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Abstract: Reliance on plastic has resulted in the widespread occurrence of micro-/nanoplastics
(MNPs) in aquatic ecosystems, threatening the food web and whole ecosystem functions. There is
a tight interaction between MNPs and microalgae, as dominant living organisms and fundamental
constituents at the base of the aquatic food web. Therefore, it is crucial to better understand the
mechanisms underlying the interactions between plastic particles and microalgae, as well as the
role of microalgae in removing MNPs from aquatic ecosystems. In addition, finding a suitable
route for further utilization of MNP-contaminated algal biomass is of great importance. The present
review article provides an interdisciplinary approach to elucidate microalgae–MNP interactions and
subsequent impacts on microalgal physiology. The degradation of plastic in the environment and
differences between micro- and nanoplastics are discussed. The possible toxic effects of MNPs on
microalgal growth, photosynthetic activity, and morphology, due to physical or chemical interactions,
are evaluated. In addition, the potential role of MNPs in microalgae cultivation and/or harvesting,
together with further safe routes for biomass utilization in biofuel production, are suggested. Overall,
the current article represents a state-of-the-art overview of MNP generation and the consequences of
their accumulation in the environment, providing new insights into microalgae integrated routes of
plastic removal and bioenergy production.

Keywords: biofuel; plastic waste; bioremediation; marine environment; green energy

1. Introduction

Currently, plastic is an integral part of human life, and its utilization cannot be avoided
in one way or another. It is one of the most renowned synthetic materials and is invading
the natural ecosystem with many negative consequences. It is widely used in different
industries, including manufacturing, aerospace, construction, cosmetics, and packaging.
Due to its comparatively low production costs and unique physicochemical characteristics,
the annual production of plastic has increased dramatically in recent years. Annual global
plastic production increased from 2 Mt in 1950 to 380 Mt in 2015, which was accompanied
by the generation of 6300 Mt of waste plastic [1]. In 2016 alone, global waste plastic gen-
eration was estimated at 242 Mt, representing 12% of all solid wastes [2]. The majority
of waste plastic produced accumulates in the environment, while only 9% is currently
recycled [3]. Therefore, it is predicted that oceans will have more mass accumulation of
plastic waste, making exploring innovative technologies for waste plastic recycling and
safe disposal a tough challenge all over the world. According to the European Plastics
Manufacturers database [4], high- and low-density polyethylene (HDPE and LDPE, re-
spectively), polypropylene (PP), and polyvinyl chloride (PVC) are the dominant plastic
forms, representing together about 59% of the total amount of plastic produced globally.
However, the remaining 41% includes polystyrene (PS, 6.7%), polyethylene terephthalate
(PET, 7.4%), polyurethane (PUR, 7.5%), and other polymers, such as polybutylene tereph-
thalate (PBT), acrylonitrile butadiene styrene (ABS), polymethylmethacrylate (PMMA), and
polycarbonate (PC).
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Plastic particles have been detected in all environmental ecosystems, including marine
surface water and the seabed, surface freshwater and sediment, soil, and even ground-
water, as well as in the atmosphere (Figure 1) [5–8]. Plastic particles undergo weathering
and fragmentation by various natural forces once released into the environment. Such
natural forces include ultraviolet (UV) radiation, mechanical forces of water, and bio-
logical degradation, resulting in the formation of microplastics (MPs) and nanoplastics
(NPs) [8]. “MP” is a term used to refer to any synthetic solid plastic polymer with a diameter
of ≤0.5 mm [9] generated by either primary or secondary processes [10,11]. Although there
is no established definition for “NPs”, usually the term refers to particles with similar
origins and compositions to MPs that have smaller sizes of ≤100 nm—much smaller than
the algal cell diameter [12–14]. MPs and NPs (MNPs) may enter the environment directly
through domestic discharges and industrial effluents from cosmetics, cleaning products,
and synthetic fibers [15], finding their way eventually into the human body (Figure 1),
resulting in negative impacts throughout the whole ecosystem. Despite the reported effi-
ciency of microorganisms in harboring keys for the circular bioeconomy that could help
fight plastic pollution and rising CO2 levels [16], the potential of microalgae to mitigate the
risk posed by MNPs within the circular bioeconomy framework is a subject that requires
further study. Therefore, the present work is a timely review article which aims to highlight
the risk of MNPs to humans as well as to the environment. In addition, different technolo-
gies used for the mitigation of MNP risks are discussed. The interaction of MNPs with
microalgal cells and the consequent impacts are presented. In addition, possible routes of
dual use of microalgae in MNP removal and biofuel production are suggested.
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2. Distribution and Implications of MNPs

