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Abstract: There is no doubt that antimicrobial resistance (AMR) is a global threat to public health
and safety, regardless of whether it’s caused by people or natural transmission. This study aimed to
investigate the genetic characteristics and variations of tigecycline-resistant Gram-negative isolates
from herbivores in northwest China. In this study, a total of 300 samples were collected from various
provinces in northwest China, and 11 strains (3.67%) of tigecycline-resistant bacteria were obtained.
In addition, bacterial identification and antibiotic susceptibility testing against 14 antibiotics were
performed. All isolates were multiple drug-resistant (MDR) and resistant to more than three kinds
of antibiotics. Using an Illumina MiSeq platform, 11 tigecycline-resistant isolates were sequenced
using whole genome sequencing (WGS). The assembled draft genomes were annotated, and then
sequences were blasted against the AMR gene database and virulence factor database. Several
resistance genes mediating drug resistance were detected by WGS, including fluoroquinolone re-
sistance genes (gyrA_S83L, gyrA_D87N, S83L, parC_S80I, and gyrB_S463A), fosfomycin resistance
genes (GlpT_E448K and UhpT_E350Q), beta-lactam resistance genes (FtsI_D350N and S357N), and the
tigecycline resistance gene (tetR N/A). Furthermore, there were five kinds of chromosomally encoded
genetic systems that confer MDR (MarR_Y137H, G103S, MarR_N/A, SoxR_N/A, SoxS_N/A, AcrR N/A,
and MexZ_K127E). A comprehensive analysis of MDR strains derived from WGS was used to detect
variable antimicrobial resistance genes and their precise mechanisms of resistance. In addition, we
found a novel ST type of Escherichia coli (ST13667) and a newly discovered point mutation (K127E)
in the MexZ gene of Pseudomonas aeruginosa. WGS plays a crucial role in AMR control, prevention
strategies, as well as multifaceted intervention strategies.

Keywords: genome sequence; resistome; virulence factors; Escherichia coli; herbivores; northwest China

1. Introduction

One of the biggest threats to global health is antimicrobial resistance, affecting the
environment, animals, and humans [1]. Gram-negative bacteria such as Escherichia coli
(E. coli), Klebsiella pneumoniae (K. pneumoniae), Pseudomonas aeruginosa (P. aeruginosa), and
Salmonella typhimurium (S. Typhimurium) are important zoonosis pathogens [2]. With the
extensive application of antibiotics in livestock breeding and treatment, the rapid increase
in the prevalence of extensively drug-resistant (XDR) Gram-negative bacteria, particularly
carbapenem-resistant Enterobacteriaceae and Acinetobacter spp., have affected the efficacy of
carbapenems. For example, Enterobacter, as an indicator of the prevalence of Gram-negative
bacteria, is a rich antibiotic resistance gene pool and a mobile center for drug resistance
gene exchange [3,4]. Therefore, in many investigations of Gram-negative drug-resistant
bacteria, many strains were found together with E. coli. Additionally, K. pneumoniae,
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P. aeruginosa, and S. Typhimurium have been mentioned and found to contain multiple drug-
resistant (MDR) strains in previous reports [5,6]. In brief, the cross-infection of multiple
Gram-negative drug-resistant bacteria carrying different drug-resistant genes have brought
significant challenges to clinical prevention and the treatment process [7]. Therefore, it
is extremely critical to distinguish and characterize the drug-resistance characteristics of
different drug-resistant strains.

At present, MCR-type colistin-resistant strains are widely reported in Enterobacteri-
aceae, and tigecycline is one of the last resort antibiotics for treating these superbugs [8,9].
Originally derived from tetracycline, tigecycline was designed to overcome tetracycline re-
sistance’s common mechanism [10]. Tigecycline inhibits bacterial growth by binding to the
30S ribosome and blocking the entry of tRNA, thus preventing protein synthesis. Further-
more, tigecycline escapes tetracycline resistance mechanisms due to its different binding
orientation [11]. Tigecycline is regarded as a last-line antibiotic against infections caused
by MDR or XDR bacterial pathogens, so long-term use of tigecycline is not recommended.
However, several cases of tigecycline resistance have been reported in the scientific commu-
nity since tigecycline was first used clinically [12–14]. Most cases of tigecycline resistance
were attributed to one or more of the following mechanisms: mutations within the ribo-
somal binding site, acquisition of mobile genetic elements carrying tetracycline-specific
resistance genes, and/or chromosomal mutations leading to the increased expression of in-
trinsic resistance mechanisms [15,16]. Therefore, when tetracycline-resistant strains become
prevalent, we will face the dilemma that there is no effective antibiotic available.

