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Abstract: To study the abnormal failure of magnesium anodes for buried pipelines in marine en-
gineering in the unique environment of mudflats, a strain of a sulfate–reducing prokaryote (SRP)
was isolated from pipe–laying soil, and identified as Desulfovibrio sp. HQM3. Weight–loss test,
electrochemical measurements, SEM, EDS, XRD, and CLSM techniques were used to study the effect
of corrosion on the AZ31B magnesium alloy. Under the influence of SRP, the magnesium alloy
corroded severely at rates up to 1.31 mm/year in the mudflat environment. SRP accelerated corrosion
by 0.3mm/year. Pitting occurred on the samples in both abiotic and biotic systems. The pitting depth
reached 163.47 µm in the biotic system after 14 days. The main composition of a petal–like corrosion
product was Mg(OH)2. The results show that a mudflat environment can lead to an accelerated
corrosion of magnesium alloys.

Keywords: sulfate–reducing prokaryotes; mudflat environment; magnesium alloy; Microbiologically
Influenced Corrosion; electrochemical impedance spectroscopy

1. Introduction

Due to the extensive laying of oil and gas pipelines, the corrosion protection in
coastal mudflat areas is a challenging issue. These areas refer to the coastal zone flooded
periodically by seawater, the so–called intertidal zone [1,2]. It is a complex environment
with a three–phasic mixture of solids, liquid, and gas. It is more oxygen–rich than submarine
soils, as the tides change periodically. It is a risky corrosive environment. Some studies
believe that the corrosion of metals in the flat tidal environment mainly is resulting from
the action of microorganisms and soil [3].

The annual direct costs caused by microbial corrosion in the world is about 30–50 billion
U.S. dollars in marine environments. Therefore, Microbially Influenced Corrosion (MIC) has
been paid great attention by scholars [4,5]. Sulfate–reducing prokaryotes (SRP) are typical
corrosive microorganisms. Fathy et al. [6] believe that more than 75% of the corrosion of
oil–producing wells and more than 50% of the corrosion of buried pipelines are caused
by the activities of such microorganisms. In the mudflat environment microorganisms
particularly tend to grow in the mudflat environment [7], which may result in localized
corrosion accelerating the failure of metals [8].
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Magnesium alloys are widely used for the cathodic protection of pipelines as sacrificial
anodes [9–11], but severe self–corrosion limits their application in coastal mudflat environ-
ments [12–14]. Some studies have argued that a sustained expansion of local corrosion of
magnesium anodes leads to spalling off of anode particles [15]. Other theories attribute it
to the surface of a magnesium anode covered with corrosion products and uncovered parts
causing galvanic corrosion [16], or the presence of a second phase or impurity elements
resulting in micro–galvanic corrosion [17]. MIC is an important corrosion mechanism for
materials in a wide variety of industries. The mechanism of MIC for magnesium alloys
is not yet fully clear. One study found that SRP accelerate the micro–electro–couple cor-
rosion on the surface of magnesium alloy by cathodic depolarization [18]. Starosvetsky
et al. found that magnesium–aluminum alloys suffered more severe corrosion than pure
aluminum in the presence of SRP [19]. AZ91Ce alloy is susceptible to crystal boundary
corrosion under SRP conditions [20]. Heat treatment significantly affected microgalvanic
corrosion behaviour between cathodic β–Mg17Al12 phase and anodic α–Mg matrix and
improved corrosion behaviour [21]. Still, another study concluded that magnesium has
an intrinsic antimicrobial bactericidal ability [22–24]. Therefore, it is instructive to study
the corrosion effect of SRP on magnesium alloys. Investigations on the MIC of magnesium
alloys have been limited mostly to the culture medium, which does not effectively reflect
practical applications.

Nowadays, most studies are performed with simulated soil solutions [25,26]. Liu
et al. [27,28] reported that in the soil simulant, SRP promote corrosion of carbon steel, but
the soil layer affects the adhesion of SRP to reduce the corrosion rate. However, these differ
significantly from the actual environmental conditions. In soil, bacteria generally are found
as separated microscopic colonies on the surface and inside the voids covered by a thin
water film, rather than planktonic or in an aqueous environment [29]. Yang et al. reported
on the synergistic effects of deposits and SRP on the corrosion of a carbon steel [8]. Therefore,
the simulated soil environment is more reflective of the actual situation. In this work, we
have studied the corrosion behavior of magnesium alloys in the ocean mudflat environment
with SRP. The corrosion acceleration was analyzed by using electrochemical measurements,
Confocal laser scanning microscopy (CLSM), Scanning electron microscope (SEM), Energy
dispersive spectroscopy (EDS), X-ray diffraction (XRD), and other methodologies.

