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Abstract: The flagella of enteropathogenic Escherichia coli (EPEC) O127:H6 E2348/69 mediate ad-
herence to host proteins and epithelial cells. What environmental and nutritional signals trigger
or down-regulate flagella expression in EPEC are largely unknown. In this study, we analyzed the
influence of pH, oxygen tension, cationic and anionic salts (including bile salt), carbon and nitrogen
sources, and catecholamines on the expression of the flagellin gene (fliC) of E2348/69. We found that
sodium bicarbonate, which has been shown to induce the expression of type III secretion effectors,
down-regulated flagella expression, explaining why E2348/69 shows reduced motility and flagella-
tion when growing in Dulbecco’s Minimal Essential Medium (DMEM). Further, growth under a 5%
carbon dioxide atmosphere, in DMEM adjusted to pH 8.2, in M9 minimal medium supplemented
with 80 mM glucose or sucrose, and in DMEM containing 150 mM sodium chloride, 0.1% sodium
deoxycholate, or 30 µM epinephrine significantly enhanced fliC transcription to different levels in
comparison to growth in DMEM alone. When EPEC was grown in the presence of HeLa cells or in
supernatants of cultured HeLa cells, high levels (4-fold increase) of fliC transcription were detected
in comparison to growth in DMEM alone. Our data suggest that nutritional and host signals that
EPEC may encounter in the intestinal niche activate fliC expression in order to favor motility and
host colonization.

Keywords: flagella; enteropathogenic; Escherichia coli; gut mucosa; virulence

1. Introduction

Enteropathogenic Escherichia coli (EPEC) is a world-wide cause of acute infantile
diarrhea. EPEC attaches to host epithelial cells using a repertoire of adhesins including
bundle-forming pilus (BFP), the outer membrane protein intimin, flagella, curli, and E. coli
common pilus (ECP) [1–4]. In the small bowel, EPEC causes attaching and effacing (AE)
lesions that lead to the destruction of the intestinal microvilli, opening of tight junctions,
and release of water and electrolytes [1]. The gene products responsible for the production
of the AE lesions are encoded in a chromosomal pathogenicity island called the locus of
enterocyte effacement (LEE) [5].
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The production of EPEC virulence factors is under the control of virulence-gene
regulators (perABC, ler, grlA, and grlR) and an array of global regulators including IHF,
BipA, H-NS, RpoS, Fis, QseBC, and others [6–9].

The bacterial flagellum is a surface organelle that promotes motility, and it is also
involved in virulence-associated properties in a wide range of pathogenic bacteria. These
properties include adherence, invasion, colonization, hemagglutination, biofilm forma-
tion, binding to host proteins, induction of proinflammatory responses via TLR5, and
translocation of virulence molecules [2,10–17]. The synthesis, assembly, and function of
the E. coli and Salmonella enterica flagella are under the control of a flagellar regulon that
comprises more than 50 genes divided among at least 17 operons, among which flhDC is the
master regulon that directs flagella expression [18–22]. Regulation of flagella is remarkably
complex, involving many regulatory networks that respond to specific environmental con-
ditions [23–27]. It is well known that the motility and production of flagella in E. coli K-12
and other bacteria are affected by growth conditions subjected to different pH, temperature,
osmolarity, organic nutrients, bile, and salts [24,28–33].

The flagella of EPEC O127:H6 E2348/69 were previously shown to mediate adherence
to epithelial cells and to bind to bovine mucus and host proteins such as mucins and
extracellular matrix proteins [2,34]. While the production of most virulence factors of
EPEC (BFP, intimin, type 3 secretion system [T3SS] and its effectors) is induced in the
presence of epithelial cells or upon growth in Dulbecco’s Minimal Essential Medium
(DMEM), the production of flagella and motility is abrogated when EPEC grows in this
tissue culture medium. In contrast, bacterial growth in Luria-Bertani (LB) medium favors
the manifestation of these phenotypes [2]. The environmental, nutritional, and host signals
that trigger flagella production in EPEC are largely unknown. In this study, we aimed to
quantitatively determine the influence of pH, oxygen tension, cationic and anionic salts,
carbon and nitrogen sources, catecholamines, lysophosphatidic acid (LPA), and epithelial
cells on the expression of the flagellin (fliC) gene of EPEC in vitro. The data from this
investigation advance our knowledge on the signals that these bacteria may encounter in
the niche of the intestinal mucosa to trigger flagella expression in order to favor motility
and host colonization.

2. Materials and Methods
2.1. Bacterial Strains and Construction of the fliC::lacZ Transcriptional Fusion

Transcriptional fusions have been widely employed to analyze gene expression of
numerous bacterial virulence factors [35–39]. Here, a transcriptional fusion consisting of
the EPEC fliC promoter linked to a promoter-less lacZ reporter gene was constructed to
monitor the expression of fliC in the EPEC O127:H6 strain E2348/69 under a variety of
growth conditions. Primer FAV3 (5′-CGCGGATCCAAACGGTTAGCAATCGCCTG-3′),
which was derived from the coding region of the EPEC fliC gene (www.sangerinstitute.org
(accessed on 11 September 2021)), and FAV5 (5′-TCAAGCTTGGAACTTAAATCCAG-3′),
derived from the coding region of the fliD gene, were used for amplification of the fliC
promoter with Pwo polymerase using E2348/69 chromosomal DNA as the template. The
amplicon was then ligated into plasmid pCR-Blunt II-TOPO yielding pFAV35. An EcoRI-
digested fragment containing the fliC promoter from pFAV35 was ligated into the EcoRI
site of the pRS551 vector [40], yielding pFAV36. The pRS551 vector contains the promoter-
less lacZ reporter gene. The pFAV36 plasmid was transformed into E2348/69, and the
transcriptional activity of fliC was monitored by measuring β-galactosidase activity, as
previously described [40,41]. In all experiments, E2348/69 carrying the empty vector
pRS551 was employed as a negative control.

