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Abstract: Plant pathogens are responsible for causing economic and production losses in several
crops worldwide, thus reducing the quality and quantity of agricultural supplies. To reduce the
usage of chemically synthesized pesticides, strategies and approaches using microorganisms are
being used in plant disease management. Most of the studies concerning plant-growth promotion
and biological agents to control plant diseases are mainly focused on bacteria. In addition, a great
portion of registered and commercialized biopesticides are bacterial-based products. Despite fungal
endophytes having been identified as promising candidates for their use in biological control, it is of
the utmost importance to develop and improve the existing knowledge on this research field. The
genus Diaporthe, encompasses plant pathogens, saprobes and endophytes that have been screened
for secondary metabolite, mainly due to their production of polyketides and a variety of unique
bioactive metabolites with agronomic importance. Some of these metabolites exhibit antifungal and
antibacterial activity for controlling plant pathogens, and phytotoxic activity for the development
of potential mycoherbicides. Moreover, species of Diaporthe are reported as promising agents in the
development of biofertilizers. For this reason, in this review we summarize the potential of Diaporthe
species to produce natural products with application in agriculture and describe the benefits of these
fungi to promote their host plant’s growth.
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1. Introduction

In 1807, Bénédict Prévost found that germination of spores from Tilletia caries was
inhibited by metallic copper when placed in the soil, thus describing it as the first com-
pound with fungicidal properties [1]. The first organic fungicide was synthesized in the
early 20th century. After that, several fungicides such as 2-methoxyethyl silicate and 2-
hydroxyphenyl mercury, effective against the fungal species Fusarium spp. and Dreschlera
spp., started also to be commercialized [2]. Nevertheless, the excessive use of agrochemicals
has contributed to the environmental pollution (e.g., long degradation period), undesirable
effects on human health (e.g., carcinogenicity) and the development of pathogen resis-
tance [3]. Therefore, alternative methods for the safe control of plant pathogens and weed
managements such as the use of biocontrol microorganisms and the application of naturally
sourced metabolites have received increasing attention in the past decade [4,5].

Microorganisms are known for their ability to synthesize secondary metabolites,
which exhibit promising bioactivities for the development of agrochemicals. Many natural
antifungal fungicides have been obtained from microbial resources [6]. For instance,
kasugamycin isolated from Streptomyces kasugaensis is widely used to control leaf spot, fire
blight, rice blast and bacterial diseases in several crops [7]. The polyoxins, produced by
Streptomyces cacaoi, are effective for rice fungal diseases as well as for the gray mold disease
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of fruits (Botrytis cinerea) [8]. Moreover, the antifungal antibiotic validamycin produced by
Streptomyces hygroscopicus var. limoneus is commonly used to control sheath blight of rice
plants caused by Rhizoctonia solani [9]. It is also well-stablished that several fungal genera
may confer herbicidal activities by producing competent phytotoxins, such as species of
the genus Colletotrichum and Xylaria [10].

The application of endophytic fungi to promote a sustainable agriculture has also
been of interest, due to their role as plant-growth promoters [11]. This role is based on
recognized mechanisms, such as the increase in nutrient and water acquisition and the
production of plant hormones, leading to an increase in resistance to biotic and abiotic
stresses [12]. Recent research has also demonstrated that the use of bacteria and fungi
as biological control agents is advantageous to control plant diseases, thus improving
agricultural yields [13]. The application of fungal biological control agents has largely
increased due to their high reproductive rate (sexually and asexually), and their being
target specific [14].

The genus Diaporthe comprises plant pathogens and endophytes, and it is a source
of secondary metabolites. These have been explored for their potential applications in
health care (e.g., antioxidant and anti-inflammatory properties), pharmacology (e.g., clinical
toxicology assessment) and biomedicine (e.g., development of drugs) [15,16]. However,
there is still a lack of information on the phytotoxins produced by species of Diaporthe,
which should be explored given their potential application in agriculture as promising
candidates for the development of natural herbicides [15]. Moreover, endophytic Dia-
porthe species are also reported as producing antimicrobial compounds to control plant
pathogens, and as promising agents in the development of biofertilizers to promote plant
growth [17]. Therefore, the main goal of this review is to summarize the potential benefits
of species of Diaporthe as biocontrol agents, and as promising sources for the development
of antimicrobials and mycoherbicides to assist in a sustainable agriculture.

2. Material and Methods
2.1. Criteria Used for Considering Studies

This review was aimed to summarize and gather current knowledge from published
scientific data concerning the importance of endophytic species of Diaporthe as biological
control agents. Notwithstanding the recognition of Diaporthe as the most common genera
of endophytic fungi, this research field still requires up-to-date review papers. Considering
this, the literature review was organized and compiled to deepen the knowledge and iden-
tify the possibility of using endophytic Diaporthe as crucial elements for the development
of biopesticides and biofertilizers to assist in a sustainable agriculture. The importance and
suitability of multi-omics approaches on species of Diaporthe was also a key point discussed
in this review. Multi-omics are important tools for unraveling functions and beneficial
properties of endophytes and their metabolites. Moreover, such approaches are also cru-
cial to unveil metabolic pathways towards plant growth and tolerance to environmental
stresses. The assemblage of all published data covered in this review represents a step
closer to sustainable and ecological agricultural production.

2.2. Search Strategy for Identification of Studies

The literature review was carried out mainly in Web of Science, Scopus and Google
Scholar databases between 10 August 2022 to 15 October 2022. The main keywords used
for this review were used alone or in combination as follows: endophyte, endophytic,
Diaporthe, Phomopsis, omics, genomics, transcriptomics, metabolomics, proteomics, fungi,
fungus, biocontrol, antagonism, microorganisms, biofertilizers, plant-microbe interactions,
biopesticides, sustainable agriculture, agrochemicals, environment, phytotoxins and plant
promoters. Only articles, reviews, book chapters and books written in the English language
were included. Articles were also manually screened for additional references.

All scientific literature was taken into consideration with a special focus on publica-
tions from the last decade (2012–2022), which represents more than 77% of the references
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used (136 out of 176). However, to show evidence of the historical background of some
topics covered in this review, some publications prior to the 2000s, dated between 1874 and
1999, were also selected which correspond to 7% of all references used (12 out of 176).