Furthermore, as the natural pasture of animal husbandry in China, the northwest
region has a unique advantage in herbivore breeding. However, the prevalence of drug-
resistant strains has brought serious economic losses to the aquaculture industry in this
area [17–19]. So far, there has been no investigation of tigecycline-resistant strains in
northwest China, and no whole-genome sequencing (WGS) analysis of tigecycline isolates.
Therefore, it is particularly crucial to analyze the drug resistance mechanism and molecular
characteristics of these tigecycline-resistant strains to provide a theoretical basis and new
programs for clinical treatment and prevention. In this study, fresh stool samples were
collected from herbivores of different varieties under different farming environments
in northwest China from June 2021 to May 2022, and tigecycline-resistant strains were
analyzed in the samples to address the inadequacy of previous studies on the drug-resistant
bacteria of animal origin in this area. We performed WGS on the tigecycline-resistant
isolates (including E. coli, K. pneumoniae, P. aeruginosa, and S. Typhimurium) to uncover the
prevalence and genetic diversity of tigecycline-resistant strains derived from animals.

2. Materials and Methods
2.1. Sample Collection and Bacterial Isolates

In the present study, 300 stools were sampled in eight study plots located on 12 large-
scale farms in northwest China from June 2021 to May 2022. We took stool samples from
150 cattle and 150 sheep in various breeding modes, including males, females, and young
animals (Figure 1 and Table 1). We incubated 0.5 g of feces in 5 mL of Luria-Bertani (LB) to
enrich bacteria for 6 h. We screened the tigecycline-resistant strains on an LB plate with
2 µg/mL tigecycline [20]. Species and genera of the screened single strains were identified
by 16S sequencing and preserved in 60% glycerol.
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Table 1. Geographic distribution of the samples collected in this study.

Region Study Area
Isolates, n

2021
March–June

2021
September–
December

2022
March–June

2022
Seprember–
December

Total Prevalence

Xinjiang Aletai 60 - - - 60 3/60, 5.0%

Gansu
Zhangye 30 - - - 30 0
Lanzhou - - - 30 30 2/30, 6.67%
Gan’nan - - 30 - 30 0

Shaanxi Baoji - 30 30 - 60 4/60, 6.67%
Sichuan Ganzi - - - 30 30 1/30, 3.33%

Tibet Dazi 30 - - - 30 0
Qinghai Xining - 30 - - 30 1/30, 3.33%

2.2. Antimicrobial Susceptibility

According to Clinical and Laboratory Standards Institute (CLSI) guidelines [21],
the minimal inhibitory concentration (MIC) of the isolated strains (tigecycline-resistant
strains, MIC ≥ 2 µg/mL) to 14 antibiotics was tested by the double broth microdilution
method. The MIC values of all strains were determined on three separate occasions.
E. coli ATCC 25922 was used as quality control in all drug sensitivity tests. We inter-
preted the antibiotic susceptibility results based on the CLSI, 2020 breakpoints. Tests were
conducted on a panel of antimicrobial compounds, including amoxicillin/clavulanate potas-
sium (AMC, 4/2–128/64 µg/mL), ampicillin (AMP, 2–128 µg/mL), meropenem (MEM,
0.5–16 µg/mL), cefotaxime (CTX, 0.06–8 µg/mL), gentamicin (GEN, 0.25–32 µg/mL), ceftio-
fur (EFT, 0.25–32 µg/mL), amikacin (AMK, 2–64 µg/mL), fosfomycin (FOS, 0.25–32 µg/mL),
colistin (CL, 0.125–8 µg/mL), sulfamethoxazole (SXT, 9.5–304 µg/mL), ciprofloxacin (CIP,
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0.06–8 µg/mL), tetracycline (TET, 0.25–64 µg/mL), tigecycline (TIG, 0.25–32 µg/mL),
and florfenicol (FFC, 2–128 µg/mL) [22]. All antibiotics were purchased from Solarbio
(Beijing, China).

