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Abstract: Biogas plants have the great advantage that they produce electricity according to demand
and can thus compensate for fluctuating production from weather-dependent sources such as wind
power and photovoltaics. A prerequisite for flexible biogas plant operation is a suitable feeding
strategy for an adjusted conversion of biomass into biogas. This research work is the first to demon-
strate a practical, integrated model predictive control (MPC) for load-flexible, demand-orientated
biogas production and the results show promising options for practical application on almost all
full-scale biogas plants with no or only minor adjustments to the standardly existing measurement
technology. Over an experimental period of 36 days, the biogas production of a full-scale plant
was adjusted to the predicted electricity demand of a “real-world laboratory”. Results with a mean
absolute percentage error (MAPE) of less than 20% when comparing biogas demand and production
were consistently obtained.

Keywords: anaerobic digestion; feeding management; forecast; flexibilization; modeling;
demand-driven biogas production

1. Introduction

Sustainable, low-emission power generation requires a significant expansion of wind
power and photovoltaic (PV) plants [1]. Therefore, a transformation of the power grids from
a few centralized, controllable fossil or nuclear power plants to several million decentralized
wind power and PV plants is needed [2]. Thus, electricity production is increasingly
characterized by strong fluctuations that are decoupled from electricity demand.

In Germany, the gross electricity generation from wind power in 2020 was already
about 23.5% and from PV about 9% of the total electricity generation [3]. One approach
to permanently balance the resulting residual loads and sustainably secure the energy
supply is to expand the power grids and increase storage capacities [4]. However, from
a technical and economic point of view, these measures can only be implemented to a
limited extent [5,6]. Another approach that is becoming increasingly important is the use of
controllable producers that offer the advantage of power production driven by demand [7].
With the targets of the German Renewable Energy Act to cover 80% of the gross electricity
supply by renewable energies by 2050, energy scenarios predict a need for 60 to 130 GW of
controllable power plant capacity to ensure security of supply [8].

“Of the available renewable energy technologies—Apart from geothermal plants and
hydropower stations—Bioenergy plants in general and biogas plants in particular, currently
enable electricity production to be controlled” [9]. The load-flexible operation of biogas
plants could balance both long-term seasonal and short-term fluctuations in electricity
feed-in. However, of the approximately 9000 installed biogas-combined heat and power
plants (CHP) in Germany, which is equivalent to about 5 GW [10], it is estimated that
currently, only 150 biogas plants produce flexible energy [11].
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Flexible operation of biogas plants requires technical adjustments, previously limited
mainly to the expansion of gas storage capacities [12] and CHP performance [13]. Thus,
short-term fluctuations in electricity demand can be balanced by decoupling biogas and
electricity production. Nevertheless, the greatest flexibility can only be achieved if a suitable
feeding strategy is used for demand-orientated conversion from biomass into biogas [9,12].
Then, biomass serves as a long-term energy storage before it is converted into biogas and
further into electricity.

Concepts for feeding strategies were first investigated in laboratory experiments,
mostly as batch processes [14,15]. The results obtained in these experiments cannot be
adequately transferred to full-scale plants, since these are operated continuously and show
entirely different conditions with respect to the population density of microorganisms and
the structure of the microbial community, as well as homogeneous substrate availability [16].
Strategies for adapted feeding management at full-scale plants have previously been based
on very extensive, complex models. In this context, various studies of models can be
found in the literature [17–20], which primarily aimed at improving process stability and
efficiency. Model predictive control (MPC) is particularly suitable for adjusting the biogas
plant operation to specified future setpoints [21]. In this process, an internal dynamic model
is used to calculate the future behavior of the process as a function of input signals [22].
Models specifically focusing on energy demand-driven biogas production have been devel-
oped by Grim, Mauky and Peters et al. [22–24], whereas Mauky et al. [21] use MPC to feed
the process + to follow a predetermined schedule for gas utilization. All these approaches
are based on the well-known Anaerobic Digestion Model No. 1 (ADM1), published by
Batstone [25]. The ADM1 is highly complex since it takes into account the parameters of
all biochemical process steps (hydrolysis, acidogenesis, acetogenesis, methanogenesis) as
wellphysicochemicalical processes (ion association/dissociation and gas-liquid transfer,
etc.) [23] which must be determined or estimated individually for each digester and each
of the substrates used. Although the complexity of ADM1 has already been significantly
reduced by Weinrich and Mauky et al. [21,24,26] , a large number of individual input
parameters are still required. These primarily include the composition and degradation
behavior, respectively, and the gas formation kinetics of the substrates used. All parameters
have to be carefully adjusted to the specific full-scale plant and actual process state [27,28].
In addition, there is a lack of robust measurement technology, that would make the main
process states observable, or extensive equipment for process monitoring is usually not
available at full-scale plants [29].