3. Fungal Endophytes and Their Benefits for Plants

Although the term “endophyte” was originally introduced by de Bary in 1866, the
most used definition of endophytes was proposed by Petrini in 1991 [18]. It refers to a group
of organisms “inhabiting plant organs that at some time in their life can colonize internal
plant tissues without causing apparent harm to the host” [19]. These endophytes are usually
fungi or bacteria that are present in the phyllosphere, endosphere or rhizosphere. These
microorganisms live in the tissues of plants without causing any symptoms of disease,
leading to beneficial effects for the hosts (Figure 1) by:

(1) Facilitating the acquisition of limited nutrients (e.g., nitrogen) [3];
(2) Producing phytohormones (e.g., gibberellins and indole acetic acid) that enhance crop

yield and quality [20–22];
(3) Providing plant tolerance to environmental stresses factors (e.g., salinity, drought,

heavy metal presence) [3,20];
(4) Improving resistance to pathogens [3].
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Figure 1. Overview of possible modes of action of endophytic fungi as biological control agents
and plant-growth promoters. Beneficial microorganisms can exhibit direct antagonism against
plant pathogens (inhibitor green line), as well as promote plant growth (dotted green line). Plant
pathogens can also produce toxins to injure the plant (dot orange line). The figure was created with
BioRender.com (accessed on 20 October 2022).

In this regard, some fungal species have been studied due to their ability to promote
plant growth. For instance, Fusarium equiseti increased the herbage yield of Trifolium subter-
raneum (subclover) by facilitating nitrogen uptake, while Sporormiella intermedia increased
the mineral uptake of calcium, copper and zinc in subclover, thus enhancing the nutri-
tional value of forage [23]. Similarly, Baron et al. [24] used Aspergillus sydowii to inoculate
maize plants (Zea mays). The authors stated that those plants inoculated with the fungus
accumulated significantly higher amounts of phosphorous in their tissues. The endophyte
Colletotrichum tropicale can also enhance the nitrogen uptake and change its distribution in
cacao plants [25]. Trichoderma asperellum was also reported to significantly increase seed
vigor and the yield of Sorghum bicolor roots [26].

Moreover, Khan et al. [27] detected gibberellin production by Penicillium citrinum.
These authors have thus demonstrated that the P. citrinum improved the length of seedlings
in the sandy plant Atriplex gmelinii, thus promoting its growth. Baron et al. [28] also demon-
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strated that the fungal species Purpureocillium lilacinum, P. lavendulum and Metarhizium
marquandii are able to produce indole acetic acid and to solubilize phosphorous. The authors
showed that these strains were able to promote the availability of phosphorous and nitro-
gen in soybean, bean and maize plants. In another study, Ismail et al. 2020 [29] reported
that soybean plants inoculated with the endophyte Aspergillus niger showed tolerance to
high temperatures. The inoculation with this fungal endophyte promoted and increased
plant height, biomass and chlorophyll content, as well as to reduced lipid peroxidation
during heat stress [29].

The intensive use of chemical fungicides to suppress the growth of plant pathogens
over a long period have led to pesticide-related pollution, resistant microbial strains,
chemical consumption through bioaccumulation, biodiversity losses and the elimination
of natural/beneficial microorganisms [30]. Considering that the most current strategies
contained in the United Nations 2030 Agenda (17 Sustainable Development Goals) aim at
achieving sustainable development, the biopesticides application creates an equilibrium
between economic productivity and environmental protection that is crucial to sustainable
agriculture [30,31]. In this regard, the growing search for new biopesticides to replace
synthetic chemicals is supported by its low toxicity properties, eco-friendliness, specificity,
biodegradability, low post-harvest contamination and compatibility in integrated pest
management [32].

The drawbacks of biopesticides usage are defined as the high cost of commercial prod-
ucts, standard method of preparations and dose determination of active substances [32].
Nevertheless, the application of antagonistic endophytic fungi as biocontrol agents, has
drawn special attention for being a sustainable option for the management of some plant
diseases, thus resulting in minimal impact on the environment [4,17,33]. The main inter-
action between endophytic fungi and pathogens is the limitation of mycelium growth
by contact, or through the formation of inhibition zones in dual culture [34]. Such facts
indicate that the endophytes that act as biocontrol agents harbor multiple mechanisms to
control the pathogens (Figure 1) by:

(1) Competing for nutrients and space [35,36];
(2) Antibiosis-production of inhibitory metabolites or antibiotics [33,35,37];
(3) Induction of plant defense response against plant pathogens [35,38];
(4) Secretion of extracellular hydrolytic enzymes [38];
(5) Detoxification of virulence factors [38].

Since early times, man has attempted to increase and improve crop production and to
control plant diseases by using antagonistic microorganisms [39]. For instance, Roberts, in
1874 [40], introduced the term antagonism in microbiology after showing the antagonistic
action between the fungus Penicillium glaucum and a bacterial strain. Later in 1921, Hartley
inoculated forest nursery soils with antagonistic fungi to control damping-off caused by
Pythium debaryanum [41]. In 1941, Weindling [42] noted that species of Trichoderma produced
an antifungal compound, the gliotoxin, that was toxic to plant pathogens including Rhizoc-
tonia solani and Sclerotinia americana. This study conducted by Weindling [42] was the first to
record the use of gliotoxin in plant disease control [43]. Since the discovery of penicillin by
Alexander Fleming in 1928 with pharmaceutical application, the studies on the discovery
of biological control agents against plant pathogens have been increasing, attempting to
unveil secondary metabolites with promising applications in agriculture [14,44].