2.2. Culture Conditions and β-Galactosidase Assays

EPEC E2348/69 containing the fliC::lacZ fusion or the empty vector was grown with
shaking for 21 h at 37 ◦C, diluted 1:50 in fresh Luria-Bertani (LB containing 10 g/L NaCl)
(Sigma Aldrich, St. Louis, MI, USA) or low-glucose DMEM (Gibco) and M9 minimal

www.sangerinstitute.org
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medium (25.6 g/L of Na2HPO4, 6 g/L of KH2PO4, 1 g/L of NaCl, and 2 g/L of NH4Cl)
(Gibco). These media were reconstituted with different compounds at various concentra-
tions and used to measure fliC expression after growth of EPEC to an OD600 of 0.65–0.70
at 37 ◦C. The pH of the supplemented media was adjusted to pH 7.2 before growth [42].
Compounds of study included divalent cationic salts, ammonium and sodium salts, differ-
ent carbon and nitrogen sources, and hormones (epinephrine and norepinephrine) used at
physiological and non-physiological concentrations. Lysophosphatidic acid (LPA) (Avanti
Polar Lipids) was used at 200 mM in LB-grown bacteria after stimulation for 10 min, 1 h,
2 h, or 3 h of incubation at 37 ◦C, as previously described [43]. The cultures were then
diluted 1:5 in Z buffer (0.06 M Na2HPO4, 0.04 M NaH2PO4, 0.01 M KCl, 0.001 M MgSO4,
and 0.05 M β-mercaptoethanol), and the β-galactosidase activity was assayed using the
O-nitrophenyl-β-D-galactopyranoside (ONPG) substrate, as previously described [40]. The
β-galactosidase experiments were repeated at least three times in triplicate for each condi-
tion tested. Basal β-galactosidase activities in LB or DMEM media alone were used as a
reference for the analysis.

2.3. Adherence to Epithelial Cells and Detection of Flagella by Immunofluorescence

HeLa cells were cultivated at 37 ◦C under a 5% CO2 atmosphere in polystyrene 24-
well plates (Cellstar) containing glass coverslips, as previously described [2]. Briefly, cell
monolayers at 80% confluency, were infected from 1 h to 6 h with 10 µL (107 bacteria) of a
bacterial suspension with an OD600 of 1.1 (109 bacteria/mL) previously grown overnight in
LB. The cells were washed with PBS to remove unbound bacteria and then fixed with 2%
formalin/PBS for immunofluorescence. Primary rabbit anti-H6 antibodies were added for
1 h at a 1:3000 dilution in 10% normal horse serum. After washing, the cells were incubated
for 1 h with secondary anti-rabbit IgG Alexa 488 fluor-conjugated antibodies diluted 1:3000.
The cells were washed extensively and mounted in glycerol-PBS and visualized under UV
light using a Zeiss Axiolab microscope.

2.4. Pre-Conditioned Medium

Monolayers of HeLa cells that had been extensively washed with PBS were incubated
in DMEM without antibiotics or fetal bovine serum for 24–48 h. The supernatant from these
cell cultures referred as to “pre-conditioned medium” (P-DMEM) was collected and the pH
adjusted to 7.4 and filtered through a 0.2 µm membrane. The P-DMEM was supplemented
with ampicillin and used to grow E2348/69 containing pRS551 or pFAV36 to quantitate the
expression of flagellin.

2.5. Motility Assays

Motility assays were performed in 0.3% agar plates containing tryptone media (1%
tryptone) and reconstituted with different compounds. Briefly, the agar was spiked with
an overnight culture using a needle and incubated at 37 ◦C. The level of motility was
assessed by examining the radius of opacity as a result of bacterial swimming away from
the inoculation point after 16 h of incubation as follows: +++: highly motile; ++: moderate
motile; +: weak motile; -: non motile.

2.6. Statistical Analysis

All data were the averages of at least 3 independent experiments performed in trip-
licate. GraphPad Prism 9 software (GraphPad, San Diego, CA, USA) was used for sta-
tistical differences. One-way ANOVA followed by Tukey’s multiple comparison test
and an unpaired Student’s t test was performed. A p-value ≤ 0.05 was considered
statistically significant.
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3. Results
3.1. Glucose Activates fliC Expression in EPEC