2.3. Whole-Genome Sequencing

Using a commercially available bacterial genomic DNA isolation kit (Generay, China),
DNA was obtained from isolates that displayed tigecycline resistance according to the man-
ufacturer’s instructions. A NanoDrop 2000 spectrophotometer (Thermo Fisher, Waltham,
MA, USA) was used to measure the DNA concentration in the extracted samples. The
genome samples were interrupted, and the sticky ends were repaired into flat ends by T4
DNA Polymerase, Klenow DNA Polymerase, and T4 PNK. By adding a base ‘A’ at the
3’ terminal, the DNA fragment could be connected to a special junction with an ‘A’ base
at the 3’ terminal. DNA fragments of the target size were selected by the magnetic bead
method and the high-fidelity PCR enzyme-enriched DNA-seq library. Finally, qualified
libraries were fully sequenced by whole genome paired-end sequencing (Illumina, San
Diego, CA, USA), thus producing 150-bp paired-end reads (PE 150).

2.4. Identification of Antimicrobial Resistant Genes, Multilocus Sequence Typing Analysis, and
Virulence Factors

Each draft genome was screened for genes associated with AMR. As a reference for
determining drug-resistance genes in isolates, the most updated AMR gene database was
downloaded from the NCBI National Database of Antibiotic-Resistant Organisms (accessed
on 16 August 2022) [23]. A database of virulence factors and the Virulence Finder 2.0
software were used to predict virulence factors [24,25]. PubMLST (https://pubmlst.org/;
accessed on 20 September 2022) was used to perform multi-locus sequence typing (MLST)
of assembled bacterial genomes [26].

2.5. Statistical Analysis

Sangerbox software (v1.1.3) (http://vip.sangerbox.com; accessed on 3 August 2022)
was used to make heat maps of drug resistance characteristics, drug resistance genes, and
the virulence factors of isolates. In the cluster analysis of drug-resistant characteristics,
the presence of the above resistance phenotype received a score of 1, the intermediate
received a score of 0, and the susceptibility received a score of −1. In the cluster analysis
of drug-resistant genes and virulence factors, the existence received a score of 1, and the
nonexistence received a score of 0.

3. Results
3.1. Tigecycline Resistant Isolates

The specific sampling time, sampling volume, prevalence, and geographical location
are shown in Table 1 and Figure 1. A total of 11 tigecycline-resistant strains were isolated
and identified from 300 stool samples collected in northwest China, with an isolation rate of
3.67%. Four E. coli strains resistant to tigecycline were identified from 60 samples collected
from Shaanxi (6.67%). Two strains of E. coli and one strain of K. pneumoniae resistant to
tigecycline were identified from 60 samples collected from Xinjiang (5.0%). One E. coli
strain resistant to tigecycline was identified from 30 samples collected in Sichuan (3.33%).
Two strains resistant to tigecycline, S. Typhimurium and P. aeruginosa, were detected from
90 samples collected in Gansu (2.22%). One K. pneumoniae strain resistant to tigecycline
was identified from 30 samples collected from Qinghai (3.33%), and no tigecycline-resistant
isolate was identified from 30 samples collected from Tibet (0%). It is clear from this
data that Shaanxi province had the highest isolation rate, while Tibet had no tigecycline-
resistant strains. Meanwhile, tigecycline-resistant isolates from Xinjiang, Qinghai, and
Gansu provinces showed a diversity of strains rather than a predominance of E. coli.

https://pubmlst.org/
http://vip.sangerbox.com
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3.2. Antibiotic Sensitivity Test