It is noteworthy that endophytic fungi produce large numbers of metabolites with
different chemical structures from, including alkaloids, terpenoids, benzopyranones or
quinones [45]. These compounds are crucial for agricultural application once they exhibit
promising bioactivities such as antifungal, antibacterial, herbicidal and other agricultural
activities [3,16]. For instance, the fungal genus Xylaria associated with the Azadirachta
indica plant produces antifungal compounds with activities against Aspergillus niger and
Fusarium avenaceum [46,47]. Sangeetha et al. [48] demonstrated that species of Trichoderma
may produce antifungal compounds due to their biocontrol potential against Colletotrichum
musae, Fusarium verticillioides and Lasiodiplodia theobromae (causing postharvest crown rot of
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banana). Griseofulvin, a secondary metabolite initially isolated from the fungus Penicillium
griseofulvum, has drawn special attention due to many reports of antifungal activities against
plant pathogenic fungi such as Cytospora sp., Cladosporium gloeosporioides, Botrytis cinerea,
Alternaria solani and Fusarium solani [49]. Therefore, endophytic fungi are promising leads
for the discovery of novel secondary metabolites with potential for agricultural applications
as biocontrol agents, biostimulants, biofertilizers and bioherbicides [3,4,13,50].

4. Species of Diaporthe as Benefit Microorganisms to Agriculture
4.1. Production of Antimicrobial Compounds

Species of the genus Diaporthe can switch between lifestyles, meaning that the same
species can be found on the same or other hosts as phytopathogens or as endophytes
in asymptomatic tissues [51,52]. For example, D. eres is a pathogen that is present on a
wide range of hosts, including economically important fruit trees (e.g., apple, blueberry,
hazelnut) [53–55] and ornamental plants (e.g., Allium giganteum, Magnolia soulangeana) [56],
and as an endophyte on Prunus domestica [17]. Moreover, D. limonicola can be found on
Citrus grandis leaves as an endophyte [57], or as a pathogen causing dieback on lemon trees
in Europe [58].

Despite its known record as a plant pathogen, Diaporthe is recognized as one of the
most frequently isolated genera occurring as endophytes in the stems and leaves of several
hosts in tropical and temperate ecosystems [55,56,59]. Due to the high number of species of
Diaporthe as endophytes, and given their potential as producers of secondary metabolites,
these species have been widely investigated for the production of valuable compounds with
different bioactivities [17]. A recent review by Xu et al. [16] summarized a total of 335 bioac-
tive secondary metabolites isolated from species of Diaporthe and Phomopsis-like species.
These metabolites were classified into polyketides, terpenoids, steroids, macrolides, ten-
membered lactones, alkaloids, flavonoids and fatty acids. Polyketides are the main chemical
population (64%), and their bioactivities involve antitumor (e.g., clavaric acid), antioxidant
(e.g., pyranonigrin E; diportharine A; phochrodine D) [60,61], cytotoxic (e.g., diaporthelac-
tone, phomopsidone A, phomaspyrone A-E) [62,63], anti-bacterial (e.g., phomosine A,
3-Hydroxypropionic acid) [64,65], anti-fungal (e.g., (+)-2,2′-Epicytoskyrin A, phomopsolide
A-C) [66–68], antimalarial (e.g., epoxycytochalasin H) [69] and anti-inflammatory activities
(e.g., Biatriosporin N) [70]. Considering the several compounds produced by species of
the genus Diaporthe, Xu et al. [16] have stated that this genus is a promising source for the
discovery of small molecules for drug candidates.

In agriculture, several studies have reported that species of the genus Diaporthe (in-
cluding Phomopsis-like species) also exhibit antibacterial and antifungal activity against
plant pathogenic microorganisms (Table 1). For instance, Abramczyk et al. [17] showed
that D. eres from Prunus dulcis exhibited antifungal activity against Trichothecium roseum,
F. avenaceum and A. alternata. Moreover, Endophytic species of Diaporthe, isolated from
Pachystachys lutea, were effective against F. oxysporum and Colletotrichum sp. [34]. The
antifungal activity of D. citri, isolated from Mikania glomerata, was also verified against
F. solani and Didymella bryoniae [71]. Verma et al. [72] also demonstrated that under dual
culture techniques, D. melonis and D. longicolla showed antagonism to Corynespora cassiicola
and F. solani with an inhibition halo percentage ranging from 52–64% against C. cassiicola
and 28–52% against F. solani.

Moreover, two derivatives of the phytotoxin alternariol, alternariol 4,10-dimethyl
ether and alternariol methyl ether, were isolated from Diaporthe phragmitis (syn. D. eres), a
kiwi endophytic fungus [73]. The authors showed that this endophytic fungus exhibited
antibacterial activity against Pseudomonas syringae pv. actinidiae which causes kiwi cankers.
Carvalho et al. [74] have also shown that seven strains of D. miriciae and two strains of a
Diaporthe sp. produced cytochalasins H and J. After a bioassay-directed fractionation to
isolate cytochalasins, the authors evaluated the compounds for activities against the fungal
plant pathogens Colletotrichum fragariae, Botrytis cinerea, F. oxysporum, Phomopsis obscurans
(syn. Paraphomopsis obscurans) and Phomopsis viticola (syn. D. rudis). The cytochalasins H and
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J exhibited effective activities against Paraphomopsis obscurans, associated with strawberry
leaf blight and D. rudis, a grapevine pathogen [74]. Therefore, these studies suggest that
Diaporthe fungal endophytes could be used as biocontrol agents and offer insights for
the screening and isolation of antimicrobial compounds for the further development of
new agrochemicals.

Table 1. Antimicrobial activity of Diaporthe against fungal and bacterial plant pathogens.

Host Plant Endophyte Antimicrobial Activity References

Aconitum
carmichaelii Diaporthe sp. Antifungal activity against the rice blast

fungus Magnaporthe oryzae [75]

Aconitum carmichaeli D. amygdali

Antifungal activity against plant
pathogenic fungi: Fusarium graminearum,

Verticillium albo-atrum and
Microdochium nivale

[76]

Actinidia chinensis D. phragmatis (syn. D. eres)
Inhibitory activity against Pseudomonas

syringae pv. actinidiae, the causal agent of
kiwi canker disease

[73]

Balanophora polyandra D. foeniculina

Antibacterial potential against plant
pathogenic bacteria: Ralstonia

solanacearum, Pseudomonas lachrymans and
Xanthomonas vesicatoria

[77]

Cistus salvifolius Diaporthe sp.