In the niche of the intestinal tract, there is a gradient of glucose concentration that
diminishes from the small to the large intestine. In contrast, the concentration of ammonium,
which is generated from protein degradation, increases from the small bowel towards the
large bowel [44–46]. Thus, we were interested in determining if glucose had any effect on
the expression of fliC in EPEC. We began this study by determining the effect of glucose on
EPEC fliC expression in M9 minimal media supplemented with 20 mM to 160 mM glucose
(M9 + Glu). In parallel assays, we also employed a second hexose, sucrose, as an alternate
source of carbon during growth (M9 + Suc). A dose-dependent effect on fliC expression
was noted for both sugars with maximum expression reached at 80 mM glucose (p < 0.001)
and 40 mM sucrose (p < 0.001) (Figure 1). Sucrose at 20 mM induced a 3-fold increase in
fliC expression as compared to 20 mM glucose. At a 40 mM concentration, sucrose induced
fliC expression ~1.55-fold higher than glucose at 40 mM. fliC expression began to decline
when glucose and sucrose were present over 80 mM and 40 mM, respectively. Thus, flagella
activation was not glucose-specific since sucrose also induced fliC transcription.
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Figure 1. Effect of glucose and sucrose on fliC expression in EPEC. Activation of fliC transcription
was measured in E2348/69 carrying pFAV36 (fliC::lacZ fusion) (black bars) and E2348/69(pRS551)
(white bars) during growth in M9 minimal medium containing 20 mM to 160 mM of glucose (M9
+ Glu) or sucrose (M9 + Suc). These data are the mean of at least three experiments performed in
triplicate on different days. *** p < 0.001.

3.2. Role of Sodium Bicarbonate in Flagella Expression

Sodium bicarbonate is a component of DMEM and was reported to stimulate the
expression of genes contained in the LEE region of EHEC O157:H7 [47]. EPEC also contains
a homolog of the EHEC LEE region [48]. That report led us to determine whether the
addition of sodium bicarbonate to M9 minimal medium would affect fliC expression in
EPEC. In contrast to the bicarbonate-mediated activation of EHEC LEE-encoded genes
previously reported, we found that the presence of this compound reduced, in a dose–
response manner, the expression of fliC transcription in EPEC (Figure 2). Analysis of the
composition of the DMEM employed revealed that bicarbonate was present at 44 mM, a
concentration at which we saw significant reduction of fliC transcriptional activation. This
result may explain, at least in part, the negative regulation exerted on flagellation and
motility previously reported in EPEC E2348/69 growing in DMEM [2].
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Figure 2. Effect of sodium bicarbonate on fliC expression in EPEC. Sodium bicarbonate (22–44 mM)
was added to M9 minimal medium to determine its effect on fliC transcription. These data are the
mean of at least three experiments performed in triplicate on different days. The negative control for
background lacZ activity was E2348/69(pRS551) (white bars). *** p < 0.001.

3.3. Modulation of fliC Expression in EPEC by Ammonium

Ammonium was previously shown to influence the production of BFP in the EPEC
O111:NM strain B171 [49]. Here, we sought to study the effect of ammonium in fliC
expression in EPEC E2348/69 by using three ammonium salts (sulfate, chloride, and
oxalate) added at 5 mM, 20 mM, and 100 mM to M9 minimal medium. We did not see any
effect of these salts on fliC expression when added to M9 medium (data not shown); thus,
we studied their effect in LB-grown bacteria. Among the three salts tested, ammonium
oxalate showed the highest levels of fliC transcription (Figure 3). At 5 mM of ammonium
salts, a 2.4-fold increase in fliC transcription was recorded compared to growth in LB
without ammonium (p < 0.001). We also studied the effect of ammonium in DMEM-grown
bacteria; however, the β-galactosidase activity found in DMEM with ammonium sulfate at
any given concentration was even less than in DMEM alone (data not shown), suggesting
that growth in DMEM with ammonium sulfate had a negative effect on fliC expression.
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Figure 3. Effect of ammonium salts on fliC expression in EPEC. Different sources of ammonium
from 5–100 mM were added to LB to determine its effect on fliC transcription. These data are the
mean of at least three experiments performed in triplicate on different days. The negative control for
background lacZ activity was E2348/69(pRS551) (white bars). *** p < 0.001.
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3.4. Effect of Sodium Chloride and Sodium Bisulfite on Flagella Expression

Sodium (chloride and bisulfite) salts were used for the assessment of fliC transcription.
NaCl triggered dose-dependent fliC expression when used at 50 mM to 250 mM in LB
with a peak at 200 mM, which represents a 3-fold increase compared to LB without NaCl
(p < 0.001) (Figure 4A). Sodium bisulfite was previously shown to induce the synthesis
of BFP in EPEC strains [50]. However, here, we found that sodium bisulfite showed an
inhibitory effect on flagellin expression (Figure 4B and Table 1).
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Figure 4. Effect of sodium chloride (A) and sodium bisulfite (B) on fliC expression in EPEC. Different
sources of sodium from 50–250 mM were added to LB to determine its effect on fliC transcription.
These data are the mean of at least three experiments performed in triplicate on different days.
The negative control for background lacZ activity was E2348/69(pRS551) (white bars). * p < 0.05;
** p < 0.01; *** p < 0.001.

Table 1. Correlation of fliC transcription and motility in EPEC.

Condition or Substance Added to DMEM fliC Transcription Motility

Unmodified DMEM - -
Ammonium sulfate 5 mM - -
Sodium chloride 200 mM ++ +

Sodium bisulfite 5 mM - -
Sodium bicarbonate 44 mM * - -
Magnesium chloride 5 mM + +
Magnesium sulfate 5 mM + +
Manganese chloride 5 mM + +

Calcium chloride 5 mM + +++
EDTA 5 mM - -

Sodium deoxycholate 0.2% ++ ++
pH 6.2 - -
pH 8.2 + +

5% CO2 +++ +++
HeLa cells +++ +++

Epinephrine 30 µM ++ +++
Norepinephrine 30 µM + +++

Lysophosphatidic acid 200 mM - -
(-) = 0–199 Miller units; (+) = 200–400 Miller units; (++) = 401–800 Miller units; (+++) = 801–1200 Miller units;
(-) = non-motile; (+) = weakly motile; (++) = moderately motile; (+++) = highly motile. * M9 minimal medium.

