; Saffery, R.; Nichol, A.; Colditz, G.; Short, K.R.; et al. 

Diabetes and overweight/obesity are independent, nonadditive risk factors for in-hospital severity of COVID-19: An interna-

tional, multicenter retrospective meta-analysis. Diabetes Care 2021, 44, 1281–1290. https://doi.org/10.2337/dc20-2676. 

17. Zaki, N.; Alashwal, H.; Ibrahim, S. Association of hypertension, diabetes, stroke, cancer, kidney disease and high-cholesterol 

with COVID-19 disease severity and fatality: A systematic review. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 1133–1142. 

https://doi.org/10.1016/j.dsx.2020.07.005. 

18. Oetjens, M.T.; Luo, J.Z.; Chang, A.; Leader, J.B.; Hartzel, D.N.; Moore, B.S.; Strande, N.T.; Kirchner, H.L.; Ledbetter, D.H.; Justice, 

A.E.; et al. Electronic health record analysis identifies kidney disease as the leading risk factor for hospitalization in confirmed 

COVID-19 patients. PLoS ONE 2020, 15, e0242182. https://doi.org/10.1371/journal.pone.0242182. 

19. Lian, Z.; Li, Y.; Wang, W.; Ding, W.; Niu, Z.; Yang, X.; Wu, C. The Prediction Model of Risk Factors for COVID-19 Developing 

into Severe Illness Based on 1046 Patients with COVID-19. Emerg. Med. Int. 2021, 2021, 7711056. 

https://doi.org/10.1155/2021/7711056. 

20. Gülsen, A.; König, I.R.; Jappe, U.; Drömann, D. Effect of comorbid pulmonary disease on the severity of COVID-19: A systematic 

review and meta-analysis. Respirology 2021, 26, 552–565. https://doi.org/10.1111/resp.14049. 

21. Hosseinzadeh, R.; Goharrizi, M.A.S.B.; Bahardoust, M.; Alvanegh, A.G.; Ataee, M.R.; Bagheri, M.; Navidiyan, E.S.; Zijoud, 

S.R.H.; Heiat, M. Should all patients with hypertension be worried about developing severe coronavirus disease 2019 (COVID-

19)? Clin. Hypertens. 2021, 27, 3. https://doi.org/10.1186/s40885-021-00161-7. 

22. Jung, Y.; Wee, J.H.; Kim, J.H.; Choi, H.G. The effects of previous asthma and COPD on the susceptibility to and severity of 

COVID-19: A nationwide cohort study in South Korea. J. Clin. Med. 2021, 10, 4626. https://doi.org/10.3390/jcm10204626. 

23. Song, J.; Zeng, M.; Wang, H.; Qin, C.; Hou, H.-Y.; Sun, Z.-Y.; Xu, S.-P.; Wang, G.-P.; Guo, C.-L.; Deng, Y.-K.; et al. Distinct effects 

of asthma and COPD comorbidity on disease expression and outcome in patients with COVID-19. Allergy Eur. J. Allergy Clin. 

Immunol. 2021, 76, 483–496. https://doi.org/10.1111/all.14517. 

24. Czernichow, S.; Beeker, N.; Rives-Lange, C.; Guerot, E.; Diehl, J.-L.; Katsahian, S.; Hulot, J.-S.; Poghosyan, T.; Carette, C.; Jannot, 

A.-S. Obesity Doubles Mortality in Patients Hospitalized for Severe Acute Respiratory Syndrome Coronavirus 2 in Paris Hos-

pitals, France: A Cohort Study on 5795 Patients. Obesity 2020, 28, 2282–2289. https://doi.org/10.1002/oby.23014. 

25. Recalde, M.; Roel, E.; Pistillo, A.; Sena, A.G.; Prats-Uribe, A.; Ahmed, W.-U.-R.; Alghoul, H.; Alshammari, T.M.; Alser, O.; Areia, 

C. et al. Characteristics and outcomes of 627,044 COVID-19 patients living with and without obesity in the United States, Spain 

and the United Kingdom. Int. J. Obes. 2021, 45, 2347–2357. https://doi.org/10.1038/s41366-021-00893-4. 

26. Cook, T.M. The importance of hypertension as a risk factor for severe illness and mortality in COVID-19. Anaesthesia 2020, 75, 

976–977. https://doi.org/10.1111/anae.15103. 

27. Du, Y.; Zhou, N.; Zha, W.; Lv, Y. Hypertension is a clinically important risk factor for critical illness and mortality in COVID-

19: A meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 745–755. https://doi.org/10.1016/j.numecd.2020.12.009. 

28. Liang, X.; Shi, L.; Wang, Y.; Xiao, W.; Duan, G.; Yang, H.; Wang, Y. The association of hypertension with the severity and 

mortality of COVID-19 patients: Evidence based on adjusted effect estimates. J. Infect. 2020, 81, e44–e47. 

https://doi.org/10.1016/j.jinf.2020.06.060. 