Antifungal activity against pathogens of
agricultural importance: Phytophthora

infestans, Botrytis cinerea and
Septoria tritici

[78]

Copaifera
pubiflora and Melocactus

ernestii
D. miriciae Antifungal activity against the grapevine

pathogen D. rudis [74]

Endodesmia calophylloides Diaporthe sp. Inhibition of zoospores of grapevine
pathogen Plasmopara viticola [79]

Espeletia sp. D. phaseolorum Antifungal activity against the plant
pathogen Phytophthora infestans [80]

Gossypium hirsutum and
G. arboreum D. longicolla and D. melonis Antifungal activity against P. citricarpa [72]

Gossypium hirsutum Phomopsis-like species

Antifungal activity against Sclerotinia
sclerotiorum, F. oxysporum, B.
cinerea, Bipolaris sorokiniana,

Gaeumannomyces graminis var. tritici, and
Rhizoctonia cerealis

[81]

Maytenus ilicifolia D. endophytica Antifungal activity against the citrus
pathogen Phyllosticta citricarpa [82,83]

Mikania glomerata D. citri Antifungal activity against F. solani and
Didymella bryoniae [71]

Pachystachys lutea Diaporthe sp.
Antifungal activity against the

pathogenic fungi F. oxysporum and
Colletotrichum sp.

[34]

Prunus domestica D. eres
Antifungal activity against plant

pathogenic fungi: Trichothecium roseum, F.
avenaceum and Alternaria alternata

[17]

Rhizophora mucronata Diaporthe sp.

Antifungal activity against pathogens of
agricultural importance: Verticillium

dahlia, Botrytis cinerea and
Sclerotinia sclerotiorum

[84]

Schinus terebinthifolius D. terebinthifolii Antifungal activity against the citrus
pathogen Phyllosticta citricarpa [82,83]

Solanum lycopersicum D. phaseolorum Inhibitory activity against bacterial spot
of tomato (Xanthomonas vesicatoria) [85]

Vochysia divergens and
Stryphnodendron adstringens Diaporthe cf. heveae Antifungal activity against P. citricarpa

and Colletotrichum abscissum [86]
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4.2. Phytotoxins as Potential Mycoherbicides

Weeds hamper the growth of several crops once they compete with the plants for
water and nutrients resulting in enormous production losses [87]. Moreover, weeds can act
as a host for insects and pathogens (fungi and bacteria), which can cause serious damage
to crop plants [88]. Therefore, weeds management is a crucial agricultural practice to
avoid significant yield losses [89]. However, chemical herbicides can have negative side
effects, such as surface and ground water contamination, leaving herbicide residues in the
food chain and, decreasing the soil microbial communities and earthworm populations,
thus suppressing nutrient availability and soil biodiversity. [87,90]. Therefore, the use of
herbicides should be minimal and effective to reduce their impact on human health and the
environment. Mitigation of herbicides should be considered an important achievement for a
sustainable agriculture. [90]. Such facts drive a growing search for new herbicides with low
toxicity profiles, which is a step closer for human safety and environmental health [87,91].
One important aspect to be highlighted is that bioherbicides do not need to cause the death
of weeds to increase crop productivity; they can suppress weed populations, which is a
strategy with low risk when compared with the application of chemical herbicides [92].

Among the several microorganisms producing phytotoxins, some of them exhibit a
potential for the production of molecules with herbicidal activity. Accumulating evidence
on molecular biology and natural products demonstrates that many fungal species are a
promising source of natural phytotoxins (e.g., Alternaria, Colletotrichum, Chondrostereum,
Lasiodiplodia, Sclerotinia, Xylaria) [10,93]. For example, phytotoxic compounds isolated from
the endophytic Xylaria feejeensis exhibited a toxic effect on the photosynthesis machinery of
spinach chloroplasts [94].

Species of the genus Diaporthe (including Phomopsis-like species) are also producers of
phytotoxins, showing interesting results (Table 2) [92,95–99]. For instance, Cimmino et al. [100]
tested the fungal phytotoxin phomentrioloxin produced by D. gulyae and verified a sup-
pression in the growth of the annual weed Carthamus lanatus. Brun et al. [92] have also
demonstrated that biomolecules from D. schini caused yellowing lesions and a decrease in
the height of the grass species Echinochloa crusgalli and Lolium multiflorum. Kongiidiaza-
dione, isolated from D. kongii, showed a phytotoxic activity on the leaves of tomato plants
but caused clear and significant necrosis on H. annuus [101]. Additionally, an endophytic
Phomopsis sp. (Diaporthe) was reported by Yang et al. [102] as the producer of phytotox-
ins such as cytochalasins (H, N, and epoxycytochalasin H) and a nonenolide compound
((6S,7R,9R)6,7-Dihydroxy-9-propylnon-4-eno-9-lactone). The authors demonstrated that
the above-mentioned compounds showed phytotoxic effects on Medicago sativa, Trifolium
hybridum and Buchloe dactyloides by decreasing the germination and radicle growth [102].
Such examples are evidence that species of Diaporthe are a source of phytotoxic compounds.
Therefore, it is crucial to analyze, screen and isolate herbicidal compounds from these
species to be applied in the development of new mycoherbicides.

Table 2. Overview of some secondary metabolites isolated from species of Diaporthe and Phomopsis-
like species with phytotoxic activity.

Compound Strain Host References

3,4-Dihydro-8-hydroxy-3,5-
dimethylisocoumarin D. eres Hedera helix [103]

(6S,7R,9R)6,7-Dihydroxy-9-
propylnon-4-eno-9-lactone Phomopsis sp. (syn. Diaporthe sp.) Achyranthes bidentata [100,102]

4,6-dihydroxymellein P. helianthi (syn. D. helianthi) Helianthus annus [104]
4-Hydroxybenzaldehyde D. eres Vitis vinifera [105]
4-Hydroxybenzoic acid D. eres Vitis vinifera [105]

8-hydroxy-3,7-
dimethylisochroman-1-one D. eres Hedera helix [99]
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Table 2. Cont.