3.5. Influence of Divalent Cationic Salts on Flagella Expression

Divalent cations are central elements in the integrity of the cell membrane, as well as
in many cellular functions. In EPEC, the expression of BFP and T3SS-dependent effector
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proteins is influenced by the presence of divalent cations (Ca2+ and Mg2+) in the growth
media [49,51]. Growth in DMEM triggers the production of most virulence factors in
EPEC [49,51,52]. Therefore, we employed divalent cationic salts MgCl2 and MnCl2 at
various concentrations (5 mM, 20 mM, and 100 mM) to define their role in fliC transcription
when added in parallel to LB and DMEM growth media. When 5 mM MgCl2 was added
to LB, fliC expression was increased 4-fold compared to growth in LB alone (p < 0.001).
However, a significant effect on fliC expression was noted only when bacteria were grown
in DMEM supplemented with 5 mM of MgCl2 (p < 0.05) (Figure 5A,B). Similar results were
obtained when magnesium sulfate was employed, suggesting that it is the magnesium
cation, and not the sulfate or chloride anions, that triggers fliC expression (data not shown).
When 5 mM MnCl2 was used in LB, increased fliC transcription (1.9-fold, p < 0.05) was
observed (Figure 5B). The presence of calcium chloride did not significantly activate β-
galactosidase activity; however, bacterial motility was increased when the salt was added
to DMEM (Table 1). Thus, Mg2+ seems to be the most important of these divalent cations
in activating flagella expression. To further support a role for divalent cations in fliC
transcription, 5 mM EDTA (chelator of divalent cations) was added to the LB and DMEM
growth media. As predicted, a significant reduction in fliC expression was seen with
the addition of EDTA to LB (~70%) (p < 0.001) and DMEM (64%) (p < 0.001) (Figure 5C),
stressing the need for divalent cations in flagellin expression.

Microorganisms 2022, 10, x FOR PEER REVIEW 7 of 17 
 

 

3.5. Influence of Divalent Cationic Salts on Flagella Expression 

Divalent cations are central elements in the integrity of the cell membrane, as well as 

in many cellular functions. In EPEC, the expression of BFP and T3SS-dependent effector 

proteins is influenced by the presence of divalent cations (Ca2+ and Mg2+) in the growth 

media [49,51]. Growth in DMEM triggers the production of most virulence factors in EPEC 

[49,51,52]. Therefore, we employed divalent cationic salts MgCl2 and MnCl2 at various 

concentrations (5 mM, 20 mM, and 100 mM) to define their role in fliC transcription when 

added in parallel to LB and DMEM growth media. When 5 mM MgCl2 was added to LB, 

fliC expression was increased 4-fold compared to growth in LB alone (p < 0.001). However, 

a significant effect on fliC expression was noted only when bacteria were grown in DMEM 

supplemented with 5 mM of MgCl2 (p < 0.05) (Figure 5A,B). Similar results were obtained 

when magnesium sulfate was employed, suggesting that it is the magnesium cation, and 

not the sulfate or chloride anions, that triggers fliC expression (data not shown). When 5 

mM MnCl2 was used in LB, increased fliC transcription (1.9-fold, p < 0.05) was observed 

(Figure 5B). The presence of calcium chloride did not significantly activate β-galactosidase 

activity; however, bacterial motility was increased when the salt was added to DMEM 

(Table 1). Thus, Mg2+ seems to be the most important of these divalent cations in activating 

flagella expression. To further support a role for divalent cations in fliC transcription, 5 

mM EDTA (chelator of divalent cations) was added to the LB and DMEM growth media. 

As predicted, a significant reduction in fliC expression was seen with the addition of 

EDTA to LB (~70%) (p < 0.001) and DMEM (64%) (p < 0.001) (Figure 5C), stressing the need 

for divalent cations in flagellin expression. 

 

Figure 5. Effect of magnesium and manganese divalent cations on fliC expression in EPEC. (A) Mag-

nesium and (B) manganese chloride were added at 5–100 mM to LB or DMEM to measure fliC ex-

pression in E2348/69(pFAV36) (black bars) and E2348/69(pRS551) (white bars). (C) Effect of the ad-

dition of 5 mM EDTA to LB or DMEM on fliC expression. These data are the mean of at least three 

experiments performed in triplicate. * p < 0.05; *** p < 0.001. 