The aim of this research is to develop a practical, integrated MPC for load-flexible,
demand-orientated biogas production, which can be used on nearly all full-scale biogas
plants with no or only minor adjustments to available measurement technology. For this
purpose, the application of our previously evaluated forecast model [30] and the simulation
model we developed [28] in combination with a new controller is demonstrated here for
the first time in full-scale. Here, the biogas production of the full-scale plant is aligned with
the predicted power demand of a “real-world laboratory”. The performance is evaluated
in terms of adaptability to changing biogas demand profiles.

2. Materials and Methods
2.1. Experimental Setup

The present study was carried out at the full-scale research biogas plant of the Univer-
sity of Hohenheim, located at “Unterer Lindenhof” in Eningen unter Achalm, Southwest
Germany. As described in detail by Dittmer et al. [30], this site functions as a “real-world
laboratory” with an agricultural area of almost 180 ha, livestock, laboratory, and technical
rooms, and several employees, interns, and apprentices. The energy demand of the “Un-
terer Lindenhof” is about 750,000 kWh per year and roughly corresponds to that of a small
village with 150 inhabitants.

The biogas plant consists of two continuous stirred-tank reactors and a secondary di-
gester, each with a networking volume of 850 m3. Both digesters are covered with insulated
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concrete and are operated in the mesophilic range at 43 ± 4 ◦C. Two double-membrane
gas storages of 300 m3 and 1600 m3, installed on the secondary digester and the digestate
storage, respectively, serve as buffers for the produced biogas prior to its utilization by a
CHP-unit with an installed electrical power of 355 kW. A more detailed description of the
setup of the entire research biogas plant can be found in Naegele et al. [31,32].

For this study, one of the two primary digesters was used. The digester is equipped
with a submersible motor mixer and an inclined agitator unit. The mixing time during the
experiment was set so that both mixing devices were operated only two minutes before and
after feeding, as well as during feeding. Solid substrates were supplied by a vertical mixer
feeding system with a capacity of about 20 tons (Biogas Höre GmbH, Orsingen-Nenzingen,
Germany, type Höre Combi 4500). Weighing cells recorded the quantity of substrates used.
Liquid substrates were added with a progressive cavity pump and measured with a flow
meter (Proline Promag 50; Endress+Hauser, Weil am Rhein, Germany). The volumetric
gas flow was detected directly at the gas outlet of the digester by a flow meter with an
oscillating measuring method (hot wire sensor, company Esters Elektronik GmbH, type
GD300). Temperature and pressure were recorded to calculate the biogas volume produced
under standard conditions (1013 mbar, 273 K), which are continuously available in m3 h−1.

The research biogas plant is equipped with a central plant control (CPC) unit for data
collection, storage, and evaluation. Data from the CPC unit is transferred to a relational
database for further consolidation, transfer, and processing. Individual programs such as
the forecast modules and feed-manager query the database and upload the results of the
calculations back for further analysis. Exported feeding schedules from the database can
then be loaded into the CPC unit.

All programming for visualization, modeling, and simulation was done using the pro-
gramming language R [33]. Specific packages are referenced below wherever appropriate.

2.2. Sampling and Analysis

During the experimental period, samples of all substrates used and the digestate were
taken three times a week (Mondays, Wednesdays, Fridays) and analyzed in the biogas
laboratory of the University of Hohenheim. Samplings were carried out in accordance with
the guideline 4630 of the Society for Energy and Environment, documented in [34].

The substrates used and the samples from the digester were analyzed for their dry
matter (DM) and organic dry matter (oDM) content. The procedure for this analysis was
carried out according to standard methods and is described in detail in [35]. Further, the
samples from the digester were analyzed for buffer capacity (FOS/TAC), which was carried
out according to the VDLUFA standard methods described in [36]. In addition, the inter-
mediates were investigated by determining the content of acetic, propionic, butyric, valeric,
and caproic acids using a gas chromatograph (GC, type CP3800 with flame ionization
detector, WCOT Fused Silica capillary column, Agilent Technologies Germany GmbH,
Böblingen, Germany).