29. Meng, Y.; Lu, W.; Guo, E.; Liu, J.; Yang, B.; Wu, P.; Lin, S.; Peng, T.; Fu, Y.; Li, F. et al. Cancer history is an independent risk 

factor for mortality in hospitalized COVID-19 patients: A propensity score-matched analysis. J. Hematol. Oncol. 2020, 13, 75. 

https://doi.org/10.1186/s13045-020-00907-0. 

30. Israel, A.; Merzon, E.; Schäffer, A.A.; Golan-Cohen, A; Ruppin, E.; Magen, E.; Vinker, S. Elapsed time since BNT162b2 vaccine 

and risk of SARS-CoV-2 infection: Test negative design study. BMJ 2021, 375, e067873. https://doi.org/10.1136/bmj-2021-067873. 

31. Rennert, G.; Peterburg, Y. Prevalence of selected chronic diseases in Israel. Isr. Med. Assoc. J. 2001, 3, 404–408. 

http://www.ncbi.nlm.nih.gov/pubmed/11433630. 

32. Hamood, R.; Hamood, H.; Merhasin, I.; Keinan-Boker, L. A feasibility study to assess the validity of administrative data sources 

and self-reported information of breast cancer survivors. Isr. J. Health Policy Res. 2016, 5, 50. https://doi.org/10.1186/s13584-016-

0111-6. 

33. Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.L.; Hendriksen, S.; Kusek, J.W.; van Lente, F. Using standardized 

serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. 

Intern. Med. 2006, 145, 247–254. https://doi.org/10.7326/0003-4819-145-4-200608150-00004. 

34. Lasko, T.A.; Bhagwat, J.G.; Zou, K.H.; Ohno-Machado, L. The use of receiver operating characteristic curves in biomedical 

informatics. J. Biomed. Inform. 2005, 38, 404–415. https://doi.org/10.1016/j.jbi.2005.02.008. 

35. Mamidi, T.K.K.; Tran-Nguyen, T.K.; Melvin, R.L.; Worthey, E.A. Development of An Individualized Risk Prediction Model for 

COVID-19 Using Electronic Health Record Data. Front. Big Data 2021, 4, 675882. https://doi.org/10.3389/fdata.2021.675882. 

36. Hippisley-Cox, J.; Coupland, C.A.; Mehta, N.; Diaz-Ordaz, K.; Lyons, R.A.; Sheikh, A.; Rahman, S.; Valabhji, J.; Sellen, P.; Haq, 

N.; et al. Risk prediction of COVID-19 related death and hospital admission in adults after COVID-19 vaccination: National 

prospective cohort study. BMJ 2021, 374, n2244. https://doi.org/10.1136/bmj.n2244. 

37. Mauer, N.; Chiecca, G.; Carioli, G.; Gianfredi, V.; Iacoviello, L.; Bertagnolio, S.; Guerra, R.; Odone, A.; Signorelli, C. The First 

110,593 COVID-19 Patients Hospitalised in Lombardy: A Regionwide Analysis of Case Characteristics, Risk Factors and Clinical 

Outcomes. Int. J. Public Health 2022, 67, 1604427. https://doi.org/10.3389/IJPH.2022.1604427. 

38. Chebotareva, N.; Berns, S.; Androsova, T.; Moiseev, S. Risk factors for invasive and non-invasive ventilatory support and mor-

tality in hospitalized patients with COVID-19. Med. Intensiva 2022, 46, 355. https://doi.org/10.1016/J.MEDINE.2021.04.014. 



Microorganisms 2022, 10, 1238 13 of 13 
 

 

39. Lim, W.S.; Van Der Eerden, M.M.; Laing, R.; Boersma, W.G.; Karalus, N.; Town, G.I.; Lewis, S.A.; Macfarlane, J.T. Defining 

community acquired pneumonia severity on presentation to hospital: An international derivation and validation study. Thorax 

2003, 58, 377. https://doi.org/10.1136/THORAX.58.5.377. 

40. Fiolet, T.; Kherabi, Y.; MacDonald, C.-J.; Ghosn, J.; Peiffer-Smadja, N. Comparing COVID-19 vaccines for their characteristics, 

efficacy and effectiveness against SARS-CoV-2 and variants of concern: A narrative review. Clin. Microbiol. Infect. 2021, 28, 202–

221. https://doi.org/10.1016/j.cmi.2021.10.005. 

41. Callaway, E.; Ledford, H. How bad is Omicron? What scientists know so far. Nature 2021, 600, 197–199. 

https://doi.org/10.1038/d41586-021-03614-z. 

42. Karim, S.S.A.; Karim, Q.A. Omicron SARS-CoV-2 variant: A new chapter in the COVID-19 pandemic. Lancet 2021, 398, 2126–

2128. https://doi.org/10.1016/s0140-6736(21)02758-6. 