Compound Strain Host References

5-(hydroxymethyl) mellein Phomopsis sp. (syn. Diaporthe sp.) Musa acuminata
Cistus monspeliensis [106,107]

2-(4-hydroxyphenyl)-ethanol D. eres Hedera helix [99,103]

5-methylmellein Phomopsis sp. (syn. Diaporthe sp.) Musa acuminata
Cistus monspeliensis [106,107]

3-Nitropropionic acid D. gulyae Carthamus lanatus [95]
alternariol 4,10-dimethyl P. phragmitis (syn. D. eres) Actinidia chinensis [73]

Altersolanol A P. foeniculi (syn. D. angelicae) Foeniculum vulgare [108]
Altersolanol J P. foeniculi (syn. D. angelicae) Foeniculum vulgare [108]

Convolvulanic acid A P. convolvulus (syn. D. convolvuli) Convolvulus arvensis [109]
Convolvulanic acid B P. convolvulus (syn. D. convolvuli) Convolvulus arvensis [109]

Convolvulol P. convolvulus (syn. D. convolvuli) Convolvulus arvensis [109]
p-Cresol D. eres Vitis vinifera [105]

Cytochalasin H, N Phomopsis sp. (syn. Diaporthe sp.)
D. miriciae

Achyranthes bidentata, Copaifera
pubiflora and Melocactus

ernestii
[74,102]

dideacetylfusicoccin P. amygdali (syn. D. amygdali) - [110]
Epoxycytochalasin H Phomopsis sp. (syn. Diaporthe sp.) Achyranthes bidentata [102]

etheralternariol methyl ether P. phragmitis (syn. D. eres) Actinidia chinensis [73]
Foeniculoxin P. foeniculi (syn. D. angelicae) Foeniculum vulgare [111]

Fusicoccin P. amygdali (syn. D. amygdali) Prunus dulcis
Prunus persica [112]

Gulypyrone A D. gulyae Carthamus lanatus [95]
Gulypyrone B D. gulyae Carthamus lanatus [95]
isofusicoccin P. amygdali (syn. D. amygdali) - [110]

Kongiidiazadione D. kongii Carthamus lanatus [101]
monodeacetylfusicoccin P. amygdali (syn. D. amygdali) - [110]

Nectriapyrone
D. kongii
D. eres

P. foeniculi (syn. D. angelicae)

Carthamus lanatus
Vitis vinifera

Foeniculum vulgare
[101,105]

Phomentrioloxin B D. gulyae Carthamus lanatus [95,100]
Phomopsolide B Phomopsis sp. (syn. Diaporthe sp.) Vitis vinifera [66]

Phomopsolidone A Phomopsis sp. (syn. Diaporthe sp.) Vitis vinifera [66]
Phomopsolidone B Phomopsis sp. (syn. Diaporthe sp.) Vitis vinifera [66]

Phomopsin A P. leptostromiformis (syn. D. toxica) Lupinus sp. [113]
Phomozin P. helianthi (syn. D. helianthi) Helianthus annus [114]

α-pyrone convolvulopyrone P. convolvulus (syn. D. convolvuli) Convolvulus arvensis [109]
Sydowinin A Phomopsis sp. (syn. Diaporthe sp.) Vitis vinifera [66]

Sydowinol Phomopsis sp. (syn. Diaporthe sp.) Vitis vinifera [66]

Tyrosol D. eres Vitis vinifera
Hedera helix [103,105]

4.3. Plant-Growth Promoters

Chemical fertilizers are used to boost agricultural productivity but can cause negative
environmental impacts [115]. In addition, environmental stresses and climate changes
scenarios (e.g., drought, high soil salinity) are major limitations to plant growth and yield,
which can cause production losses [116,117]. For this reason, to counteract potential losses,
endophytic fungi are an alternative to increase agricultural productivity. Endophytic
microorganisms, which inhabit plant tissues, are capable of increasing agricultural produc-
tivity by increasing access to nutrients (e.g., nitrogen, phosphorus, potassium, zinc, iron),
production of phytohormones or by increasing the water acquisition rates [115,118]. Among
endophytic fungi used as biofertilizers, Epichloë bromicola, for instance, increases seed ger-
mination and growth capacity of wild barley (Hordeum brevisubulatum) when exposed to
salinity stress [6]. Additionally, Piriformospora indica, an endophyte with high economic
importance, are able to enhance nutrient uptake and to modulate the phytohormones
involved in the growth and development of Hordeum vulgare [119].
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Species of the genus Diaporthe are also well documented promising agents in the
development of biofertilizers due to their plant-growth properties (Table 3). For example,
the generalist fungus Phomopsis liquidambaris (syn. D. liquidambaris) is also able to establish
symbiosis with rice and peanut plants by colonizing their roots and conferring tolerance
to abiotic stress, as well as promoting plant host growth [120,121]. This species is also
reported to induce rice resistance to Fusarium graminearum, the causal agent of rice spikelet
rot disease [122]. Recently, Aldana et al. [123] reported that root and shoot biomass of the
hybrid Triticum durum × Hordeum chilense increased by up to 30% after inoculation with a
strain of Diaporthe sp. The authors have also shown increased concentrations of calcium,
magnesium, sulphur, iron and boron in inoculated plants. Additionally, the inoculation of
Triticum durum × Hordeum chilense with Diaporthe sp. strain EB4 under salinity conditions,
heightened proline, gibberellins, and indole 3-acetic acid and increased nutrient uptake
in roots, thus resulting in an enhanced growth [124]. Moreover, Ważny et al. [125] stated
that the inoculation of Noccaea goesingensis with Diaporthe eres improved the biomass of
the plant and increased nickel accumulation. The authors have thus proposed D. eres as a
nickel uptake stimulating microorganism, which might be potentially used as a biofertilizer
and in the bioremediation of metal contaminated soils.

Table 3. Benefits of endophytic Diaporthe to agriculture.

Host Plant Endophyte Benefits References

Acampe praemorsa D. eucalyptorum
Increase the fresh-weight and enhance

the growth of ornamental orchids
(Dendrobium sp.)

[126]

Combretum lanceolatum D. phaseolorum
Improve the biosynthesis of primary
metabolites involved in Combretum

lanceolatum self-defence
[127,128]

Festuca rubra Diaporthe sp.