The results were used to determine major deviations from standard conditions and to
calculate the organic loading rate (OLR), which refers to the amount of organic material
per unit reactor volume per day.

2.3. Model Predictive Control

As illustrated in the schematic diagram in Figure 1, the MPC for load-flexible, demand-
orientated biogas production is based on three key components:

1. Forecast of the future power demand for 48 h of the “real-world laboratory”.
2. Forecast of the biogas demand, derived from the power demand forecast.
3. Feeding management model for planning the corresponding substrate-supply.
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Figure 1. Schematic representation of the model predictive control (MPC) with showing and classify-
ing the three key components: forecast of future power demand, forecast of biogas demand, feeding
management model.

2.3.1. Power Demand Forecast

The forecasting model developed by Dittmer et al. [30] was used to predict the power
demand of the “real-world laboratory”. For this purpose, the historical power consumption
data of the last four weeks was retrieved daily to forecast the next 48 h. The model is based
on a time series analysis, using correlations of past values, trends, and seasonality to predict
future values.

2.3.2. Biogas Demand Forecast

Using fixed conversion factors, the resulting time series of biogas demand was de-
termined from the power demand according to Equation (1). It is the declaration of the
required raw biogas with approx. 60% methane content. In addition, a scaling factor and
the number of digesters were applied to scale the “real-world laboratory” to the size of the
actual CHP unit and to simulate the adjustment of the biogas demand to larger or smaller
consumption units to test different settings of the model.

Ds
t =

 Pf cst · fs
ηBHKW

fkWh_m3

/n (1)

The parameters are defined as:

• Ds
t biogas demand in m3 with index t for the time and s stands for the series

• Pfcst forecasted power demand in kWh
• fs scaling factor
• ηBHKW fixed efficiency of CHP of 0.35
• f kWh_m3 fixed conversion factor from kWh to m3 -of 5.5 kWh per m3

• n number of digesters

2.3.3. Feeding Management Model

The workflow of the feeding management model is as follows:



Microorganisms 2022, 10, 804 5 of 14

1. Random construction of feeding timetables for the next 48 h.
2. Simulation of biogas production for each feeding timetable.
3. Selection of the timetable fitting best the demand.

2.3.4. Randomly Constructed Feeding-Timetables (1.)

Considering the technical limitations of the full-scale biogas plant and to simplify the
process in general, only feeding increments of 500 kg were allowed in this experiment.
The 48-h horizon was divided into 5-min intervals. For each interval, a binomial distri-
bution was generated (0 or 1), corresponding to a feeding event of 500 kg or no feeding.
Additionally, a “Probability of success” (POS) was introduced to determine the likelihood
of the outcome to feed. The POS was calculated each day based on the total biogas de-
mand in the next 48 h and the historical specific biogas-yield of the last three weeks (see
Equations (2) and (3)).

Speci f ic biogas yield =
bhist
shist

(2)

POS =
∑ Ds

t
Speci f ic biogas yield ·s f ixed

/ 576 (3)

The parameters are defined as:

• bhist mean biogas production over the last 500 h in m3 h−1

• shist mean substrate feeding over the last 500 h in kg h−1

• ∑ Ds
t total biogas demand over the next 48 h in m3

• s f ixed fixed substrate quantity of 500 kg
• 576 related to the number of 5-min intervals during 48 h

The POS is used to reduce the total number of random timetables, or in other words,
it creates a set of feeding timetables that meet the requirements of the total biogas needed
in the next 48 h, rather than creating entirely random timetables.

Finally, the 5-min intervals with their corresponding binomial values are aggregated
into an hourly time series.

In total, 1500 timetables are created for the following 48 h, on each day of the experiment.