LB +

A

(mM)
DMEM +

Magnesium chloride
MgCl2

(mM)

Manganese chloride
MnCl2

LB + DMEM +

0

200

400

600

800

1000

b
-g

a
la

c
to

s
id

a
s
e
 a

c
tiv

ity
 

(M
ill

e
r 

u
n
its

)

E2348/69(pRS551)

E2348/69(pFAV36)

         0         5        20      100            5         20      100            5        20      100  

***

LB+ Ammonium sulphate
(NH4)2SO4

LB+ Ammonium chloride
NH4Cl

LB+ ammonium oxalate

C4H8N2O4

***

***

***

***

***

***

B

0

200

400

600

800

1000

b
-g

a
la

c
to

s
id

a
s
e
 a

c
tiv

ity
 

(M
ill

e
r 

u
n
its

)

E2348/69(pRS551)

E2348/69(pFAV36)

         0         5        20      100            5         20      100            5        20      100  

***

LB+ Ammonium sulphate
(NH4)2SO4

LB+ Ammonium chloride

NH4Cl
LB+ ammonium oxalate

C4H8N2O4

***

***

***

***

***

***

C

5mM 
EDTA

5mM 
EDTA

0

200

400

600

800

1000

b
-g

a
la

ct
o
si

d
a
se

 a
ct

iv
ity

 

(M
ill

e
r 

u
n
its

)

E2348/69(pRS551)

E2348/69(pFAV36)

         0         5        20      100            5         20      100            5        20      100  

***

LB+ Ammonium sulphate
(NH4)2SO4

LB+ Ammonium chloride
NH4Cl

LB+ ammonium oxalate
C4H8N2O4

***

***

***

***

***

***

A

0

250

500

750

1000

1250

b
-g

a
la

c
to

s
id

a
s
e
 a

c
tiv

ity
 

(M
ill

e
r 

u
n
its

)

  0      5        20     100

***

***

       0        5       20     100

***

*

0

250

500

750

1000

1250

b
-g

a
la

c
to

s
id

a
s
e
 a

c
tiv

ity
 

(M
ill

e
r 

u
n
its

)

  0      5        20     100        0        5       20     100

***

0

100

200

300

400

500

b
-g

a
la

c
to

s
id

a
s
e
 a

c
tiv

ity
 

(M
ill

e
r 

u
n
its

)

     LB             LB +  

***

   DMEM        DMEM +

***

Figure 5. Effect of magnesium and manganese divalent cations on fliC expression in EPEC. (A) Mag-
nesium and (B) manganese chloride were added at 5–100 mM to LB or DMEM to measure fliC
expression in E2348/69(pFAV36) (black bars) and E2348/69(pRS551) (white bars). (C) Effect of the
addition of 5 mM EDTA to LB or DMEM on fliC expression. These data are the mean of at least three
experiments performed in triplicate. * p < 0.05; *** p < 0.001.
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3.6. Host Gut Signals Influence Expression of EPEC fliC

Host signals that prevail at the site of bacterial colonization in the intestine, such as
bile acids, hormones, oxygen, carbon dioxide, and pH, determine in part which virulence-
associated products are expressed in vivo. Thus, we sought to evaluate the role of these
intestinal cues in fliC expression in vitro after growth in LB and DMEM media. We found
that the presence of sodium deoxycholate (bile) in both LB and DMEM was associated with
a dose-dependent β-galactosidase activity. At 0.2% sodium deoxycholate, a 3.6-fold and
3-fold increase in transcription were detected in LB and DMEM (p < 0.001), respectively,
in comparison to the medium without deoxycholate (Figure 6A). At this physiological
concentration, bile salt may presumptively act as an activator of flagellin synthesis in the
small intestine.
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Figure 6. Putative host signals that activate fliC expression in EPEC. The effect of sodium deoxycholate
(0.05–0.2%) on fliC expression was studied in LB and DMEM (A). LB and DMEM were adjusted to
the indicated pH and tested for β-galactosidase activation (B). Note the significant increase of fliC
transcription in both media. Bacteria were incubated in LB or DMEM with aeration or under a 5%
carbon dioxide atmosphere. Note the increased expression of fliC (C). These data are the mean of at
least three experiments performed in triplicate. The negative control for background lacZ activity
was E2348/69(pRS551) (white bars). *** p < 0.001.

In their passage from the stomach to and through the small and large intestines,
bacteria experience a pH gradient from low-to-high. Thus, β-galactosidase activity was
also measured in EPEC bacteria growing in LB and DMEM media adjusted to a pH range
of 6.2 to 8.2 [43]. The pH of the media was measured before and after growth to ensure
that the pH did not change by more than 0.05 pH units (data not shown). The optimal
pH for activation of EPEC fliC transcription was 8.2 in both LB and DMEM, whereas the
β-galactosidase activity was significantly lower at pH 6.2 and pH 7.2 (Figure 6B).
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In the lumen of the large intestine, facultative anaerobic bacteria such as E. coli live
under an atmosphere of reduced oxygen tension, which could in turn act as a signal to
activate genes required for intestinal colonization. Thus, we studied fliC transcription in
bacteria grown with aeration or in a 5% carbon dioxide atmosphere. We found that the
β-galactosidase activity was 5-fold increased after growth in both LB (p < 0.001) and in
DMEM (p < 0.001) under a 5% carbon dioxide atmosphere compared to growth under
aeration. Up to this point, carbon dioxide was the only element, amongst all compounds
and conditions tested, that triggered the highest level of fliC expression in bacteria grown
in DMEM (Figure 6C). This result is conceivably significant considering that the oxygen
tension in the small intestine, the site of EPEC infection and colonization, is reduced relative
to carbon dioxide [3].

