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Abstract: The isolation of filamentous fungal strains from remote habitats with extreme climatic
conditions has led to the discovery of a series of enzymes with attractive properties that can be
useful in various industrial applications. Among these, cold-adapted enzymes from fungi with
psychrotrophic lifestyles are valuable agents in industrial processes aiming towards energy reduction.
Out of eight strains isolated from soil of the paramo highlands of Ecuador, three were selected for
further experimentation and identified as Cladosporium michoacanense, Cladosporium sp. (cladospori-
oides complex), and Didymella sp., this last being reported for the first time in this area. The secretion
of seven enzymes, namely, endoglucanase, exoglucanase, β-D-glucosidase, endo-1,4-β-xylanase,
β-D-xylosidase, acid, and alkaline phosphatases, were analyzed under agitation and static conditions
optimized for the growth period and incubation temperature. Cladosporium strains under agitation
as well as incubation for 72 h mostly showed the substantial activation for endoglucanase reaching
up to 4563 mU/mL and xylanase up to 3036 mU/mL. Meanwhile, other enzymatic levels varied
enormously depending on growth and temperature. Didymella sp. showed the most robust activation
at 8 ◦C for endoglucanase, β-D-glucosidase, and xylanase, indicating an interesting profile for appli-
cations such as bioremediation and wastewater treatment processes under cold climatic conditions.

Keywords: psychrotrophic fungi; high Andean Paramo; cold-adapted enzymes; bioprospecting

1. Introduction

The High Andean mountain region is marked by the paramo ecosystem, neotropi-
cal grassland covering mountainsides from 3500 up to 5000 m of altitude from Southern
Venezuela, Colombia, Ecuador, and Northern Peru [1]. It is considered a hotspot of bio-
diversity mainly due to the fact of its high degree of endemic species adapted to extreme
environmental conditions [2] such as intense radiation close to the equator line [3], night-
time temperatures close to the freezing point, and low availability of nutrients [4]. Fungi
growing under these conditions tend to develop a psychrophilic or psychrotrophic profile,
developing at 0 ◦C with optimum growth conditions of ≤15 and 15–20 ◦C, respectively [5,6].
This restricted ecological group has been found in terrestrial and marine environments from
Polar Regions, deep water and marine sediments of the oceans, and high mountains [7–9].

The Paramo Region of South America is a vastly unexplored area in terms of soil-
derived microorganisms. Geospatial separation by Andean mountain chains creates a series
of unique habitats, forcing microbes to adapt to a variety of given conditions, increasing
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the biological diversity with unique species within different paramo regions [10]. Most
surveys of soil-borne fungi were conducted in the Colombian Paramo Region [11–13].
Information about fungi composition in Ecuadorian paramo soils is very scarce [14], and
screenings for active enzymatic fungi with possible industrial applications have not been
performed yet. Fungi isolated from the paramo can secrete cold-adapted enzymes [15],
which are interesting in industrial procedures requiring low temperatures and employing
energy to cool down the process. Nowadays, cold-active enzymes are mostly used in meat
tenderization, food processing, flavoring, baking, brewing, cheese production, and animal
feed [16,17]. They require low activation energies while showing during the meantime the
highest activities, at low temperatures, of up to a 10-fold increase compared to mesophilic
homologues [18], allowing for energy reduction [19], which might become increasingly
important due to the tendency towards neutral carbon dioxide balances in times of global
warming [20].

Enzymes can break down plant cell wall components, such as those of the cellulolytic
system (endoglucanases, exoglucanases, and β-glucosidase), for efficient cellulose cleavage
and of the xylanolytic system (mainly endoxylanase and β-xylosidase) for xylan breakdown
to the level of reducing sugars. They are widely applied to biotechnological processes in
areas such as the food industry, production of fuels, detergents, and biopulping [21–24].
Especially interesting for these cold-adapted enzymes are the treatment of wastewater and
environmental bioremediation in countries with shallow temperatures due to the necessity
of stable in situ applications without the need for heating [25,26].

Fungi further gain increasing importance as biofertilizers to improve crop yield. Given
the broad range of climatic zones where crops are planted, biofertilizers must be equally
adapted to these conditions including cold regions with generally lower productivity [6].
Cold adapted phosphatases can hydrolyze organic phosphate sources, which become
assimilable by plant roots, improving their economic and ecologic growth, eliminating the
need for chemical fertilizers [9,27].

The present study, therefore, aimed to investigate filamentous fungi from paramo soil
and optimize incubation conditions for optimal enzyme activity yield to analyze whether
their extreme living conditions led to adapted enzymes of the carbon and phosphate cycle
with possible interesting applications in the industry comparable to reported enzyme
activities for mesophilic fungi. Unfortunately, soil-associated fungi of this region are poorly
described and have never been analyzed for their enzymatic hydrolyzation capacities to
the best of our knowledge.