2.3.5. Simulation of Biogas Production (2.)

For each of the 1500 randomly constructed feeding plans, the resulting biogas produc-
tion is simulated. For this, the novel simulation model developed by Dittmer et al. [28] is
used. The model is based on correlations between substrate supply and biogas production,
which are determined over a training horizon of the last 500 h of observation. Including
the recent feedings and the new random-timetables, the resulting biogas production can be
simulated by Equation (4) [35]:

Yt = α + β0Xt + β1Xt−1 + . . . + βkXt−k + εt (4)

The parameters of the multiple regression model are defined as:

• Y dependent variable
• t point in time
• X independent variable
• α intercept
• β slope
• εt error term
• k lag order
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2.3.6. Select the Best Feeding-Timetable (3.)

The appropriate feeding plan is selected by comparing the simulated biogas pro-
duction to the biogas demand, using the symmetric mean absolute percentage error
(SMAPE) [37]. The SMAPE is defined as follows:

SMAPE =
|Ds

t − zs
t |

(|Ds
t |+ |zs

t |)
(5)

The parameters are defined as:

• zs
t simulated values

• t point in time
• s for series
• Ds

t is defined in Equation (1)

The feeding-timetable with the lowest SMAPE is selected, uploaded to the database,
and read into the plant-control to be executed.

2.4. Practical Implementation, Experimental Phases

The daily imported feeding plan contains the specification of the time of the day
when feeding is to take place and the respective quantity of solid substrates to be supplied
into the digester. To ensure proper reading and processing of all required data, a time
window of three hours was specified during which no feedings were permitted in the
feeding plan. This time window was also used to fill the vertical mixer feeding system
with sufficient solid substrates to ensure that at least about 12 tons were in stock. This
ensured that there was always enough material for all feedings over the next 24 h. With
this exception of the daily supply of the feeding system, all process steps of the experiment
ran completely automatically.

The experiment was divided into four phases in which different settings of the model
were created and tested. Prior to the experimental phases, a 29-day start-up phase was
conducted to optimize the integration of the model into the CPC and the automation of the
process steps. Furthermore, stable digestion conditions were ensured by adjusting the feed-
ing quantities as required in the initial experimental phase and, accordingly, maintaining
an approximately constant OLR. Data collected during this phase were not included in the
evaluation of the model.

During the four experimental phases, the biogas demand was scaled alternately to
half and back to full demand, to test the suitability and limitations of the model with regard
to major fluctuations in electricity demand. This was done by setting the scaling factor fs to
the value 4 or 2 in Equation (6).

Ds
t =

 Pf cst · fs
ηBHKW

fkWh_m3

/n (6)

Accordingly, the first phase was conducted with a high demand and covered 360 h/15 days.
In the second phase, the demand was reduced by over 216 h/9 days. Subsequently, in a
third phase, the demand was increased again over 168 h/7 days and finally halved again
over 120 h/5 days (fourth phase).

2.5. Evaluation of the MPC

MPC was evaluated using various accuracy parameters. These were used to assess
the average quality of the results per day. In addition to evaluating the overall model
(biogas demand versus production), the substeps, such as simulation versus demand and
simulation versus actual biogas production, were also assessed.
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First, the SMAPE was calculated, since it is also used as a selection criterion in the
model itself. The calculation can be found in Equation (7). Although other parameters are
used in this context, for which reason the index Q is used:

SMAPEQ =
1
E

E

∑
t=1

|actual − predicted|
(|actual|+ |predicted|) ·100% (7)

The parameters are defined as:

• actual set point in m3 h−1

• predicted modeled value in m3 h−1

In Equation (7), E indicates the number of observations, which here always includes
24, since the parameter is considered per day.

Furthermore, the commonly used mean absolute percentage error (MAPE) was ap-
plied [37]. The parameters and abbreviations are the same as in Equation (8).

MAPE =
1
E

E

∑
t=1

∣∣∣∣ actual − predicted
actual

∣∣∣∣·100% (8)

In addition, the mean absolute error (MAE) and the positive and negative deviations
from the actual and predicted values of the overall model (biogas demand versus pro-
duction) were used as parameters for the evaluation. For this purpose, the R function
mae() from the R package metrics [37] and differences between actual and predicted values
were calculated. These daily deviations are particularly relevant for the evaluation of the
compensation of over- or underproduction by the gas storage.

3. Results and Discussion
3.1. Power Demand Forecast and Derived Biogas Demand

Derived from the projected electricity demand, Figure 2 shows the hourly biogas
demand over the entire period of the experiment.
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Figure 2. Hourly biogas demand profile over the entire test period, derived from the electricity
demand of the “real-world laboratory”. The vertical grey lines identify start and end of the four
experimental phases. The weekends are marked with dotted lines and “w”.