3.7. The Presence of Epithelial Cells Triggers Flagella Expression in EPEC

We monitored time-dependent (1–6 h) production of flagella by bacteria adhering to
cultured HeLa cell monolayers by immunofluorescence using anti-flagella H6 antibodies [2].
At 1 h of infection, only a few bacteria adhered to the epithelial cells. As the time of infection
increased, so did the number of bacteria attached to the cell monolayer. Interestingly, within
6 h of infection, the bacteria did not shut off flagella production. Instead, they continued
to produce flagella as the adhering bacteria multiplied on the surface of the eukaryotic
cells (Figure 7A). In contrast to these observations, in S. enterica and B. bronchiseptica, the
synthesis of flagella was turned off once the bacteria were programmed to penetrate host
epithelial cells [53,54]. In addition, transcription of fliC was measured in the presence and
absence of epithelial cells. HeLa cells were infected with EPEC for 3 h, after which the
transcription of flagella was determined using the β-galactosidase assay. fliC transcriptional
activation in E2348/69 was increased 3.5-fold in the presence of HeLa cells compared to
growth in DMEM without HeLa cells (Figure 7B), supporting our hypothesis that eukaryotic
cells or a cellular-secreted product trigger flagella expression in EPEC [2].
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Figure 7. Host epithelial cells activate flagella expression and the kinetics of production of flagella
by EPEC adhering to HeLa cells. HeLa cells were infected with E2348/69 from 1 h to 6 h and then
reacted with anti-H6 antibodies (A). The production of H6 flagella was monitored by immunofluores-
cence. Note the time- and bacterial-concentration-dependent increasing production of flagella. fliC
transcription was measured in the presence or absence of epithelial cells (B). These data are the mean
of at least three experiments performed in triplicate. The negative control for background lacZ activity
was E2348/69(pRS551) (white bars). F: flagella (white arrows); B: bacteria (red arrows). *** p < 0.001.

3.8. Role of Endocrine Adrenergic Molecules in EPEC fliC Expression

Catecholamines such as epinephrine and norepinephrine were previously shown
to enhance the growth of commensal and pathogenic E. coli and to enhance virulence-
associated properties of some E. coli pathogroups [55]. Regarding expression flagella and
motility, it was reported that epinephrine and norepinephrine activate the expression of
flagellar genes in E. coli O157:H7 [56,57]. In the present study, we tested epinephrine and
norepinephrine as potential inducers of fliC transcription in EPEC. Bacteria were grown
aerobically in DMEM supplemented with two concentrations (0.3 µM and 30 µM) of these
molecules. We chose DMEM for these experiments because fliC transcription is considerably
reduced in DMEM compared to LB, allowing us to better determine any positive effect on
expression. The presence of epinephrine significantly enhanced (p < 0.001) the expression
of EPEC flagella at the two different concentrations employed with a 3.6- and 1.9-fold
increase, respectively (Figure 8A). Norepinephrine showed a more discrete increase in fliC
transcription at 30 µM (1.4-fold, p < 0.05), but did not increase the expression of fliC at
0.3 µM (Figure 8B).

Figure 8. Role of catecholamines in fliC expression in EPEC. β-galactosidase activity was measured
in DMEM containing 0–30 µM of epinephrine or norepinephrine (A,B). These data are the mean of at
least three experiments performed in triplicate. The negative control for background lacZ activity
was E2348/69(pRS551) (white bars). * p < 0.05; *** p < 0.001.

3.9. Host-Cell-Produced Lysophospholipids Do Not Activate fliC Transcription in EPEC

A previous report showed that host-cell-produced lysophospholipids (lysophospha-
tidic acid (LPA) and lysophosphatidylcholine (LPC)) trigger the synthesis and secretion of
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flagellin by S. enterica serovar Typhi during infection of intestinal epithelial cells [42]. We
were interested in determining if cellular lysophospholipids activate transcription of fliC
in EPEC. Commercially available LPA used at 200 mM in LB-grown bacteria showed no
apparent effect on the transcription of fliC after stimulation for 10 min, 1 h, 2 h, or 3 h of
incubation at 37 ◦C (data not shown). These observations suggest that different host signals
activate fliC in EPEC and pathogenic Salmonella.

3.10. Reconstitution of a Bacteriological Medium Optimal for Flagella Expression

Based on the information obtained above, we attempted to formulate a growth
medium containing the signals that induced the highest levels of fliC transcription. Since
growth in DMEM showed poor induction of fliC expression, we adjusted the pH of this
medium to 8.2 and added the key components that triggered flagellin expression: 150 mM
sodium chloride and 0.1% sodium deoxycholate sodium. This supplemented medium is
referred to as DMEM-S. We also obtained supernatants from cultured HeLa cells grown
without antibiotics and filtered them to remove any cellular debris. This medium was
labeled as pre-conditioned medium (P-DMEM). For comparison, we also supplemented
P-DMEM with NaCl and bile salt to yield P-DMEM-S. Bacteria were incubated in DMEM,
DMEM-S, P-DMEM, and P-DMEM-S media under a 5% carbon dioxide atmosphere at
37 ◦C. Maximal activation of fliC transcription was found in P-DMEM-S with an ~3-fold
increase in comparison to DMEM alone (Figure 9), indicating that host cell signals play a
significant role in fliC expression.

Microorganisms 2022, 10, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 9. Reconstitution of media with fliC activating signals. Sodium chloride at 150 mM and 0.1% 

sodium deoxycholate were used in DMEM and P-DMEM (see the text for details) adjusted to pH 

8.2 and then used to grow bacteria under a 5% carbon dioxide atmosphere. β-galactosidase activity 

was monitored as before. These data are the mean of at least three experiments performed in tripli-

cate. The negative control for background lacZ activity was E2348/69(pRS551) (white bars). *** p < 

0.001. 