2. Materials and Methods
2.1. Sample Collection and Preparation

Two sampling sites were established, each at two different altitudes within the grass-
land paramo (4000 m asl) and at the frontier between grassland paramo and superparamo
(4150 m asl), lying on a lineal transect towards the peak of the volcano Northern Iliniza to
guarantee similar climatic conditions and soil characteristics (Figure 1). Each sampling site
was carefully selected for level ground, open vegetation in a good conservation state, and
the absence of animal signs or human interference. Georeferencing with a GPS (Garmin,
Olathe, KS, USA) was applied at each sampling site (Table S1). Then, 10 cm of topsoil
was removed together with vegetation, and three soil samples were taken with sterile
instruments, giving 12 samples. Data dataloggers (HOBO, Lakeville, MN, USA) were
established at different altitudes to collect temperature data. Soil samples were analyzed
by the Ecuadorian National Institute for Agricultural Research (INIAP) for organic matter
(OM), total nitrogen (Nt), phosphorus, potassium, calcium magnesium (Olsen modified),
and sulfur (calcium phosphate standard protocols). Conductivity was measured with
water-saturated paste and pH in a soil-to-water ratio of 1:2.5.
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Figure 1. Sampling sites with a vision of the Illiniza north volcano (a); typical Andean grass paramo
landscape (b); typical conserved paramo vegetation (c); the georeferenced linear transect of sam-
pling towards the volcano peak (blue triangular) at the bottom left (d) (Source: (a–c) Author 2020;
(d) modified from [28]).

Soil samples were diluted with sterile water at dilutions of 0.1 g in 10, 100, and 1000 mL
with three replicates each, and 50 µL of each dilution were distributed with a sterilized
spreading rod on 10 cm Petri dish containing 12 mL of potato dextrose agar (PDA) (Sigma–
Aldrich, Saint Louis, MO, USA) with streptomycin at 1 mg/mL (GM, London, UK). Then,
Petri dishes were incubated for 48 h at 20 ◦C. After incubation, eight samples of clearly
isolated and visibly round-shaped fungal colonies were picked with sterile toothpicks and
transferred to a fresh PDA petri dish for cultivation.

For the growth assay, each fungus was picked with a sterile toothpick and inoculated at
the center of a PDA Petri dish. Then dishes were incubated at 4, 30, and 40 ◦C, respectively,
for a total of 35 days. Growth was measured weekly in cm growth-diameter of the halo
through the inoculation point.

2.2. Fungal Strain Identification
2.2.1. DNA Extraction

To obtain genomic DNA of three fungal strains, the mycelia were macerated with a
mortar and pestle in TES lysis buffer (Tris 100 mM; EDTA 10 mM; 2% SDS). First, lysed
tissue was incubated at 65 ◦C for 15 min. Then, 140 µL of 5 M NaCl were added, and the
mixture was incubated on ice for 30 min. Afterward, 600 µL of chloroform/isoamyl alcohol
(24:1) were added and centrifuged at 10,000× g for 10 min at 4 ◦C. The supernatant was
isolated and mixed with 50 µL sodium acetate 3 M (pH 5.2) and 300 µL isopropanol. After
the second centrifugation under the same conditions, the supernatant was discarded, and
the mixture was washed twice with 600 µL of 70% ethanol following centrifugation steps.
After discarding the final supernatant, the resulting pellet was diluted in 50 µL TE buffer
(Tris 10 mM; EDTA 1 mM) and 5 µL RNAse (10 mg/mL).
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2.2.2. Polymerase Chain Reaction

Genomic DNA was used to amplify the fungal ITS region (ITS1-5.8S-ITS2) applying
the primer pairs ITS4 and ITS5 [29]. For amplification reactions, a PCR Master Mix Kit
was used (Promega, Madison, WI, USA), following the manufacturer’s instructions. To
visualize the amplification, product electrophoresis was performed on a 1% agarose gel
stained with Nancy dye (Sigma–Aldrich, Saint Louis, MO, USA). Next, the amplification
products were purified using the Wizard® SV Gel kit and PCR Clean-Up System (Promega)
following the kit’s instructions. Finally, the PCR product was quantified on a NanoDrop®

(Thermo Scientific, Waltham, MA, USA).

2.2.3. DNA Sequencing

Sequencing reactions were performed with the BigDye® Terminator Cycle Sequencing
Kit (Life Technologies, Carlsbad, CA, USA) following the manufacturer’s instructions
and analyzed with ABI 3500 XL sequencer system (Life Technologies). Resulting forward
and reverse sequences were quality checked and merged into a consensus sequence with
BioEdit v.7.0.5.3 [30]. The BLASTn tool of the public NCBI-GenBank (www.ncbi.nlm.nih.
gov) and the Trichokey database (http://isth.info/) were used to compare contigs with
homologous sequences (both accessed on 12 April 2019). After a second, quality control
sequences were aligned with homologous sequences from culture collections applying
the ClustalW tool [31]. Then, the sequences were subjected to phylogenetic analysis. The
phylogeny was assembled using the neighbor-joining method, calculating the evolutionary
distance using the 2-parameter Kimura model, and are expressed as the units of the
number of base substitutions per site. The rate variation among sites was modeled with a
gamma distribution (shape parameter = 1). The analysis involved 58 nucleotide sequences.
All positions containing gaps and missing data were eliminated. There was a total of
430 positions in the final data set. Tree support was calculated with bootstrap analysis with
1000 pseudo-replications, and the tree was inferred using MEGA v.7.0 [32].