Improve nutrient uptake, growth, and
salinity tolerance of Lolium perenne and

the hybrid from
Triticum durum × Hordeum

[124]

Helianthus tuberosus D. phaseolorum
Enhance the growth and increases

chlorophyll content of sunchoke plants
(Helianthus tuberosus)

[11]

Justicia brandegeana D. masirevicii
Growth-promoting effects on tomato

plants and suppression of F. oxysporum
symptoms in this host

[129]

Lactuca sativa P. amygdali (syn. D. amygdali) Cell enlargement, cotyledon
growth and seed germination [130,131]

Noccaea goesingensis D. eres

Improve the biomass Noccaea
goesingensis and increase nickel
accumulation. Potentially used

as biofertilizer.

[124]

Oryza sativa P. liquidambaris (syn. D.
liquidambaris)

Enhance growth of rice plants under
nitrogen-deficient conditions, and

induces rice resistance to rice spikelet
rot disease caused by
Fusarium graminearum

[121]

Piper nigrum Phomopsis sp. (syn. Diaporthe
sp.)

Enhance growth of rice plants due to
the production of gibberellins and

indole acetic acid
[132]

Terminalia arjuna
Phlogacanthus thyrsiflorus D. phaseolorum Increase root length and enhance plant

growth of Cicer arietinum [133]

Triticum durum × Hordeum
chilense Diaporthe sp.

Increase concentrations of calcium,
magnesium, sulphur, iron, and boron,

thus increasing root and shoot biomass
of T. durum × H. chilense

[122]
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5. Omics to Explore the Secondary Metabolism of Diaporthe
5.1. Genomics

The application of omics approaches including genomics, transcriptomics, proteomics
and metabolomics, opens up a new opportunity for the discovery of novel genes and their
functions, novel pathways and metabolic network [134] (Figure 2).
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Next-generation sequencing has been widely used to identify and characterize genes
involved in plant–endophyte interactions [135]. Genome analysis has revealed genes re-
sponsible for nitrogen fixation, nutrition acquisition, and hormones biosynthesis as well as
has elucidated the adaptative genomic signatures for bioactive secondary metabolites [136].
Recent genome mining has also offered in-depth information to search for natural products
from fungi, and their biosynthetic gene clusters (BGCs) involved in different biosynthetic
pathways [137,138]. Since 2011, researchers have used the “antibiotics and secondary
metabolite analysis shell–antiSMASH” for their microbial genome mining tasks [139]. In
fungi, less than 3% of the biosynthetic space of fungal genomes has been linked to the
production of secondary metabolites, which are encoded by BGCs. The most common BGCs
include non-ribosomal peptide (NRPSs), polyketide (PKSs) and terpene synthases [140].
However, the number of genomes available from the genus Diaporthe hampers the identifi-
cation of BGCs and thus the discovery of bioactive compounds from these species. A search
at NCBI (National Center for Biotechnology Information) (https://www.ncbi.nlm.nih.gov/,
accessed on 19 June 2022) and JGI Genome Portal (Joint Genome Institute, Berkeley, CA,
USA) (https://genome.jgi.doe.gov/portal/, accessed on 19 June 2022), unveiled 20 species
of Diaporthe that have completed or are undergoing genome projects.

In this review, species with genomes available at the NCBI database were screened for
BGCs (Table 4) and we identified some important compounds with 100% similarity with
known BGCs with potential agricultural application The BGCs were predicted using the
web-based application antiSMASH v.5.0, using the strictness ‘relaxed’ option [140].

Alternariol is classified as a phytotoxic and antifungal compound produced by species
of the genus Alternaria, an important contaminant in cereals [141]. Nevertheless, its com-
plete BGC has been detected in the genomes of D. amygdali, D. destruens, D. capsici, D. citri,
D. citrichinensis, D. eres (syn. D. phragmitis) and D. eres (syn. D. vaccinii). This suggests
the ability of these species to efficiently produce alternariol, and consequently their status
as promising sources for the development of biopesticides. Moreover, (-)-Mellein is a
phenolic compound initially isolated from Aspergillus melleus that showed antimicrobial
activity [142]. Therefore, it is suggested that this compound could be screened and isolated
from species of Diaporthe and produced to inhibit the growth of competitors and thus take
on an agricultural application.

Fusicoccin A is a remarkable phytotoxin produced by the fungal species Phomopsis
amygdali (syn. D. amygdali) [109,130]. However, it has been shown that it can be more

BioRender.com
https://www.ncbi.nlm.nih.gov/
https://genome.jgi.doe.gov/portal/
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effective than the growth-promoting hormone auxin [131]. Balio et al. [143] were prompted
to investigate the effect of Fusicoccin in plants and carried out a pilot-scale study for the
production of cultures of the fungus [143]. The quantities of the toxin available unveiled
the physiological effects enhanced by Fusicoccin A such as an increase in tissue growth,
nutrient uptake and the breaking seed coat dormancy [143,144]. Considering that the BGC
that encode for this toxin was detected in the genome of D. amygdali with 100% similarity
(Table 4), we can suggest that besides its reported phytotoxic activity, Fusicoccin can be
used as a plant-growth promoter [15,130].

Asperlactone belongs the methylsalicylic acid (MSA) type polyketide group and has
strong antibacterial and antifungal activities [145,146]. It has been reported that asperlac-
tone also presented ovicidal activities [147] against Nezara viridula, a threatening pest for
agriculture [148], and Tribolium castaneum, a significant global pest of stored food [149].
Considering that D. longicolla contains the complete BGC that encode for asperlactone, it is
suggested that this species is able to produce this compound and should thus be regarded
as a promising source for the development of novel bioinsecticides.

However, the presence of the complete BGC involved in the biosynthesis of one particu-
lar compound does not necessarily imply the production of that compound. Mainly because
sometimes BGCs may remain silent under laboratory conditions [150]. Therefore, to bridge
this flaw, altering cultivation parameters or adding chemical elicitors to activate silent
BGCs can elucidate the hidden reservoir of complex chemical diversity. Such an outcome
is readily achieved by the one strain many compounds (OSMAC) approach [151,152]. For
instance, Zhang et al. [150] used the OSMAC approach on Aspergillus fumigatus LN-4 and
Xylaria sp. XC-1 for the isolation of anticancer compounds and phytotoxins, respectively,
by altering the cultivation parameters.