3.11. Motility Assay 

The motility of EPEC E2348/69 was assayed in DMEM containing 0.3% agar and sup-

plemented with the compounds listed in Table 1. The results were in strong correlation 

with the fliC transcription data obtained with the β-galactosidase assay. 

4. Discussion 

Production and secretion of virulence factors in many bacterial pathogens are influ-

enced by factors intrinsic to the host, the microenvironment, and the bacteria themselves. 

For example, the effect of the bacterial growth phase, the presence of carbon and nitrogen 

sources, salts, bile, hormones, pH, temperature, oxygen, and carbon dioxide may be im-

portant to trigger the expression of virulence genes in the host during infection or in extra-

host environmental niches [23,58–63]. In EPEC, the environmental and nutritional signals 

that modulate the expression of BFP and other virulence factors have been previously 

reported [49,51,64–66]. Generally, the growth of EPEC in DMEM at 37 °C, with or without 

epithelial cells, allows the production of BFP and LEE-encoded products and the secretion 

of T3SS-associated effector molecules. The majority of studies regarding the signals that 

regulate flagella expression and motility have been conducted in Salmonella and labora-

tory E. coli strains [27,28,67–69]. Our previously published data suggested that environ-

mental, nutritional, and host signals modulate fliC expression in EPEC, at least in vitro [2]. 

What cues have an effect on flagella production during colonization of the human gut by 

EPEC remains largely unknown. Thus, to learn about the chemical and biological nature 

of the signals that might be present in the intestinal tract and that trigger flagella produc-

tion, we measured the transcriptional activation of fliC in E2348/69 propagated in a wide 

range of laboratory growth conditions. 

Previously, we showed that the EPEC strain E2348/69 produces flagella upon growth 

in LB, whereas flagella production and motility are greatly diminished in DMEM. Inter-

estingly, however, the bacteria were able to regain these phenotypes upon contact with 

cultured epithelial cells replicating in DMEM or when growing in HeLa cell supernatants, 

suggesting that host cell factors overcome the negative regulation exerted by DMEM com-

ponents [2]. Some reports have shown that bicarbonate ion stimulates the expression of 

virulence genes [47,70,71]. We studied fliC transcription in EPEC growing in LB without 

and with sodium bicarbonate at 22 mM and 44 mM. Converse to the effect that bicarbonate 

0

200

400

600

800

1000

b
-g

a
la

c
to

s
id

a
s
e
 a

c
tiv

ity
 

(M
ill

e
r 

u
n
its

)

E2348/69(pRS551)

E2348/69(pFAV36)

         0         5        20      100            5         20      100            5        20      100  

***

LB+ Ammonium sulphate
(NH4)2SO4

LB+ Ammonium chloride

NH4Cl
LB+ ammonium oxalate

C4H8N2O4

***

***

***

***

***

***

0

500

1000

1500

2000

2500

b
-g

a
la

c
to

s
id

a
s
e
 a

c
tiv

ity
 

(M
ill

e
r 

u
n
its

)

     DMEM        DMEM-S      P-DMEM     P-DMEM-S 

***

***

***

Figure 9. Reconstitution of media with fliC activating signals. Sodium chloride at 150 mM and 0.1%
sodium deoxycholate were used in DMEM and P-DMEM (see the text for details) adjusted to pH 8.2
and then used to grow bacteria under a 5% carbon dioxide atmosphere. β-galactosidase activity was
monitored as before. These data are the mean of at least three experiments performed in triplicate.
The negative control for background lacZ activity was E2348/69(pRS551) (white bars). *** p < 0.001.

3.11. Motility Assay

The motility of EPEC E2348/69 was assayed in DMEM containing 0.3% agar and
supplemented with the compounds listed in Table 1. The results were in strong correlation
with the fliC transcription data obtained with the β-galactosidase assay.

4. Discussion

Production and secretion of virulence factors in many bacterial pathogens are influ-
enced by factors intrinsic to the host, the microenvironment, and the bacteria themselves.
For example, the effect of the bacterial growth phase, the presence of carbon and nitro-
gen sources, salts, bile, hormones, pH, temperature, oxygen, and carbon dioxide may be
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important to trigger the expression of virulence genes in the host during infection or in
extra-host environmental niches [23,58–63]. In EPEC, the environmental and nutritional sig-
nals that modulate the expression of BFP and other virulence factors have been previously
reported [49,51,64–66]. Generally, the growth of EPEC in DMEM at 37 ◦C, with or without
epithelial cells, allows the production of BFP and LEE-encoded products and the secretion
of T3SS-associated effector molecules. The majority of studies regarding the signals that
regulate flagella expression and motility have been conducted in Salmonella and laboratory
E. coli strains [27,28,67–69]. Our previously published data suggested that environmental,
nutritional, and host signals modulate fliC expression in EPEC, at least in vitro [2]. What
cues have an effect on flagella production during colonization of the human gut by EPEC
remains largely unknown. Thus, to learn about the chemical and biological nature of the
signals that might be present in the intestinal tract and that trigger flagella production, we
measured the transcriptional activation of fliC in E2348/69 propagated in a wide range of
laboratory growth conditions.