2.3. Preparation of Crude Enzyme Extract

Isolated fungi were pre-cultured at 20 ◦C on inclined agar PDA medium in test tubes
until sporulation. Concentrations of 106–107 spores per mL were established in sterile
water using a Neubauer chamber for counting. These spores were then used to inoculate
50 mL of sterile Adam’s medium (pH = 6) with 1% wheat bran in 125 mL Erlenmeyer flasks
(Adam’s medium for 50 mL: 0.05 g KH2PO4, 0.025 g MgSO4·7H2O, 0.1 g yeast extract, and
1 g glucose + 50 mL H2O distilled). Triplicates were incubated at 20 ◦C under static and
shaking conditions (120 rpm), respectively, for 120 h harvesting each 24 h. Each crude
extract sample from flasks was filtered over Whatman paper using a vacuum pump and
applied on the same day for enzyme assays.

2.4. Enzyme Activity Assay
2.4.1. Enzyme Determination with Natural Substrates

To measure enzyme activity, the crude enzyme extract was mixed with respective
water-diluted substrates to obtain activity over time according to the Miller method [33].
Reducing sugars were quantified using 3,5-dinitrosalicylic acid (DNS) combined with 0.5%
carboxymethylcellulose (CMC) (endoglucanase measurement) (Sigma–Aldrich®) and 0.5%
xylan beechwood (endoxylanase measurement) in the following relation: 25 µL substrate,
10 µL buffer sodium acetate 50 mM pH 5.0, and 15 µL crude extract. Mixes were incubated
in a thermocycler (Eppendorf®, Hamburg, Germany) for 20 min at 30 ◦C. In the assay to
determine optimal incubation temperatures, a range was established from 4 to 32 ◦C. Then,
50 µL DNS was added to interrupt enzyme activity, and sample-absorbance was measured
at 540 nm on a spectrophotometer (Shimadzu, Kyoto, Japan) compared to glucose and
xylose standard curves (0–1 mg/mL). Blancs were established adding enzyme extract after
incubation, directly interrupting the reaction with DNS. The results were expressed as

www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
http://isth.info/
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milliunits per mL (mU/mL), defined as the enzyme quantity that releases one µmol of
reducing sugars per minute per mL.

2.4.2. Enzyme Determination with Synthetic Substrates

To measure enzyme activity, the crude enzyme extract was mixed with respective
water-diluted substrates to obtain activity over time. The amount of released p-nitrophenol
as a result of enzyme cleavage was measured for the following substrates: p-nitrophenol-β-
D-glycopyranoside (β-D-glucosidase measurement), p-nitrophenol-β-D-xylanopyranoside
(β-D-xylosidase measurement), and p-nitrophenol-β-D-cellobiose (exoglucanase measure-
ment) (all substrates obtained from Sigma—-Aldrich®) used in the following relation: 25 µL
substrate, 10 µL sodium acetate buffer 50 mM pH 5.0, and 15 µL crude extract [34].

For the measurement of phosphatases with p-nitrophenyl phosphate (acid and alkaline
phosphatase), the assay mix was prepared accordingly using 10 µL crude extract, 40 µL
substrate, and 100 µL buffer, where acid phosphatase was measured with acetate buffer
100 mM, pH 4.5 and alkaline phosphatase with Tris-HCl 100 mM, pH 8.0 (modified accord-
ing to [35]). Mixes were incubated in a thermocycler (Eppendorf®) for 20 min at 30 ◦C. In
the assay to determine optimal incubation temperatures, a range was established from 4 to
32 ◦C in steps of 4 ◦C. Then, 50 µL (100 µL for phosphatases) of 0.2 M Na2CO3 solution
was added to interrupt enzyme activity and sample-absorbance was measured at 410 nm
compared to a p-nitrophenol–standard curve (0–1 mg/mL) [36]. Blancs were established by
adding enzyme extract after incubation, directly interrupting the reaction with Na2CO3
solution. The results are expressed as milliunits per mL (mU/mL), defined as the enzyme
quantity that releases one µmol of p-nitrophenol per minute per mL.