Table 4. Some secondary compounds produced by species of Diaporthe which are 100% identical to
known BGCs.

Compound Compound Nature Biological Function Species References

ACR-Toxin I Polyketide
Phytotoxin produced by the plant

pathogenic fungus A. alternata, causing
lemon leaf spot disease.

D. ampelina
D. helianthi [153,154]

ACT-Toxin II Polyketide Toxin causing brown spot disease on
tangerine, produced by A. alternata

D. eres
D. capsici

D. citrisiana
D. vaccinii (syn. D. eres)

[155]

Alternariol Polyketide

Metabolite produced by Alternaria spp.
that exhibits both phytotoxic and

antifungal activity
(e.g., zoosporicidal potential)

D. amygdali
D. destruens

D. capsici
D. citri

D. citrichinensis
D. phragmitis (syn. D. eres)

D. vaccinii (syn. D. eres)

[141]

Asperlactone Polyketide
Methylsalicylic acid produced by

Aspergillus westerdijkiae, antibacterial,
antifungal and insecticidal activities

D. longicolla [145,146]

Enniatin Non-ribosomal
peptide

Toxin produced by Fusarium spp., as a
contaminant in cereals. It is also known

as antibacterial, antifungal,
and herbicidal.

D. citrichinensis [156,157]

Fusarin Polyketide
Mycotoxin produced mainly by fungi of

the genus Fusarium, which can infect
agriculturally important crops.

D. amygdali
D. aspalathi
D. helianthi

[158,159]

Fusicoccin Terpene Phytotoxin produced by D. amygdali,
with plant-growth promoting potential D. amygdali [131]

(-)-Mellein Phenolic
compound

Metabolite firstly isolated from Alternaria
melleus, with phytotoxic and

antimicrobial activity

D. capsici
D. citri

D. citrichinensis
D. destruens

D. phragmitis (syn. D. eres)
D. vaccinii (syn. D. eres)

D. longicolla

[142]
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Besides the presence of BGCs that have 100% homology with known compounds, it
also detected some incomplete BGCs. For instance, on D. amygdali CAA958 and D. eres (syn.
D. vaccinii) CBS 160.32 genomes, the BGC encoding for betaenones (phytotoxic polyketides)
was detected. By analyzing the BGCs, we found that both species contain four genes
encoding for enzymes involved in betaenone synthesis but were lacking a dehydrogenase
and a FAD-dependent oxidase [160].

The BGC encoding for chaetoglobosin X, a hybrid polyketide with antifungal activity,
was detected on the genome of D. citrichinensis ZJUD34. From the 11 genes involved in the
biosynthesis of this compound, only 7 genes were detected such as PN3-12 (C6 zinc finger
protein), PN3-13 (hybrid NRPS/PKS), PN3-14 (enoyl reductase), PN3-15 (hypothetical
protein), PN3-16 (FAD-linked oxidoreductase), PN3-17 (P450 monooxygenase) and PN3-19
(P450 oxygenase). Given that four of these genes present in D. citrichinensis are identified as
being involved in the biosynthesis of chaetoglobosins [161], it is suggested that this species
may have the potential to produce a related compound.

Nevertheless, on both betaenone and chaetoglobosin BGCs, the absent genes needed
to complement the incomplete cluster may be silent or truncated, or even located on
different fragmented contigs. The absence of those necessary genes for the core cluster
suggests that many BGCs may not be functional and thus require additional experimental
validation [162].

5.2. Transcriptomics

While genomics provides the whole genomic sequencing information, transcriptomics
identifies the genes with changed expressions under a particular condition. It also involves
the comparative analysis of the transcriptomes of groups and aids to understand the
response of microbial communities upon changing environments [135,163].

The regulation of transcripts can be achieved by transcriptomic analysis. For example,
mRNA sequencing is a valuable approach to understand differences in plants’ response in
the presence and absence of endophytes [135]. In this regard, Ważny et al. [125] compared
the transcriptomes of the hyperaccumulating plants Noccaea caerulescens and N. goesingensis,
inoculated with Phomopsis columnaris (syn. D. eres), with uninoculated controls. The
authors showed that the presence of the fungus enhanced uptake and accumulation of
nickel, as well as that several genes involved in plant stress protection and metal uptake
were upregulated.

Moreover, to understand the mechanisms of plant colonization by Phomopsis liq-
uidambaris (syn. D. liquidambaris) under low nitrogen conditions, Zhou et al. [122] performed
a transcriptomic analysis by the RNA-Seq technique. The authors compared the transcrip-
tome profiles of inoculated and non-inoculated rice plants, and observed that gibberellin
and auxin related genes, as well as genes encoding plant defense-related endopeptidase
inhibitors, were upregulated on inoculated plants. Such results using transcriptomics
might be useful to provide a better understanding regarding the molecular mechanisms
of plant-endophyte interaction, as well as a deeper knowledge of fungal endophytes that
promote plant growth under different conditions.

5.3. Proteomics

Nowadays, mass spectrometry (MS)-based proteomics is an effective tool to map the
proteome of fungal endophytes, providing a solid basis for understanding the mechanisms
involved in plant–microbe interactions (e.g., biological pathways and posttranslational
modifications) [164]. The protein content of uninoculated and endophyte-inoculated plants
can be predicted and assessed to investigate which specific proteins are involved in the
relationship between these two groups. For instance, Yuan et al. [165] unveiled the tran-
scriptome and proteome of Atractylodes lancea inoculated with and without the endophytic
fungus Gilmaniella sp. AL12. In the study, the authors observed an upregulation of proteins
involved in carbon fixation, carbohydrate metabolism and energy metabolism, thus sug-
gesting that Gilmaniella sp. may improve the biomass of the herbal medicine A. lancea [165].
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Nevertheless, as far as we know, no proteomic studies have been conducted in the
genus Diaporthe. As the proteome profiling allows us to examine the structures, functions
and interactions of dynamic proteins in an organism under a specific condition [135,166],
in-depth studies should be undertaken to reveal the mechanism of the interactions between
species of endophytic Diaporthe and their hosts.