The sensitivity test results of 11 tigecycline-resistant strains to 14 antibiotics are shown
in Figure 2 and Table 2. E. coli and K. pneumoniae strains have the most serious drug
resistance and were the most prevalent tigecycline-resistant strains in the region. In terms
of the MIC distribution (Table 2), the MIC values of the antibiotics tetracycline, ampicillin,
and sulfamethoxazole were significantly higher. In addition, all isolates were sensitive to
ceftiofur, meropenem, gentamicin, and colistin; only SX-3E-11 was extremely sensitive to
florfenicol. This may suggest potential drug delivery strategies in these areas. In addition,
SX-2E-03 and SX-1E-06 had the same drug resistance spectrum, and they were isolated
from the same farm. Other isolates showed different drug resistance profiles, even those
isolated from different farms in the same area (SX-3E-11 and SX-1E-06). The outcome of the
antibiotic resistance pattern is depicted in Figure 2. All tigecycline-resistant isolates could
be typed into four different antibiotypes, and among these resistance patterns, profiles
number 6 (with 5 isolates) and 7 (with 3 isolates) had the highest frequencies. Among
the 11 isolates, only one strain showed resistance to five of the tested antibiotic categories
(XJ-1E-02: AMP-CIP-SXT-TIG-TET). Two of these strains showed resistance to eight of
the tested antibiotic categories, with two types of resistance, AMP-CTX-AMK-SXT-TIG-
TET-FFC-FOS-resistant (LZ-1S-01) and AMP-AMC-AMK-CIP-SXT-TIG-TET-FFC-resistant
(LZ-1P-09). The multidrug resistance assay indicated that all tigecycline-resistant strains
are common and have diverse and wide AMR spectra. This suggests that the difference in
the antimicrobial spectrum of strains may be due to the frequency of the types of antibiotics
used by different farms in clinical breeding and treatment.
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Figure 2. Cluster analysis of tigecycline-resistant characteristics of isolates. Vertical and horizon-
tal trees represent clustering relationships. The ordinate is the antibiotic, and the abscissa is a
tigecycline-resistant isolate. Notes (antibiotic resistance pattern): SX-1E-06: AMP-AMC-SXT-TIG-
TET-FFC-FOS; SX-2E-03: AMP-AMC-SXT-TIG-TET-FFC-FOS; SC-1E-03: AMP-AMC-SXT-TIG-TET-
FFC; XJ-2E-05: AMP-AMC-SXT-TIG-TET-FOS; LZ-1S-01: AMP-CTX-AMK-SXT-TIG-TET-FFC-FOS;
QH-2K-03: AMP-AMK-SXT-TIG-TET-FFC; LZ-1P-09: AMP-AMC-AMK-CIP-SXT-TIG-TET-FFC; XJ-
1E-02: AMP-CIP-SXT-TIG-TET; SX-1E-08: AMP-CIP-SXT-TIG-TET-FFC; XJ-1K-13: AMP-CIP-SXT-TIG-
TET-FFC; and SX-3E-11: AMP-AMC-CIP-SXT-TIG-TET-FOS.
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Table 2. Resistance pattern of tigecycline-resistant isolates against selected antimicrobial agents.

Antimicrobial Agents

Bacterial Isolates
(MIC µg/mL) a

SX-3E-
11

SX-2E-
03

SX-1E-
06

SX-1E-
08

SC-1E-
03

XJ-2E-
05

XJ-1E-
02

LZ-1S-
01

LZ-1P-
09

QH-
2K-03

XJ-1K-
13

Ampicillin >256 >256 >256 >256 >256 >256 >256 >256 >256 >256 >256
Amoxicillin/clavulanate

potassium 32 32 32 16 32 32 16 16 16 2 4

Gentamicin 0.5 2 0.5 2 8 4 32 4 32 1 8
Cefotaxime 1 4 2 16 32 32 16 >256 32 4 2
Meropenem 0.25 0.25 0.125 0.125 0.5 1 1 1 0.5 0.25 0.125

Amikacin 16 32 32 16 32 32 16 128 32 64 8
Ceftiofur 2 0.5 1 4 0.25 0.5 0.25 0.5 0.5 0.5 0.25
Colistin 0.5 0.125 0.25 0.25 0.125 0.125 0.125 0.125 0.5 0.125 0.125

Ciprofloxacin 8 0.125 0.0625 8 0.125 0.0625 8 0.0625 8 0.125 8
Sulfamethoxazole >256 >256 >256 >256 >256 >256 >256 >256 >256 >256 >256

Tetracycline 16 64 64 32 8 16 64 64 64 8 64
Tigecycline 8 4 8 8 8 4 8 8 8 32 32
Florfenicol 0.25 64 64 64 32 8 8 64 8 64 64
Fosfomycin 16 16 16 2 8 16 8 16 2 8 8

a: Minimum inhibitory concentration breakpoints.

3.3. Whole Genome Sequencing Analysis

The final assembly of the isolates, based on WGS, ranged from 104 to 187 contigs of
>500 bps/sample in E. coli isolates with N50 values between 49,186 and 88,174. A total of 127,
155, 152, 104, 187, 129, and 188 contigs, representing 5,154,027; 5,417,711; 5,417,297; 5,071,184;
5,105,116; 5,066,943; and 4,819,548 bases (50.32% and 50.94% G + C ratio; N50 = 181,274;
123,205; 123,205; 143,900; 111,759; 177,264; and 96,022), were obtained from assembled
sequences of E. coli strains SX-3E-11, SX-2E-03, SX-1E-06, SX-1E-08, SC-1E-03, XJ-2E-05, and
XJ-1E-02, respectively.