Previously, we showed that the EPEC strain E2348/69 produces flagella upon growth
in LB, whereas flagella production and motility are greatly diminished in DMEM. Inter-
estingly, however, the bacteria were able to regain these phenotypes upon contact with
cultured epithelial cells replicating in DMEM or when growing in HeLa cell supernatants,
suggesting that host cell factors overcome the negative regulation exerted by DMEM com-
ponents [2]. Some reports have shown that bicarbonate ion stimulates the expression of
virulence genes [47,70,71]. We studied fliC transcription in EPEC growing in LB without
and with sodium bicarbonate at 22 mM and 44 mM. Converse to the effect that bicarbonate
has on the expression of LEE-encoded genes in EHEC, we saw a dose–response negative
effect on flagella expression in EPEC. This negative effect may explain why the production
of flagella and motility in EPEC are down-regulated when growing in DMEM, which
contains 44 mM bicarbonate. In support of this idea, we found that bicarbonate might be
such a component, since its addition to LB also inhibited fliC expression.

The influence of different carbohydrates on flagella and motility in E. coli K-12 has
been investigated previously. Glucose was shown to inhibit motility at 0.01 M, and it was
suggested that this negative effect on flagellation was through catabolic repression [28,68].
More recently, increased expression of fliC in adherent-invasive E. coli growing in glucose-
supplemented media was shown [72]. In the present study, we found that the presence
of glucose and sucrose in LB at the concentration range of 20 mM to 160 mM increased
EPEC flagellin gene expression. These data suggest that the flagella in E. coli K-12 and
EPEC are regulated differently by glucose. Positive regulation by glucose may be related to
enhanced availability of energy sources. It is well established that there is a high-to-low
glucose gradient from the small to the large intestine [45]. Thus, the presence of glucose in
the lumen of the small intestine would presumptively be important to initiate the synthesis
of flagella, as these appendages are required for the bacteria to swim across the mucus
layer that bathes target epithelial sites.

Divalent cations such as Ca2+, Mg2+, and Mn2+ are central to the stability and integrity
of the cell membrane and are required in many cellular functions. Calcium and magne-
sium ions regulate virulence gene expression in E. coli, Klebsiella, Yersinia, and Salmonella
species, respectively [60,62,73–75]. In EPEC, the expression of BFP and translocated T3SS-
effector proteins is also influenced by the presence of Ca2+ and Mg2+ salts in the growth
media [49,51,76–78]. We demonstrated that the presence of cations such as Mg2+ and
Mn2+ increased flagellin expression, but did not trigger motility. In favor of this notion,
we showed that this effect was reversed by the presence of the chelating agent EDTA. In
contrast, Ca2+ did not activate flagella expression, but favored motility.

The concentration and availability of oxygen and carbon dioxide are relative to the
site of the small and large intestines. E. coli is a facultative anaerobic organism and, as such,
may or may not need oxygen to grow. It is clear from different studies in the literature that
oxygen and carbon dioxide directly affect the production of virulence factors by regulating
gene expression or indirectly by altering the environmental pH [51,61,79,80]. In this study,



Microorganisms 2022, 10, 792 13 of 17

carbon dioxide was one of the most important inducers of fliC expression; this result
correlates well with our observations that fliC expression was increased at pH values higher
than 7.4.

Bile salts are steroids with detergent properties, which help in fat digestion and
absorption through the intestinal wall [81,82]. The most abundant of the bile salts in
humans are cholate and deoxycholate, and they are normally conjugated with either
glycine or taurine to give glycocholate or taurocholate, respectively. Bile was also shown
to be important for the expression of virulence factors in V. cholerae [83–85]. However,
in Proteus mirabilis and E. coli K-12, 0.1% sodium deoxycholate inhibited flagellation and
motility [86]. We found that sodium deoxycholate at a physiological concentration of 0.1%
increased fliC expression in EPEC. We speculate that this bile component is important
during infection of the small intestine by EPEC.

Earlier studies showed that during infection of intestinal epithelial cells, S. typhi
secretes abundant pro-inflammatory flagellins upon activation by the host-cell-produced
lysophospholipids (LPA) and LPC) [42]. In our study, we did not see an increase in
the transcription of EPEC fliC or in the secretion of flagellin when LPA was used as
the activator, suggesting that different host signals activate fliC expression in EPEC and
pathogenic Salmonella.

The relationship between stress-related neuroendocrine hormones known as cate-
cholamines, which include adrenaline (epinephrine) and noradrenaline (norepinephrine),
and bacterial pathogenesis has been recognized for over half a century [87,88]. Increased
levels of norepinephrine in the intestinal lumen play an important role in bacterial patho-
genesis [89,90]. At high concentrations, norepinephrine has been shown to enhance the
growth of commensal and pathogenic E. coli and to enhance the virulence properties of
enterotoxigenic (ETEC) and E. coli O157:H7 [55,56,87,91]. Increased EHEC and adherent-
invasive E. coli (AIEC) adherence to porcine colonic mucosa and Caco-2 cells, respectively,
were noted after treatment with norepinephrine [20,92]. We found that catecholamines
activated fliC expression in EPEC.

It is apparent that the relationship between flagellar and virulence gene regulation is
tightly linked and that a complex interplay is occurring at the molecular level to coordinate
multiple phenotypes as they are needed in the host niche. The importance of this interplay
with regard to flagella regulation is underscored by the attenuation in the virulence of
mutants with altered flagella expression. Understanding the environmental and molecular
regulators that ultimately determine flagella gene expression and its coordinated regulation
with virulence factors can provide insights into the significance of the production of flagella
in the niche of the intestinal tract and their role in host colonization.
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