5.4. Metabolomics

The discovery of new secondary metabolites that are involved in cellular functions
and microbial networking can assist in the development of alternative antibiotics through
microbial metabolite profiling [167]. The analysis of the diverse metabolites has been
performed using mainly the following techniques: CE-MS (capillary electrophoresis), LC-
MS and GC-MS (liquid and gas chromatography with mass spectrometry) and NMR
(nuclear magnetic resonance spectroscopy) [168].

Several studies demonstrate that the genus Diaporthe have the potential to produce
a wide range of metabolites with several biological activities with applications mainly
in pharmaceuticals and biomedicine [169]. For instance, Kemkuignou et al. [169] used
metabolomics approaches, mainly the High-Resolution ElectroSpray Ionization Mass Spec-
trometry (HR-ESIMS) to screen for the presence of metabolites from the species D. breyniae.
The authors extracted and isolated the polyketides fusaristatin G and H, and the cytocha-
lasan phomopchalasin N. Kemkuignou et al. [169] have also demonstrated the antimicrobial
activity of these compounds against the fungus Mucor hiemalis, the bacteria Staphylococ-
cus aureus and the yeast Schizosaccharomyces pombe. Moreover, through semi-preparative
high-performance liquid chromatography (HPLC), Yedukondalu et al. [170] extracted and
separated the compounds diapolic acid A-B and xylarolide from D. terebinthifolii. The
authors demonstrated that diapolic A-B exhibited strong antibacterial activity against the
human pathogen Yersinia enterocolitica, while xylarolide was effective against Candida albi-
cans and showed potent cytotoxicity against the breast cancer cell line. Moreover, through
the NMR approach, Mandavid et al. [171] isolated the polyketide mycoepoxydiene from
the fungus D. pseudomangiferae. This metabolite was shown to exhibit cytotoxic activity
against some human cancer cell lines (e.g., uterine cervical carcinoma, breast cancer and
lung fibroblast) [171].

Although metabolomics is useful in showing the relationship among plants and
growth promoters [172], this approach has been less frequently employed in determining
functional traits in endophytic microbes [173]. For instance, Cao et al. [174] used mass
spectrometry to unveil the metabolic profiles of the endophytic fungus Neotyphodium lolii
and its host ryegrass (Lolium perenne). The authors verified changes in the metabolome
of inoculated plants and reported the presence of key compounds such as peramine and
perloline (alkaloids that increase the capacity of plants to resist the environmental stresses).

Similarly, our understanding of the functional secondary metabolites of species of
Diaporthe on microbial interactions in plants are still scarce. Lacerda et al. [127] applied
the NMR technique to report the metabolomic changes in Combretum lanceolatum plants
inoculated with the endophytic fungus Diaporthe phaseolorum. The authors demonstrated
that this fungus affected the metabolic pathways of the plant aerial parts, improving the
biosynthesis of primary metabolites involved in plant self-defense such as threonine, malic
acid and N-acetyl-mannosamine [127]. Therefore, to better understand the mechanisms of
plant–Diaporthe interactions, studies using integrated analysis of genomics, transcriptomics,
proteomics and metabolomics could be crucial to analyze key genes, specific proteins and
metabolites that are differentially expressed. The exploitation of endophytes is surely
important for the identification of biological control agents, as well as of plant-growth
promoters, to assist in a sustainable agriculture (Figure 2).

6. Conclusions and Future Prospects

Regardless of the recognized benefits of endophytic fungi on plants and their potential
in both biocontrol and biofertilization, they have been rarely studied regarding their
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application in agriculture. Nevertheless, due to the actual climate change scenarios (e.g.,
drought and high levels of soil salinity), it is crucial to understand the impacts of these
environmental stresses on agriculture, as well as to unravel adaptation patterns of the
endophytic community. Moreover, an effective utilization of endophytic fungi aids in
promoting a sustainable agriculture for a safe environment and a positive impact on
human health.

In this review, our results demonstrate that phytotoxic compounds, antibacterial and
antifungal metabolites from species of the genus Diaporthe are promising leads for the
development of new biopesticides. This study also suggests that species of this genus could
be used as biofertilizers, given their ability as plant-growth promoters and stress tolerance-
enhancers. However, a deeper understanding is needed not only to unveil which adaptation
patterns of Diaporthe are triggered for their adaptation to changing climatic conditions,
but also which adapted community might be applied as tolerance-enhancer treatment.
This can be achieved through omics approaches that have revealed an enormous potential
to unravel the functions of endophytes and their metabolites in plant disease control, as
well as metabolic pathways towards plant growth and tolerance to environmental stresses.
Moreover, multi-omics offer a valuable framework that allows a detailed analysis of the
biological mechanisms of endophytic Diaporthe to design strategies highlighting their
beneficial properties as control agents and plant-growth promoters. Therefore, a detailed
understanding of species of Diaporthe, their mechanisms of action and bioactive metabolites,
will likely provide a strong basis for developing:

(1) Reliable tools to enhance plant health and growth;
(2) Novel strategies for mitigating the impacts of climate changes;
(3) An ecological and sustainable agriculture.

In recent years, accumulating evidence has provided important advances regarding
biological control agents for the development of commercialized bacterial and fungal-
based biopesticides to control plant diseases. However, the implementation of large-
scale studies to expand the knowledge on the usage of biopesticides is still hampered by
the high cost of commercial products, the standard methods of preparations, the dose
determination of active substances and the susceptibility of biopesticides to environmental
conditions. In this regard, and taking into consideration the possibility of using endophytic
Diaporthe as promising leads for the development of biopesticides and biofertilizers, some
strategies should be adopted to improve the performance of these endophytic fungi. For
instance, the development of specific delivery systems such as biopriming, encapsulation
or foliar spraying should be favored to support the success of biocontrol and biofertilization
programs. Moreover, the development of effective microbial consortium composed of
endophytic fungi such as the species of Diaporthe could also be a promising strategy, not
only to ensure the microbial diversity in the soil, but also in the phylosphere; phylosphere
colonization is of paramount importance to ensure crop development and plant health
management, regulating plant physiology under climate change scenarios.
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