The isolates’ final assembly of 81 and 82 contigs of >500 bps/sample in K. pneumoniae
isolates with N50 values of 234,490 and 221,920, representing 5,574,832 and 6,028,924 bases
(57.14% and 55.09% G + C ratio), were obtained from assembled sequences of K. pneumoniae
strains QH-2K-03 and XJ-1K-13, respectively. The isolates of P. aeruginosa LZ-1P-09 and
S. Typhimurium LZ-1S-01 were assembled by 364 and 31 contigs, respectively, with N50 val-
ues of 159,433 and 467,849, representing 31,174,726 and 4,754,898 bases, respectively. The
main features of the E. coli, K. pneumoniae, P. aeruginosa, and S. Typhimurium genomes are
shown in Table 3.

Table 3. The summary statistics of the assembled draft genomes of tigecycline-resistant isolates.

Genomic
Data SX-3E-11 SX-2E-03 SX-1E-06 SX-1E-08 QH-2K-03 SC-1E-03 XJ-2E-05 XJ-1K-13 XJ-1E-02 LZ-1P-09 LZ-1S-01

Raw_data 3,464,897,100 3,668,641,500 2,981,649,300 3,394,535,100 3,267,123,600 3,229,710,600 2,799,241,800 3,049,228,200 3,552,870,300 1,913,231,700 3,959,209,500
Raw reeds 23,099,314 24,457,610 19,877,662 22,630,234 21,780,824 21,531,404 18,661,612 20,328,188 23,685,802 12,754,878 26,394,730

Read_length 150 150 150 150 150 150 150 150 150 150 150
Sequence

length 5,154,027 5,417,711 5,417,297 5,071,184 5,574,832 5,105,116 5,066,943 6,028,924 4,819,548 31,174,726 4,754,898

Scaffolds
count 127 155 152 104 81 187 129 82 188 364 31

% GC a 50.98 50.63 50.38 50.54 56.98 50.22 50.53 55.05 51.45 56.71 52
Q20(%) b 98.01 97.99 97.98 97.95 97.9 97.96 97.8 98.04 97.8 97.73 97.89

Largest contig 626,493 387,573 387,573 593,011 905,104 402,856 556,679 465,690 231,092 556,019 773,785
N50 c 181,274 123,205 123,205 143,900 234,490 111,759 177,264 221,920 96,022 159,433 467,849
N90 d 32,857 30,785 31,761 39,038 54,273 25,327 34,748 70,423 18,581 57,075 152,566
L50 e 9 14 14 11 7 14 9 9 17 61 4
L75 f 17 27 27 22 15 30 20 17 34 128 7

a: DNA (G+C) mol%; b: quality score, Q = −10log10(e); c: scaffold N50 length; d: scaffold N90 length; e: Number
of scaffolds L50; f: Number of scaffolds L75.

3.4. Distribution of Antimicrobial Resistance Genes and Virulence Factors of Isolates

The genomes of all 11 tigecycline-resistant isolates were sequenced, with 12 AMR
genes predicted from them (Figure 3A); these include three fluoroquinolone resistance
genes (gyrA_S83L, gyrA_D87N, S83L, parC_S80I, and gyrB_S463A), two fosfomycin resis-
tance genes (GlpT_E448K and UhpT_E350Q), one beta-lactam resistance gene (FtsI_D350N,
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S357N), one tigecycline resistance gene (tetR_N/A), and five chromosomally encoded genetic
systems that confer MDR (MarR_Y137H, G103S, MarR_N/A, SoxR/SoxS_N/A, AcrR_N/A,
and MexZ_K127E). In conjunction with the drug-resistance profiles of the isolates, it can
be seen that the distribution of drug-resistance genes is highly consistent with the drug-
resistance profiles of the isolates as a whole. It also confirms the correlation between the
presence of these resistance genes and resistance phenotypes.
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(C) LZ-1S-09 specific virulence gene profiles. Colored squares represent virulence genes, and white
squares indicate no virulence gene.