2. Materials and Methods
2.1. Materials and Specimens

The material was an AZ31B magnesium alloy, supplied by Zibo Deyuan metal ma-
terials Co., Ltd. (Shandong, China). Its composition is given in Table 1. The specimens
were polished mechanically by SiC paper up to a size of 5000 grit before tests. Figure 1.
shows the optical microstructure of the specimen after etching with 4% nital (a solution of
4% nitric acid and alcohol). The specimens with dimensions of 10 mm × 10 mm × 3 mm
were embedded in epoxy resin, leaving a free working area of 10 mm × 10 mm.
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Table 1. Chemical composition (in wt.%) of AZ31B.

Al Si Ca Zn Fe Be Mn Cu Mg

3.19 0.02 0.04 0.81 0.005 0.1 0.334 0.05 Bal

2.2. Bacterial Cultivation

The SRP strain was identified as Desulfovibrio sp. HQM3. It was isolated from the tidal
flat sediment near the pipeline laying on the west coast of Da Hengqin Island (113.45◦ E,
22.12◦ N) in Zhuhai, Guangdong Province, China. The 16S rRNA sequences have been
deposited in the GenBank database with the accession number OK644303. Phylogenetic
and evolutionary molecular analyses were conducted using MEGA version 7.0. The result
is shown in Figure 2. The culture medium was composed of 0.5 g of KH2PO4, 1 g of
NH4Cl, 0.06 g of CaCl2·6H2O, 0.06 g of MgSO4·7H2O, 6 mL of 70% sodium lactate, 1 g
of yeast extract, 0.3 g of sodium citrate, and 1000 mL of filtered natural seawater (pH
between 7.0 and 7.5). The fresh liquid culture medium was autoclaved at 121 ◦C for 30 min.
The experimental tidal flats sediment was dried and sieved through a 1 mm aperture to
filter out impurities such as plant roots. Then the sediment was autoclaved at 121 ◦C for
30 min and mixed with the modified medium at a ratio of 2:1 (note: ratio obtained by
measuring the water content of the mud by the loss–in–weight method GB/T 39637-2020).
The modified medium contained a 1% solution of bacteria (106 cells/mL) in the exponential
growth phase.
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2.3. Corrosion Rate by Weight Loss

The specimens with a volume of 10 mm × 10 mm × 3 mm were used for weight loss
tests. The experiment was divided into two cycles of 14 and 21 days in triplicate. Samples
were immersed in simulated mudflat sediments with and without SRP. Before testing the
samples were weighed on a high–precision balance. Finally, the samples were immersed in
1% AgNO3 + 15% CrO3 solution and heated to eliminate corrosion products. The samples
were re–weighed according to the national standard (GB/T39637-2020). The corrosion rate
was calculated as follows:

ν = 8.76× w0 − w1

ATρ
, (1)
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where ν is the average corrosion rate, mm/year; w0 is the initial sample weight, g; w1 is the
weight of the sample after removing the corrosion products, g; A is the area of sample m2;
T is the exposure time, hour; ρ is the density of the metal, g/cm3.

The relative corrosion rate of the samples is calculated as follows:

v′ = v1 − v0, (2)

v′ is the relative corrosion rate, mm/year; v1 is the corrosion rate of the sample within
the SRP mudflat sediment, mm/year; v0 is the corrosion rate of the sample without SRP
mudflat sediment, mm/year.

2.4. Electrochemical Measurements

The electrochemical profile was measured using a Gamry 1000 potentiostat (Interface
1000, Gamry Instruments, Warminster, PA, USA); the samples were used as the working
electrode (WE). A saturated calomel electrode (SCE) and a platinum sheet electrode were
used as the reference electrode (RE) and counter electrode (CE). All EIS tests were carried
out at open circuit potential (OCP). 10 mV sinus alternating amplitude signals with a
frequency range from 105 to 10−2 Hz curve fitting was carried out using ZsimpWin version
3.60. All measurements were carried out at 25 ± 2 ◦C.