2.5. Statistical Analysis

Measured enzyme activity is expressed as the mean ± standard deviation using
Microsoft EXCEL. The Shapiro–Wilk test was used to prove the normal distribution of
data and the Levene’s test for homoscedasticity. To test for statistical difference between
incubation types (i.e., agitation and static), averages of the maximum enzyme activities were
compared using the t-test for independent variables or Mann–Whitney U test, respectively.
To analyze maximum yields among the three studied fungi, one-way ANOVA or Kruskal–
Wallis’s test were applied following Sidak–Bonferroni or Dunn post-hoc tests. All statistical
analyses were performed using licensed STATA 16.0.

3. Results and Discussion
3.1. Sample Site Conditions and Soil Characteristics

This sampling sites in the Iliniza National Reserve were chosen due to the fact of
their proximity to glacial areas of stratified volcanos in the High Andean region. At a
4000 m altitude, the vegetation zone of conserved paramo highlands is grassland, mainly
characterized by herbaceous plants such as sphagnum mosses, tussock grass, and rosette
plants (Figure 1b,c). At 4150 m asl, the zone of the superparamo builds the frontier between
the last zone of abundant vegetation and the beginning of the rocky glacial zone with only
sporadic vegetation. Close to the equator, the radiation at this altitude is very high, causing
drastic daily temperature changes between day and nighttime with an average temperature
of 9.6 ◦C (Table S1). Due to the volcanic ash deposition and slow decomposition, the slightly
acidic soil (pH 5.87–6.15) has mainly a sandy–loam texture with 7.7–9% organic matter,
which is very high, as expected for Andisols [37]. The stabilization of large organic particles
also accounts for its vast water retention capacity [38], which, together with the related
oxygen availability, directly interferes with the development of microorganisms and the sol-
ubilization of phosphorus [39]. The formation of humic acids in the breakdown of organic
matter allows for the formation of metal–humus complexes retaining chelated ions like
calcium [40] and magnesium [41], which might explain their abundance in analyzed soils
and further account for the observed high levels of conductivity [42]. On the other hand,
under the environmental conditions of the paramo region, organic matter breakdown is
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slow. It might negatively interfere with nutrient availability due to the microbial activity as
indicated by the observed low phosphorus, sulfur [43], and nitrogen levels (Table 1) [44–46].

Table 1. Soil characteristics at sampling sites.

Sample
Site

Soil
Type Soil Texture pH COND

(µS/cm2) Nt % OM % P
(ppm)

S
(ppm) K (meq/100 g) Ca (meq/100 g) Mg (meq/100 g)

1 Andisol sandy loam,
loamy

6.15 21.5 0.31 8.8 9.01 8.4 0.54 9.78 1.71
2 6.78 21.3 0.36 9.7 14 9.3 0.48 9.76 1.28

3 Andisol sandy loam 5.93 15.51 0.25 7.7 6.04 4.7 0.42 7.49 1.01
4 5.87 20.8 0.27 9 12 4.1 0.37 4.87 0.73

COND = conductivity, Nt = total nitrogen, and OM = organic matter.

3.2. Screening for Cultivable Fungi

The first screening for cultivable fungal strains from soil samples showed relatively
few growing colonies clearly separated from each other, allowing for easy isolation of
distinct strains. Out of 12 soil samples, eight colonies were chosen for the study. These
strains were further screened for their capacity to grow at different temperature conditions.
Generally, all strains showed better growth at 4 ◦C than 30 ◦C, indicating their adaptation
to cold environments (Figure S1). At 40 ◦C, no development could be detected. The results
showed a potentially psychrophilic profile for the best growing behavior of strain 3.3 at
4 ◦C given that it was not able to grow at 30 ◦C and psychrotrophic profiles for the strains
1.1 and 3.1 at 30 ◦C [5], which were chosen for further experimentation (Figure S2).

3.3. Identification of Fungi

Phylogenetic analysis of the ITS region revealed that all three fungi were ascomycetes
with strains 1.1 and 3.1 belonging to the genus Cladosporium: C. michoacanense and Cladospo-
rium sp. 3.1 (C. Cladosporioides species complex), respectively, and 3.3 to the genus Didymella
(Figure 2). Since the ITS region is not sufficient for species delimitation in some of these
groups, other secondary barcodes would be needed for more accurate identification. The
genus Cladosporium is a highly heterogeneous group with cosmopolitan distribution and
strong capability of adaptation [47] with species formerly isolated from arctic soils [8,23]
and marine sponges [48]. A third strain belonged to the genus Didymella which has mainly
been studied due to the existence of pathological strains and plant–host interaction [49] but
so far to a lesser extent due to the fact of its resistance to extreme conditions and, therefore,
its arising enzymatic capacities [50]. Both Cladosporium and Didymella strains have formerly
been reported in soil isolates from Himalaya mountain environments [51,52]. Still, only
Cladosporium has formerly been described for Andean regions [12,14], and the present study
is the first registry of the genus Didymella in the paramo ecosystem.