A total of 230 virulence factors were predicted from 11 tigecycline-resistant isolates
(Figure 3B,C). All E. coli isolates possess 13 virulence factors, including entA, aslA, espL1,
etc. In addition, Pic exists only in SX-3E-11, cseA and espC exist only in SX-1E-08, faeC-J
exists only in SC-1E-03, and espX6, f17d-C, and f17d-D only exist in XJ-2E-05. Furthermore,
all E. coli, K. pneumoniae, and S. Typhimurium isolates contain the entE, entF, fepA, fepG,
and ompA genes. Among the isolates of K. pneumoniae, exeF and fleQ/flrC only existed in
QH-2K-03, while clfA and htpB only existed in XJ-1K-13. In addition, some isolates from
the same region have similar virulence profiles (SX-2E-03, SX-1E-06, and SX-1E-08), while
others have different virulence profiles (XJ-1E-02 and XJ-2E-05). Of note, we found that
LZ-1S-09 carried a large number of virulence genes (Figure 3C). It may be due to Salmonella
serovars containing large, low-copy-number plasmids carrying antibiotic resistance genes
or virulence genes. As a result of the presence of animals from various regions on the farm,
there may be some differences in their behavior.

3.5. Multilocus Sequence Typing (MLST)

The results of MLST showed that 7 E. coli isolates belonged to 6 kinds of sequence
typing (ST). In particular, ST13667 (SC-1E-03; adK, 6; adK, 4; gyrB, 1323; icd,1; mdh, 9; purA, 2;
and recA, 7) is a new kind of ST we found, indicating that the E. coli isolates in this study are
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highly diverse. K. pneumoniae isolates QH-2K-03 and XJ-1K-13 belong to ST999 and ST65,
respectively. LZ-1P-09 of P. aeruginosa and LZ-1S-01 of S. Typhimurium belong, respectively,
to ST68 and ST92 (Table 4).

Table 4. ST and allele of tigecycline-resistant isolates.

Isolate Name Allele
adK fumC gyrB icd mdh purA recA ST a CC b

SX-3E-11 6 6 15 56 11 26 6 2144 -

SX-2E-03 43 41 15 18 11 7 6 101 ST101
Cplx

SX-1E-06 43 41 15 18 11 7 6 101 ST101
Cplx

SX-1E-08 10 11 4 8 179 8 2 3944 -
SC-1E-03 6 4 1323 1 9 2 7 13667 -

XJ-2E-05 6 4 4 16 24 8 14 58 ST155
Cplx

XJ-1E-02 6 107 1 95 69 8 20 536 ST399
Cplx

gapA infB mdh pgi phoE rpoB tonB ST
QH-2K-03 2 1 2 1 10 1 12 999 -
XJ-1K-13 1 7 2 30 4 1 2 65 -

acsA aroE guaA mutL nuoD ppsA trpE ST
LZ-1P-09 24 16 20 16 15 14 21 68 -

aroC dnaN hemD hisD purE sucA thrA ST
LZ-1S-01 5 2 3 7 31 41 11 92 -

a: Sequence typing; b: Clonal complex.

4. Discussion

Antimicrobial resistance is one of the greatest threats to human health in the 21st
century, especially with regard to zoonotic pathogens. E. coli, K. pneumoniae, S. Typhimurium,
and P. aeruginosa are significant zoonotic pathogens that cause a wide range of clinical
diseases [2]. Tigecycline is an important drug for the treatment of drug-resistant strains
in the clinic, and it is the last line of defense for the treatment of bacterial infection [27].
We present a study in which we first identified the presence of tigecycline-resistant strains
in northwest China and then analyzed the drug resistance as well as the WGS of the
isolates. Furthermore, this study found that herbivores in northwest China were relatively
low in carrying tigecycline-resistant bacteria, which is an interesting finding. Antibiotic
resistance genes were widely distributed in isolates, including fluoroquinolone resistance,
fosfomycin resistance, and other genes endowed with resistance to β-lactamase, fosfomycin,
aminoglycosides, sulfonamides, quinolones, tetracycline and chloramphenicol, and several
chromosomally encoded genetic systems that confer MDR. All isolates except LZ-1P-
09 were MDR phenotypes that carried at least one β-lactamase gene and the MICs of
carbapenem antibiotics supported the presence of resistance genes of these antibiotics.
Only one drug resistance gene, MexZ, was detected in the P. aeruginosa isolate LZ-1P-09,
and MexZ is the main reason for P. aeruginosa’s natural resistance to tigecycline [28]. By
comparing the protein sequence of the gene, we found that there was a mutation form
K127E in MexZ which had not been previously reported. In addition, it is interesting that the
fosfomycin resistance gene in E. coli and S. Typhimurium is GlpT, and that in K. pneumoniae
is UhpT. Although we screened the isolates by adding tigecycline to the culture medium,
only the tetR gene was detected. TetR is the repressor of the tetracycline resistance element,
wherein its N-terminal region forms a helix-turn-helix structure and binds DNA. The
binding of tetracycline to tetR reduces the repressor affinity for the tetracycline resistance
gene (tetA) promoter operator sites [29,30]. Therefore, we believe that the reason for
tigecycline-resistant isolates may be due to the existence of MarR, SoxR/SoxS, AcrR, and
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MexZ. In short, the MICs of the isolates we tested for 14 antibiotics supported the presence of
drug-resistance genes in these isolates as well as the existence of MICs for these antibiotics.