2.5. Surface Analysis and Corrosion Product Analysis

After testing, the specimens were removed from the solution, immersed in a 4%
(w/w) glutaraldehyde solution for 3 h, sequentially dehydrated with alcohol for 10 min
at various concentrations (25%, 50%, 60%, 70%, 80%, 90% and 100% (w/w)), and dried
by nitrogen blowing. A SEM JSM-7610F (JEOL Ltd., Tokyo, Japan) was used to visualize
the morphology of the corrosion products and SRP on the surface of the specimens. The
elemental composition of the corrosion products was assessed by an Ultra Dry EDS Detector
(Thermo Fisher Scientific Inc., Waltham, MA, USA). In addition, the depth of the corrosion
pits was measured by CLSM Lext OLS5000 (Olympus, Tokyo, Japan) after removing
corrosion products. The corrosion product was gently scraped off the surface of the test
piece with a razor blade. Element composition of the corrosion product was analyzed by
X-ray diffractometry (XRD, Rigaku D/max-3C, Tokyo, Japan) with Cu Kα radiation. The
XRD spectra were collected at angles between 5◦ and 80◦ at a rate of 10◦/min.

3. Results and Discussion
3.1. Corrosion Rate of AZ31B Determined by Weight–Loss Measurement

As shown in Figure 3, after 14 days and 21 days of weight–loss testing, the corrosion in
mud with SRP was more severe than in the abiotic assays, which shows that SRP–induced
MIC is a significant factor in exacerbating the corrosion. The corrosion rate accelerates with
time. In contrast, the effect of SRP became weaker after 21 days, which may be due to the
depletion of nutrients in the reaction system.
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3.2. Characterization of Corrosion Products on Specimen Surfaces

SEM images and EDS results are shown in Figure 4. The SRP were enriched on the
surface of the specimen and grew in the pores of corrosion products. Petal shapes were
observed in the corrosion products of both specimens [30], and these were oriented nearly
perpendicular to the specimen surface. SRP clearly were attached on the surface. At
the same time, calcium deposition occurred on the surface of the biotic sample. As the
dissolution of magnesium produces OH− ions. The equation for the formation of calcium
deposits is as follows [31]:

Ca2+ + HCO3
− + OH− → CaCO3↓ + H2O (3)

This type of insulation product may be part of the reason for the abnormal failure of
the sacrificial anode.
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3.3. Pitting Morphology

After removing the corrosion products and cleaning the coupon surfaces, the pitting
morphology was visualized using CLSM Lext OLS5000 (Olympus, Tokyo, Japan). As
shown in Figure 5, similar to the weight–loss testing the maximum corrosion pit depth
for the specimen in the biotic mud reached 163.47 µm, 2.5 times deeper than that of the
abiotic mud. Chen et al. reported that the variation of cathodic and anodic area ratios
increases in exponential growth phase [32]. Therefore during the exponential growth phase
the effective area for corrosion of the biological system may be smaller. The test for pitting
depth increases the credibility of this conclusion. The activity of the SRP caused more
severe pitting than observed for sterile systems [33].
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3.4. Corrosion Product Analysis

As shown in Figure 6, the diffraction peak positions are consistent with Mg(OH)2
standard card PDF#01-1169 and SiO2 standard card PDF#05-0490. The XRD results show
that the diffraction peaks correspond to the Mg(OH)2 (001) (101) (102) (110) crystal plane.
The main component was Mg(OH)2, except for the residue of soil (SiO2) which had not
been removed fully. The widely reported corrosion product is brucite [34,35], which would
be formed based on the following reactions:

The anodic reaction:
Mg→Mg2+ + 2e− (4a)

The cathodic reaction:

2H2O + 2e− → H2 + 2OH− (4b)

The product formation:

2Mg2+ + 4OH− →Mg(OH)2 (5)
Microorganisms 2022, 10, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 6. Selected XRD patterns of corrosion products on samples for 14 days. 