Images taken of the growth behavior in culture dishes of PDA indicate a dark brown
colorization of mycelia, which possibly shows intense melanin pigmentation as a protective
adaptation to the strong radiation in their natural habitat as formerly described [53,54]
(Figure S3d–f). Furthermore, differential growth behavior was detected under static and ag-
itation conditions (Figure S3g–i). Especially, the Cladosporium strains tended to grow better
under agitation, developing a darker aspect apparently due to the stronger sporulation [55].
Meanwhile, its impact on Didymella was less evident.
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3.4. Enzymatic Characterization

The following section shows the incubation time-dependent enzyme secretion results
from 24 to 120 h under agitation and static condition for each isolated fungal strain to
characterize the hydrolyzation capacities at 30 ◦C.

3.4.1. Enzymatic Production of Cladosporium michoacanense

Cladosporium michoacanense 1.1 showed the most potent activation under agitation
with a relatively late onset of enzyme secretion compared to studies analyzing the same
enzymes [34] (Table 2). The most significant activity was detected at 72 h for the hy-
drolyzation of CMC, xylan, and pnp-phosphate in an alkaline medium; 96 h for pnp-β-
D-glycopyranoside; 120 h for pnp-β-D-cellobiose, pnp-β-D-xylanopyranoside, and pnp-
phosphate in acidic medium, indicating statistically significant differences to measurements
under static conditions for all enzymes except for exoglucanase and β-glucosidase. Inter-
estingly, under static incubation conditions, the most potent enzyme activity was measured
early between 24 to 48 h for endoglucanase, xylanase, β-xylosidase, and alkaline phos-
phatase and late response at 120 h for exoglucanase, β-glucosidase, and acid phosphatase.
Overall, the most efficient enzyme activity for endoglucanase and xylanase could be ob-
served at levels well above 2000 mU/mL under agitated cultivation.
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Table 2. Cladosporium michoacanense 1.1 enzymes produced overtime under agitation and static conditions.

Agitation Static

Enzyme 24 h 48 h 72 h 96 h 120 h 24 h 48 h 72 h 96 h 120 h

Endoglucanase 932.2 ±
20.7

1514.4 ±
100.5

2503.7 ±
207.1 *

394.5 ±
51.8

385.2 ±
170.0

887.4 ±
84.8

1061.0 ±
23.3

917.6 ±
17.1

791.4 ±
70.4

730.6 ±
26.9

Exoglucanase ND ND ND 1.4 ± 0.7 1.4 ± 0.3 ND ND ND ND 0.2 ± 0.1

β-
Glucosidase ND ND ND 1.7 ± 0.0 ND ND ND ND ND 0.2 ± 0.0

Xylanase 360.2 ±
105.7

969.4 ±
120.1

2430.1 ±
2.1 *

274.6 ±
81.3

145.2 ±
34.7

737.8 ±
88.3

435.5 ±
111.7

412.2 ±
53.9

353.0 ±
119.5

384.3 ±
70.6

β-Xylosidase ND ND 0.7±0. 1.1 ± 0.3 1.4 ± 0.3 * 0.5 ± 0.1 ND ND ND ND

Acid
phosphatase 1.4 ± 0.6 1.7 ± 1.0 31.0 ± 0.3 5.9 34.9 ± 0.1 * ND ND ND ND 0.7 ± 0.4

Alkaline
phosphatase 0.3±0.1 1.4 ± 0.3 2.3 ± 0.4 * 0.2 ± 0.2 ND 1.4 ± 0.3 0.6 ± 0.3 ND ND ND

Data are expressed as mU/mL ± standard deviation. ND = not detected; * indicates a statistically significant
difference (p < 0.05) between the average enzyme activity of fungi cultivated under agitation vs. static conditions
for each analyzed enzyme. In bold, maximum achieved activity.

3.4.2. Enzymatic Production of cladosporium sp. (C. Cladosporioides Species Complex)

Cladosporium sp. 3.1 indicated the best hydrolyzation performance under agitation at
120 h for most enzymes (Table 3). The late onset in enzyme production is consistent with
previous studies [56]. Exceptions were endoglucanase with the highest enzyme secretion
at 48 h, β-xylosidase at 24 h, and xylanase at 72 h. Under static conditions, the strongest
enzyme secretion was observed at 72–96 h for most enzymes with significantly lower
activity values than under agitation conditions, which is coherent with the increased pellet
formation observed by comparing the incubation flasks of C. Cladosporioides under static and
agitation conditions (Figure S3g,h). This phenomenon was formerly described by Raikumar
et al. for this genus [55]. Xylanase was the only exception that performed better under
static conditions at 72 h of incubation. Agitation leads to better aeration and distribution of
heat and nutrients bearing growth benefits for many filamentous fungi [57]. Comparing
both analyzed Cladosporium species, an advanced enzyme production upon agitation was
observed, and a relative early specialization in the production of endoglucanase and
xylanase indicated a focus on the breakdown of large sugar polymers such as cellulose and
hemicellulose [58]. All remaining enzymes showed a rather late onset.