Variations resulting from day/night and weekday/weekend cycles were observed,
which is typical for the energy demand of a site, as described in Dittmer et al. [30]. At our
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site, demand during the day largely exceeds demand during the night, and less energy is
consumed during weekends than on weekdays. The largest variation in biogas demand
within one hour was observed in the transition from one phase to the other, with differences
of nearly 45 m3 h−1 in each case. This leap is relatively high compared to the results of
Mauky et al. [21] with, for example, a difference of 20 m3 h−1 only. The largest spread
within one day was 95 m3 on day 25.

The mean biogas demand in the first experimental phase was 107 m3 h−1, with a
maximum of 170 m3 h−1 and a minimum of 40 m3 h−1. This first experimental phase ended
after day 15 and represented the longest phase. Since this phase covered two whole weeks,
the different demands of weekdays and weekends were sufficiently represented.

The second experimental phase shows the biogas demand over nine days with a
weekend in the middle. The mean demand during this phase was 51 m3 h−1, while
maximum and minimum were 95 m3 h−1 and 36 m3 h−1, respectively. Thus, the biogas
demand was reduced by about 50% compared to the first experimental phase. This reduc-
tion in demand should demonstrate how reliably and quickly biogas production can be
significantly reduced.

In the third experimental phase, the biogas demand was increased again, with a mean
demand of 100 m3 h−1 during a period of seven days and maximum and minimum values
of 146 m3 h−1 and 47 m3 h−1, respectively. This phase was intended to show the extent to
which a rapid significant increase in biogas production is possible.

For reproducibility, the last phase over five days represents again a reduced demand
with a mean demand of 49 m3 h−1 and a maximum and minimum of 68 m3 h−1 and
37 m3 h−1, respectively.

3.2. Feeding Management Model
3.2.1. Calculation Results

36 individual feeding schedules with a 48 h time horizon were calculated for each
day of the entire experimental period and are shown in Figure 3 with the corresponding
biogas simulations.
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The lower part of Figure 3 shows the planned feeding schedules. Remarkably, even in
the phases with higher biogas demand, 500 kg of substrate per hour should be used in most
cases, but 1000–3000 kg in rare cases. However, based on the boundary conditions of the
model, a maximum quantity of 6000 kg h−1 would be possible. This maximum feeding rate
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was chosen due to technical limitations of the biogas plant (solid feeding system, stirring
technology, etc.) and the OLR. In this respect, adjustments in the model might be necessary
when it is adapted to other biogas plants.

The simulated biogas production, especially in the first experimental phase, closely
followed the biogas demand with only a few deviations. The fact that especially the first
phase provides comparatively good results is also demonstrated by the accuracy parameters
in Table 1, with a mean daily MAPE of 7.3%. This can be explained, among other things,
by the fact that the biogas plant was already operated with similar conditions in terms of
average biogas demand, OLR, and substrate mix in the 29-day start-up phase. This allowed
the simulation model, which uses historical data as shown in Equation (4), to adapt to the
conditions [28].

Table 1. Mean values of accuracy parameters SMAPE [%], MAPE [%], and MAE [m3] to evaluate the
quality of simulation results.

Phase 1 Phase 2 Phase 3 Phase 4

Time Period Day 1–15 Day 16–24 Day 25–31 Day 32–36
SMAPE [%] 7.4 ± 1.7 20.3 ± 11.6 10.1 ± 2.5 12.5 ± 6.0
MAPE [%] 7.3 ± 1.7 24.9 ± 16.0 9.6 ± 2.0 14.5 ± 9.2
MAE [m3] 8.1 ± 2.1 11.6 ± 6.9 9.6 ± 1.5 7.0 ± 4.5

The third phase, which also represents high biogas demand, yielded good results
as well. Here, the average daily MAPE was 9.6%. In particular, the transitions to an
experimental phase with lower demand were characterized by larger deviations. This
suggests that the decrease in biogas production is slower to realize than the increase, which
is a result of the slow degradability of the substrates. However, this is taken into account by
the simulation model [28]. Overall, the largest deviations were observed in phase two, with
an average MAPE of 25%. However, after day 4 of experimental phase two, the deviations
decrease significantly. Phase 4, in turn, shows better values with an average MAPE of 15%.