3.5. OCP Measurements 
The open circuit potential can indicate the thermodynamic tendency of a metal to 

corrode [36]. A low OCP indicates a high thermodynamic tendency to rust. A high OCP 
can indicate a more passivated state or a low tendency to lose electrons [37]. The open 
circuit potential measurements are shown in Figure 7. As a function of immersion time 
the change in OCP can infer the formation of corrosion products on the AZ31B sample 
[38]. In the SRP system the OCP drifted towards the noble side 45 mV from −1.5747 V (vs. 
SCE) in the first 10 days and accelerated to drift 196 mV in the last four days to a final 
value of −1.3336 mV. The OCP drifted slowly from −1.5674 V to −1.5315 V (vs. SCE) in 14 
days in the sterile system with a gradual stabilization. During the first 10 d the SRP con-
centration was at a low level and had little effect on the electrodes. Therefore, there was 
no significant difference. The accumulation of corrosion products was slightly faster with 
the sterile system. From day 10 onwards a significant positive shift in the SRP system 
occurred, which may be related to the accumulation of corrosion products, the growth of 
the bacteria, and the formation of biofilm [39,40]. The formation of biofilms and the 
growth of the bacteria will lead to accelerated corrosion. The corrosion rate of specimen 
in biotic system was higher than abiotic system in the weight−loss measurements in same 
time. 

Figure 6. Selected XRD patterns of corrosion products on samples for 14 days.



Microorganisms 2022, 10, 839 7 of 12

3.5. OCP Measurements

The open circuit potential can indicate the thermodynamic tendency of a metal to
corrode [36]. A low OCP indicates a high thermodynamic tendency to rust. A high OCP
can indicate a more passivated state or a low tendency to lose electrons [37]. The open
circuit potential measurements are shown in Figure 7. As a function of immersion time the
change in OCP can infer the formation of corrosion products on the AZ31B sample [38].
In the SRP system the OCP drifted towards the noble side 45 mV from −1.5747 V (vs. SCE)
in the first 10 days and accelerated to drift 196 mV in the last four days to a final value of
−1.3336 mV. The OCP drifted slowly from −1.5674 V to −1.5315 V (vs. SCE) in 14 days
in the sterile system with a gradual stabilization. During the first 10 d the SRP concentration
was at a low level and had little effect on the electrodes. Therefore, there was no significant
difference. The accumulation of corrosion products was slightly faster with the sterile
system. From day 10 onwards a significant positive shift in the SRP system occurred, which
may be related to the accumulation of corrosion products, the growth of the bacteria, and
the formation of biofilm [39,40]. The formation of biofilms and the growth of the bacteria
will lead to accelerated corrosion. The corrosion rate of specimen in biotic system was
higher than abiotic system in the weight–loss measurements in same time.
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3.6. EIS Results

EIS is widely used to investigate the electrochemical processes that occur at the
metal/solution interface. The electrochemical impedance spectra of magnesium alloys
in beach mud with and without SRP were studied over 14 days. The results have been
analyzed using ZsimpWin version 3.50., using the chi–square χ2 of the measured and
fitted data to determine the quality of the fit of the equivalent circuit to ensure it was
10−3. The Nyquist diagram in Figure 8 shows that the impedance spectra in the low and
high–frequency regions in the initial phase of both systems consist of one capacitive arc
each, which corresponds to uniform corrosion [41]. The subsequent disappearance of the
second capacitive arc corresponds to biofilm formation with the onset of submembrane
pitting [42]. From day 3 on there existed a capacitive and an inductive arc. The radius of
the capacitive arc in the high–frequency region decreases and then increases with time,
which indicates that the corrosion rate of the test piece increased and then decreased [43,44].
As the surface product film became thick in the later stages of corrosion, a charge transfer
became progressively more difficult, thus slowing down the corrosion rate. At the same
time, the impedance arc radii of the SRP systems were all smaller than those of the sterile
systems. It suggests that the SRP in the corrosion product layer facilitated corrosion. Charge
transfer became progressively more difficult, leading to an increase in the radius of the
capacitive impedance arc. In the low–frequency range, the appearance of inductive loops
is generally attributed to Mg(OH)+ or Mg(OH)2 in the adsorbed state [45]. The changes
in the electrochemical parameters are shown in Tables 2 and 3. The equivalent circuit
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model R(Q(R(CR))) and R(Q(R(LR)(CR))) were employed for the fitting of the results. The
equivalent circuit model [46] is shown in Figure 9. Rs denotes the solution resistance and
Qf denotes the surface layer capacitance. The impedance value of the constant phase angle
component Q is described as follows: ZCPE = Y0