Table 3. Cladosporium cladosporioides sp. 3.1 enzyme activity over time und agitation and static conditions.

Agitation Static

Enzyme 24 h 48 h 72 h 96 h 120 h 24 h 48 h 72 h 96 h 120 h

Endoglucanase 393.2 ±
97.3

1274.0 ±
102.0

328.5 ±
68.6 14.0 ± 11.4 14.6 ± 11.9 761.0 ±

70.4
638.8 ±

140.4
945.3 ±

120.6
1076.4 ±

149.4
775.0 ±

156.2

Exoglucanase ND ND 3.6 ± 1.0 6.0 ± 0.3 12.0 ± 0.6 * ND ND 0.7 ± 0.4 0.9 ± 0.6 1.0 ± 0.0

β-
Glucosidase 0.2 ± 0.2 0.8 ± 0.2 5.7 ± 1.0 8.7 ± 2.9 11.1 ± 0.8 * ND ND 0.7 ± 0.4 ND ND

Xylanase 156.0 ± 8.3 861.0 ±
11.9

958.9 ±
15.5

481.0 ±
57.0 ND 522.1 ±

87.6
660.0 ±

56.1
1113.0 ±

865
937.3 ±

40.4
898.0 ±

62.1

β-Xylosidase 1.2 ± 0.3 0.4 ± 0.1 ND ND ND 1.0 ± 0.1 ND ND ND ND

Acid
phosphatase 0.7 ± 0.4 1.9 ± 0.7 3.4 ± 0.7 6.8 ± 0.3 13.9 ± 0.5 * ND ND 0.3 ± 0.2 1.0 ± 0.7 0.9 ± 0.1

Alkaline
phosphatase ND ND 1.2 ± 0.8 1.9 ± 1.6 8.0 ± 1.5 * ND ND ND ND 1.0 ± 0.3

Data are expressed as mU/mL ± standard deviation. ND = not detected; * indicates a statistically significant
difference (p < 0.05) between the average enzyme activity of fungi cultivated under agitation vs. static conditions
for each analyzed enzyme. In bold, maximum achieved activity.

3.4.3. Enzymatic Production of Didymella sp.

The Didymella strain 3.3 showed a rather heterogeneous behavior (Table 4). Meanwhile,
CMC and pnp-β-D-xylanopyranoside were most effectively hydrolyzed under agitation at
24 h and 48 h, respectively. However, the best xylan hydrolyzation occurred at 72 h and for
pnp-β-D-glycopyranoside, pnp-β-D-cellobiose, and pnp-phosphate in alkaline medium at
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96 h and 120 h in acid medium. Interestingly, while β-glucosidase, β-xylosidase, acid, and
alkaline phosphatase showed low but detectable activity under agitation conditions, no
activity could be detected under static conditions. On the other hand, endoglucanase, and
xylanase, which generally showed much higher activity, performed considerably stronger
under static conditions at 96 h. These results confirm the previously described strong
influence that culture conditions can exert over enzyme production [34,59].

Table 4. Didymella sp. strain 3.3 enzyme activity over time und agitation and static conditions.

Agitation Static

Enzyme 24 h 48 h 72 h 96 h 120 h 24 h 48 h 72 h 96 h 120 h

Endoglucanase 1077.4 ±
6.7

1037.4 ±
99.0 354.5 ± 6.7 334.4 ±

10.9
119.0 ±

39.4
870.1 ±

99.8
1243.0 ±

108.1
1151.6 ±

189.5
1413.0 ±
165.7 *

926.7 ±
15.0

Exoglucanase 0.4 ± 0.2 0.7 ± 0.2 1.0 ± 0.3 1.7 ± 0.4 1.7 ± 0.4 0.7 ± 0.2 1.7 ± 0.1 0.6 ± 0.2 ND ND

β-
Glucosidase ND ND ND 1.6 ± 0.7 0.5 ± 0.1 ND ND ND ND ND

Xylanase 202.3 ±
15.0

233.0 ±
98.2

383.0 ±
103.2

289.2 ±
62.1 ND 873.2 ±

93.7
893.3 ±

125.9
906.0 ±

186.4
1623.5 ±
196.4 *

624.7 ±
141.4

β-Xylosidase 1.0 ± 0.0 0.5 ± 0.1 0.4 ± 0.1 0.1 ± 0.0 ND ND ND ND ND ND

Acid
phosphatase ND 2.7 ± 0.6 5.7 ± 1.1 7.3 ± 1.1 7.5 ± 1.5 ND ND ND ND 0.3 ± 0.1

Alkaline
phosphatase 0.4 ± 0.3 0.4 ± 0.1 1.8 ± 0.1 2.1 ± 0.5 ND ND ND ND ND ND

Data are expressed as mU/mL ± standard deviation. ND = not detected; * indicates a statistically significant
difference (p < 0.05) between the average enzyme activity of fungi cultivated under agitation vs. static conditions
for each analyzed enzyme. In bold, maximum achieved activity.