A major reason for the relatively poor simulation results in phase two is the use of
historical biogas production data by the model. As described in Dittmer et al. [28], the
results of the simulations are based on Equation 4 with the data of the biogas production
and the feeding amounts of the last 500 h. Since the biogas production during this period
was never as low as in phase two, the model has to level off first. In this case, the model will
first output the value of the intercept α. This will only reach the required low values when
the historical data on which the calculation is based also include lower values. Therefore,
the situation is different in phase four, where training data of a similarly low demand of
phase two are already included and thus, accurate simulation results could be obtained
much faster.

3.2.2. Implementation Results

The results of the implemented procedure for the feeding management are presented
in Figure 4 in red for the produced biogas and the actual substrate feeding.

During the first experimental phase, the biogas produced closely matched with the
simulated data and the biogas demand profile, which is also confirmed by the accuracy
parameters in Table 2, with a mean daily MAPE of the simulation results of 10.2%. The
only major deviation around the 9th and 10th day of the experiment can be explained by
planned but not executed feedings, as can be seen in the lower part of Figure 4. These
feedings were not executed because of technical problems in the control system of the
biogas plant. The same problem was also observed in phase three around days 29 and 30,
resulting in a mean MAPE in this phase of 18.8%.
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Table 2. Mean values of accuracy parameters SMAPE [%], MAPE [%] and MAE [m3] as well as
the difference between biogas demand and production (diff. [m3]) for evaluating the quality of
simulation (comparison data of the simulation and the biogas produced) [Sim] and of the final results
of the whole feeding management model (comparison data biogas demand and the biogas produced)
[Feed].

Phase 1 Phase 2 Phase 3 Phase 4

Time Period Day 1–15 Day 16–24 Day 25–31 Day 32–36
SMAPE [%]

[Sim] 10.3 ± 4.2 31.3 ± 10.3 21.6 ± 8.3 11.3 ± 4.0
[Feed] 11.7 ± 4.6 24.0 ± 3.8 25.1 ± 9.0 17.2 ± 6.4

MAPE [%]
[Sim] 10.2 ± 3.2 26.3 ± 7.4 18.8 ± 6.4 11.7 ± 4.3
[Feed] 11.6 ± 3.9 23.0 ± 5.3 21.5 ± 6.3 19.9 ± 9.9

MAE [m3]
[Sim] 11.2 ± 4.7 16.1 ± 4.9 17.4 ± 5.6 6.4 ± 1.7
[Feed] 12.5 ± 4.6 11.7 ± 2.4 20.7 ± 5.2 9.8 ± 5.3

diff. [m3]
[Feed] 16.8 ± 212.7 −147.12 ± 195.4 −432.21 ± 277.9 156.14 ± 203.7

The experimental phases two and four with low biogas demand showed a mean
MAPE value of 26.3% and 11.8%, respectively. In particular, the second phase showed
slightly poorer results. However, this can be justified, by the fact that the simulation results
already deviated clearly from the biogas demand profile, as discussed in the previous
section. On the other hand, in line with the regular operation of the full-scale biogas plant
and thus, regardless of the feeding management, daily feedings of 6000 kg of liquid manure
were carried out during the experiment. These resulted in an increase in biogas production
that could not be accounted for by the model, since liquid manure feeding is not considered
as a parameter [28]. Consequently, the liquid manure supply was distributed more evenly
throughout the day, resulting in better simulation results from day 21 onwards, as shown
in Figure 4 and confirmed by the accuracy parameters in Table 2.

In summary, biogas production could be simulated sufficiently well with an average
daily MAPE of 16.1% over the entire experimental period. These results are consistent
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with the findings of Dittmer et al. [28], who reported an average MAPE of 14–18% when
evaluating 366 simulations.

As can be seen in Figure 4, feedings could be carried out as planned, with the ex-
ceptions mentioned above. In order to evaluate the present model in more detail, further
experiments with a more variable substrate composition might be useful. Solid substrates
were used in the composition of 41% solid manure, 52% corn silage, and 7% grass silage
on average during the experimental period. The liquid manure input, which is not taken
into account in the model, also accounts for 58% of the total substrate mass used. This
represents more than 50% of the total feed. This again justifies the significant increase in
biogas production when the liquid manure was batched and without simultaneous feeding
of solid substrates. However, due to the relatively low biogas yield [38] and the results
of Dittmer et al. [28], it is justified not to include liquid manure feeding as an additional
parameter in the simulation model.