−1(jω)−n, where 0 < n < 1, Y0, and n
parameters can be used to reflect the variation of the bilayer capacitance. Rf indicates the
surface layer resistance, The inductive element Lpit and resistance Rpit in parallel constitute,
respectively, the corrosion hole inductance and corrosion hole resistance; Cdl indicates
the double electric layer capacitance; and Rct indicates the charge transfer resistance. The
Rct, and the test piece corrosion resistance are proportional [47]; the smaller the Rct value,
the greater the corrosion rate. The value of Rct at day 1 in the SRP system higher than in
the sterile system. This is due to the formation of a biofilm that temporarily reduces the
corrosion rate of the specimen more than the reduced Rct at d3–d15 than in the sterile system.
It suggests that the occurrence of MIC caused the accelerated corrosion of the specimen.
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3.7. Discussion of Mechanism

Summarizing the results of the electrochemical measurements and corrosion product
analyses, the possible corrosion mechanisms of the alloy AZ31B incubated for 14 days
in mudflats are as follows:

In the abiotic system, according to Song’s study [48] magnesium thermodynamically
corrodes with the production of soluble ions. There is a potential passivation zone at high
pH. In this study, however, the passivation zone was not reached. Magnesium suffers from
severe self–corrosion and the overall reaction equation for corrosion is as follows [49]:

Mg + 2H2O→Mg2+ + 2OH− + H2 →Mg(OH)2 + H2 (6)

In the biotic system the role of the SRP cannot be ignored. The actual reaction steps of
the MIC mechanism are complex, but there is no doubt that the oxidation of metals and
the reduction of sulfate and many intermediates are involved in the MIC process [50]. As
shown in Figure 10, the vital activity of SRP leads to the reduction of sulfate (as in Equation
(7a,b)), consuming H+ from the system. It leads to an increase in the pH of the system [51].
This promotes hydrolysis, the formation of corrosion products and causes an accelerated
corrosion of magnesium.

SO4
2− + 9H+ + 8e− → HS− + 4H2O (7a)

2HS− + 2H+ → 2H2S (7b)

Magnesium with SRP undergoes the following reactions:
The anodic reaction:

Mg→Mg2+ + 2e− (8)

The cathodic reaction:
H+ + e− → [H] (9)

The cathodic depolarisation theory [52,53] suggests that the SRP consume hydrogen
and, thus, promote magnesium corrosion. Environmental changes are less dramatic in a
mudflat environment than in seawater. Corrosion products are more likely to remain on
the surface of the material. Meanwhile, SRP consumes organic molecules on surface of the
sample and produces extracellular polymers, organic acids and other metabolites [54,55].
These corrosive metabolites promote the dissolution of the metals. Biocatalytic cathodic
sulfate reduction (BCSR) theory [56,57] suggests that SRP in the underlying biofilm have
difficulty in obtaining a carbon source from system and must gain electrons by corroding
the metal, leading to accelerated corrosion.
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Many studies have shown that the corrosion of magnesium by SRP is pitting–based [20,33].
And it will further develop to the grain boundary and the second phase. A study reported that
SRP stabilize a galvanic couple between a small anode and a large cathode which were initially
of identical size [58]. Chen et al. [32] reported that the variation of cathodic and anodic area
ratios in SRP media increases in exponential growth phase, maintains stable value in stationary
phase. Hence, we suppose that SRP promote pitting during the exponential growth phase and
maintain the cathodic and anodic area ratios during the stationary phase. They prevent the
anode and cathode regions shifting over time. In general, severe localized corrosion carries a
greater risk in actual application.

4. Conclusions

In this paper, the corrosion behavior of Mg caused by SRP in a mudflat environment
has been investigated with the AZ31B Mg alloy for 21 days in mudflat with or without SRP.
The following conclusions can be drawn:

1. The corrosion of the magnesium alloy in the biotic mudflat environment is severe
with a corrosion rate of 1.31 mm/year, SRP contribute around 0.3 mm/year. The
pitting depth reached 163.47 µm with Mg(OH)2 as the main component of the corro-
sion products.

2. Weight loss and electrochemical tests have shown that SRP in mudflat environment
have a catalytic effect on the corrosion with uniform corrosion occurring first followed
by localized corrosion such as severe pitting.

3. SRP accelerate the corrosion of magnesium sacrificial anodes and are one of the causes
of the abnormal failure.
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