3.4.4. Comparison of Relative Enzyme Activity between Acid and Alkaline Phosphatases

Analysis of differential enzyme production between acid and alkaline phosphatase
activities generally indicated more substantial secretion of enzymes upon agitation than
under static conditions and stronger and prolonged acid phosphatase activity over time.
Meanwhile, alkaline phosphatase showed lower and somewhat restricted activation at
growth onset for strains 1.1 and 3.1; activation was strongest from 72 to 120 h for strain
3.1 (Figure S4). This behavior matches with the environmental conditions of their habitat,
where slightly acidic soil pH was observed (Table 2), which is also the preferred growth
condition for most fungi [60]. It further coincides with the tendency that within strain 1.1
and 3.1, measured pH values of crude extract used to drop stronger over time than in strain
3.3 (Figure S5).

3.4.5. Temperature-Dependent Enzyme Activity

After analyzing the best growth time for differential enzyme production, results were
used to determine optimal enzyme secretion under different incubation temperatures rang-
ing from 4 to 32 ◦C under agitation to optimize enzyme production further. The results
indicated statistically significant differences among strains (Figure 3). Meanwhile, strain
1.1 showed the best performance at temperatures ranging from 20 to 24 ◦C for all enzymes
related to the carbon cycle and 8–12 ◦C for phosphatases; strain 3.1 showed somewhat dif-
ferential activity indicating main enzyme activity for β-glucosidase and exoglucanase from
4 to 8 ◦C and for endoglucanase, β-xylosidase, and xylanase from 20 to 24 ◦C. Phosphatases
showed opposite behavior with the highest acid phosphatase activity at 12 ◦C; meanwhile,
alkaline phosphatase performed best at 28 ◦C. This controversial behavior might best be
explained by the adaptation capacity of different Cladosporium species to varying ecological
niches giving rise to its worldwide abundance [47]. It is typical for fungal strains adapted
to changing environmental conditions within a single habitat [61,62]. Strain 3.3 finally
showed maximum activity for β-glucosidase, endoglucanase, and xylanase at 8 ◦C and for
exoglucanase and β-xylosidase at 20–24 ◦C. Phosphatase activity remained low, with the
highest activity at 16 ◦C for both acid and alkaline phosphatase.
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Table 5. Maximum enzyme activity yield at optimal assay temperature and incubation time for each
isolated strain.

Cladosporium michoacanense 1.1 Cladosporium Cladosporioides Complex 3.1 Didymella sp. 3.3

Enzyme Maximum
Yield ± SD T opt ◦C IT (h) Maximum

Yield ± SD T opt ◦C IT (h) Maximum
Yield ± SD T opt ◦C IT (h)

Endoglucanase 4563 ± 209 a 28 72 1553 ± 330 b 20 48 1247 ± 21 b 8 72
Exoglucanase 107 ± 26 a 24 96 2037 ± 254 b 4 120 127 ± 5 a 24 96
β-Glucosidase 303 ± 39 a 16 96 1013 ± 151 b 8 96 917 ± 12 b 8 120

Xylanase 3036 ± 634 a 24 72 1290 ± 122 ab 24 72 1150 ± 121
b 8 96

β-Xylosidase 430 ± 29 ab 24 120 2457 ± 336 a 24 120 71 ± 5 b 20 48
Acid

phosphatase 97 ± 12 ab 12 120 1273 ± 360 a 12 120 17 ± 5 b 16 120

Alkaline
phosphatase 127 ± 21 a 8 72 137 ± 37 b 28 120 26 ± 7 a 16 96

Data expressed are as mU/mL ± standard deviation. IT = optimal incubation time; ND = not detected; the letters
a and b indicate statistically significant differences among enzyme activities comparing the three different fungi
(p < 0.05) if the letters are not shared between activities of the same enzyme.

The combination of optimal incubation time, agitation, and optimal substrate incu-
bation temperature led to several enzymes’ considerably higher activity (Table 5). Cla-
dosporium strain 1.1 specialized in producing endoglucanase and xylanase with 4.56 and
3.03 U/mL activities, respectively, both showing significantly higher performances than the
other two strains. Comparing these values with formerly described enzymatic activities,
even in the mesophilic fungi screenings, especially endoglucanase values, they are quite
competitive. For instance, Grujic et al. (2019) [63] described maximum values of 1.1 U/mL
for endoglucanase in Trichoderma guizhouense, Ghazali et al. (2019) [64] reported the highest
values of 3.93 U/mL for Trichoderma asperellum and 5.6 U/mL for Aspergillus niger. Un-
fortunately, most studies for psychrotrophic fungi do not apply optimization assays, so
comparability is limited. However, considering the advantage of growing under extreme
conditions, the Cladosporium michoacanense strain is an interesting candidate for potential
industrial application under harsh conditions. Moreover, the relatively early onset of en-
zyme secretion, indicating efficient substrate hydrolyzation at 72 h, represents an important
advantage confirming previous results from studies with Cladosporium strains [58,65].