Among the drug resistance genes mentioned earlier in this article, gyrA and ParC are
genes encoding DNA helicase and topoisomerase IV in cells, and the latter two are the
target sites of quinolone drugs [31]. Mutations in gyrA and ParC can change the target sites,
making the drugs unrecognizable, thus leading to the formation of drug resistance [32].
GlpT and UhpT are the transport proteins of fosfomycin, and they are also symporters
of glycerol-3-phosphate and glucose-6-phosphate. When GlpT and UhpT are mutated,
fosfomycin cannot be transported into the cell, resulting in a significant decrease in cell
sensitivity to fosfomycin [33,34]. FtsI encodes penicillin-binding protein 3 (PBP3), which
is the active site of beta-lactam. Mutations in FtsI make drugs unrecognizable [35]. MarR
represses the transcription of MarRAB by binding to MarO and negatively controlling the
MarA-dependent expression of other genes in the regulon [36]. By mutation of MarR or
MarO, the repressor is rendered inactive. The resulting overexpression of MarA produces
antibiotic resistance by increasing the expression of the major multidrug efflux pump
AcrAB-TolC and down-regulating the outer membrane protein OmpF via the small RNA
(sRNA) MicF [37]. SoxR/S is a chromosomally encoded genetic system that confronts low-
level MDR in E. coli and S. Typhimurium [38]. The single point mutations or other unknown
changes of SoxR lead to the high expression of SoxS, which can increase efflux pump activity
and decrease cell permeability, creating resistance to a variety of antibiotics [39]. AcrR is an
HTH-type transcriptional regulator, a local transcriptional inhibitor, which can inhibit the
transcription of the acrB gene, which encodes multi-drug efflux pump acrB. When point
mutation occurs in acrR, it loses its inhibitory effect on acrB, resulting in the high expression
of acrB and an increase in the number of efflux pumps [40]. MexZ plays a negative role in
the expression of the mexXY efflux pump in P. aeruginosa. MexXY plays an important role
in the efflux of a variety of antibiotics. MexZ mutants’ cloud loses the inhibition on mexXY
which increases the number of pumps [41]. To the best of our knowledge, MexZ_K127E is a
new point mutation of the MexZ gene in P. aeruginosa found in this study.

In addition, through the MLST analysis of 11 isolates, we found that only SX-2E-03
and SX-1E-06 belonged to the same ST (ST101). It was evident from the STs of isolates
from different regions, as well as from isolates within the same region, that there is a wide
genetic diversity among them. It is imperative to adopt more flexible strategies for clinical
treatment and prevention because there are not only many kinds of drug-resistant bacteria
in northwest China, but also many STs with different drug-resistance profiles. A number of
mechanisms are thought to contribute to Gram-negative bacteria’s intrinsic and acquired
drug resistance. In our data, WGS accurately identifies the exact mechanism of antibiotic
resistance for Gram-negative isolates.

5. Conclusions

According to our findings, tigecycline-resistant bacteria were found on farms in Gansu,
Qinghai, Xinjiang, Sichuan, and Shaanxi in northwest China. There are many different
types of multidrug-resistant STs bacteria. As a result of sequencing and analyzing the WGS
of the isolates, we identified drug-resistance genes and virulence factors. A joint analysis
of the drug-resistance genes and drug-resistance spectrum of the isolates also confirmed
the presence of drug-resistance genes. In addition, based on epidemiological investigation
and WGS analysis, despite the low resistance rate of tigecycline, we believe that the
multidrug resistance of tigecycline-resistant isolates in northwest China is a serious problem;
additionally, the mechanism of drug resistance is complex, which makes prevention and
control more difficult. In light of this, we should carry out more research on MDR bacteria
and increase surveillance of these bacteria.
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