To evaluate the stability of the process conditions during the experimental period, the
OLR was calculated, which was on average 1.65 kg dry organic matter per cubic meter of
digester volume per day. This value tends to be low with regard to the potential use of
a biogas plant of this size [39]. This can be explained by the fact that the biogas demand
profile was generally set low during the experimental period and was also reduced twice
by 50% in each case. Therefore, high dosages were also rarely planned in the feeding
schedule and the maximum of 6000 kg per hour was never provided. The results suggest
that, with regard to OLR, a larger biogas demand could also be met by higher or more
frequent substrate dosages.

Considering the quality of the final results of the feeding management model, balanc-
ing biogas demand and production resulted in an average daily MAPE of 17.6% over the
entire experimental period. Phase one showed the best results with a low MAPE of 11.6%
on average, while the latter three phases showed average MAPE values between 20–23%.
The actual difference between biogas demand and production was calculated as a further
quality parameter. Here, it was assumed that the biogas demand, which was derived from
the forecasted electricity demand, actually occurred in this way (no forecast errors). Posi-
tive values indicate overproduction, whereas negative values indicate insufficient biogas
production. On day 30 of the experimental period, the lowest negative value was recorded
with a difference of 714.9 m3. However, this resulted from the technical problems already
explained above and not from the unsatisfactory results of the model. The second highest
deviation of −640.1 m3 was calculated for day 25. Maximum overproduction was reached
on day 32 with 486.1 m3. On average over the entire experimental period, 92.1 m3 of biogas
per day were underproduced.

In particular, the consideration of the over- and underproduction of biogas during
the experiment serves as an estimate for the required gas storage capacities in the case of
demand-oriented biogas production using the model presented. Based on the research for
a full-scale biogas plant, the total gas storage volume is 950 m3 per digester (two double
membrane gas storages with 300 m3 and 1600 m3 capacity are available for both digesters).
Accordingly, both under- and overproduction could be compensated in this case. However,
this assumes an almost empty gas storage at the same time of maximum overproduction
and vice versa. This is a crucial factor since the upgrading of the gas storage capacity is
technically limited and costly, as discussed in [9,40,41]. In this context, a potential improve-
ment of the present model would be to include the gas storage level in the calculation of
the predicted biogas demand by adjusting it downwards or upwards accordingly. This
is relatively simple and could possibly lead to a further reduction of the required gas
storage capacity.

Moreover, further research could aim to integrate CHP-control into the MPC to repre-
sent the complete full-scale biogas plant. For example, this would allow biogas production
to be based not only on electricity demand, but also on the thermal demand of a site.
This would include an additional algorithm for the continuous calculation of adjusted
CHP schedules. Furthermore, large-scale experiments of the MPC on several full-scale
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biogas plants would be useful to further verify the present results. Also, a much longer
experimental period would be beneficial, especially in view of the changing substrates
used and large fluctuations in the biogas demand profile.

4. Conclusions

The future operation of biogas plants should be demand-orientated Therefore, a new
MPC is presented, which is highly practicable for the first time and consistently yields
results with a MAPE of less than 20% comparing biogas demand and production. Over an
experimental period of 36 days, the biogas production of a full-scale plant was adjusted to
the actual electricity demand of a “real-world laboratory”, which was predicted from the
demand during 48 h in advance. The calculation of the feeding plans used a type of Monte
Carlo algorithm followed by a simulation of the expected biogas production. The most
suitable feeding plan contains only the information about the amount of solid substrates to
be used and the respective time of feeding. Thus, the presented MPC differs significantly
from all previous models, since it requires very few input parameters. Specifically, only
the measured actual electricity demand (using regularly installed electricity meters), the
quantity of solid substrates fed in, regardless of their composition, (e.g., weighing cells
under the solids feeder), and for the biogas produced (e.g., flow meters) need to be available.
Therefore, the results show promising options for practical application nearly all full-scale
biogas plants with no or only minor adjustments of the technical setup.
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