On the other hand, Cladosporium sp. 3.1 did not reach values as high as strain 1.1
but managed to perform well for all selected enzymes with values above 1 U/mL ex-
cept alkaline phosphatase. However, the onset of enzyme production appeared relatively
late. Interestingly, strain 3.1 showed the significantly highest activation of 2.04 U/mL for
exoglucanase at low temperatures, although former studies indicated a relatively poor
performance of paramo-derived fungi for these enzymes [11]. Comparing the mesophilic
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fungi, results matched with reported highest activities of 1.08 U/mL and 2.37 U/mL in
Trichoderma asperellum and Aspergillus niger, respectively. It is also important to mention that
this high activity was reached under conditions of only 4 ◦C. Furthermore, β-glucosidase,
which works synergistically with exoglucanase, also performed well at low temperatures
(8 ◦C). Given that Cladosporium cladosporioides had formerly been described to exhibit laccase
activity [58,66,67], further studies are needed to determine whether the strain could exhibit
lignocellulolytic activity for industrial applications under cold conditions. Moreover, strain
3.1 showed the strongest activation for acid phosphatase, reaching 1.27 U/mL. This result
further highlights the importance of applying optimization assays for psychrotolerant
enzyme activity given incubation time as well as incubation temperature strongly influ-
enced activity. Therefore, maximum acid phosphatase activity in psychrotrophic fungi of
0.03 U/mL, such as described in a screening study by Gawas-Sakhalkar et al. [68], indicates
only a limited comparability to the present results.

Finally, Didymella 3.3 performed well only for endoglucanase, β-glucosidase, and
xylanase, indicating poor performance for the rest of the enzymes, especially phosphatases,
which could be related to the phytopathological behavior of many Didymella species al-
lowing for the absorption of nutrients from hosts [49]. Nevertheless, all enzymes that
performed better showed the highest values at low temperatures of 8 ◦C, indicating its
potential in producing cold-adapted enzymes [9].

Wide-ranging comparison of psychrotrophic fungi enzyme activity is difficult, given
that most screening studies indicate qualitative and semi-quantitative data [7,62,69–71]
or activity data at a single temperature and incubation time [61], which is not directly
comparable to the presented data. This strongly indicates the importance of performing
studies with a more profound analysis of maximum achievable enzyme activities under
optimized conditions for psychrotrophic and psychrophilic fungi isolated from habitats
with extreme conditions.

4. Conclusions

The present study directly isolated cold-adapted fungal strains from high Andean
Paramo soil, of which three strains were chosen to identify the genus and characterize their
enzymatic capacity. Selecting for optimal conditions concerning growth period, incubation
conditions, and optimal temperature for enzyme performance, maximum enzyme activities
were determined for each strain. Cladosporium sp. strain 1.1 showed the most competitive
enzyme activity of all analyzed strains for endoglucanase and xylanase at 72 h, and agita-
tion and assay temperatures between 24 and 28 ◦C, indicating an interesting potential for
the industrial application processes where reducing sugars are used such as feed animal,
food industry, and fuel production. Cladosporium strain 3.1 of the cladosporioides complex
indicated average performance for a broad spectrum of different enzymes except for exoglu-
canase, which showed the highest activity. Its good performance of acid phosphatase at
12 ◦C could be applied in the industry of biofertilization to improve the crop yield of plants
grown under cold conditions and in the eutrophication of phosphorus from animal feces
due to the consumption of phytate in grains [72]. Finally, the Didymella strain 3.3 showed
high endoglucanase, β-glucosidase, and xylanase activities at temperatures as low as 8 ◦C,
where most enzymes are inactivated. This strain responded closest to a psychrotrophic
profile, which could be specifically interesting in industrial processes such as wastew-
ater management and bioremediation in cold conditions, an aspect that might become
increasingly important in an industrialized world tending towards energy reduction.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms10020282/s1, Figure S1: Growth of 8 different isolated fungal strains;
Figure S2. Growth curves of isolated fungal strains at 4 ◦C and 30 ◦C; Supplementary Figure S3:
Selected and identified fungi, from left to right Cladosporium michoacanense (a, d, g), Cladosporium sp.
(cladosporioides species complex)(b, e, h), Didymella sp. (c, f, i); Figure S4: Relative phosphate activity
over time comparing acidic phosphatase versus alkaline phosphatase; Figure S5: Development of
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growth medium pH over time in cultures under agitation (A) and static (S) conditions for strain 1.1,
3.1 and 3.3; Table S1: Sampling sites characteristic.
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