Due to their small size and wide distribution, studying and tracking MNPs is intrin-
sically challenging, making MNPs more difficult to control. Specifically, different routes
by which MNPs can reach different platforms, the timeframes needed to determine their
breakdown durations in order to provide reliable measurements, and future prospec-
tions/evaluations are extremely challenging [17]. However, it is estimated that 0.8–2.5 Mt
of MNPs are ending up in oceans, of which 44,000–300,000 tons and 63,000–430,000 tons of
MPs reach agroecosystems annually in Europe and North America, respectively [11,18].
Another estimation predicts that 5 trillion plastic particles are floating in oceans, with a
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total mass exceeding 250,000 tons [19]. Compared to all other wastes, plastic accounts for
about 60–80% of anthropogenic litter in both terrestrial and aquatic environments [20]. As
mentioned in the previous section, MNPs may derive from primary or secondary sources.
The first include MNPs in medicinal products, textiles, and personal care products [21,22],
as well as the initial manufactured plastic pellets [23]. The second include MNPs produced
from the breakdown of larger waste plastic items, including plastic nets, containers, films,
line fibers, and tires [24]. Primary MNPs are usually released into industrial and domestic
wastewater, which finally enter estuaries and rivers [25]. However, secondary MNPs are
much larger sources of plastic pollution in marine systems, with expectations that their
abundance will increase enormously due to the unceasing discharge of waste plastic from
a wide variety of origins [26]. In addition, the tiny size of MNPs increases their specific
surface area, which enhances their bioavailability to aquatic organisms, threatening all
living organisms due to the spread of these particles throughout the food chain [26].

As shown in Table 1, MPs have been extensively detected globally in marine ecosys-
tems [27,28]. For instance, extensive pollution by MPs was recorded in surface waters of the
northwestern Pacific Ocean, at concentrations ranging from 640 to 42,000 items/km2, based
on current action [28]. Owing to its receiving huge amounts of waste plastic from the sur-
rounding urban areas, MPs were abundantly recorded in the semi-enclosed Mediterranean
Sea, also [26]. MNP distribution is much higher in water bodies close to urbanized areas
than in those close to rural areas because of the differing rates of anthropogenic activities.
For instance, a previous study evaluated MP distributions in different lakes at the very
center of Wuhan city, China, which are surrounded by densely populated residential ar-
eas [29]. The results showed the highest MP concentrations in the surface waters of Huanzi
Lake (8550 items/m3) and Bei Lake (8925 items/m3), due to high anthropogenic activities
in those areas. After traveling over long routes in marine environments, sediments are the
final destinations of MNPs, and high amounts can be detected in marine sediments. In
this context, a recent study reported 142 and 155 items/kg dw as the average MP concen-
trations in offshore sediments from the East China Sea and the Yellow Sea, respectively
(Table 1) [30]. It can be noted from the table that water, sediment, and wastewater all
contain MNP particles, their levels significantly varying depending on location. In addition,
sediment depth and water flow rate, as well as distance from the shoreline, significantly
influence MNP concentrations in marine sediments. The abundance of MNPs near the
shoreline (210–240 items/kg dw) was reported to be much higher than in deep water
(60–90 items/kg dw) [30].

Other potential sources of MNPs are wastewater treatment plants (WWTPs), the pres-
ence of MNPs in WWTP effluents having been confirmed by many previous studies. For
instance, Mintenig et al. [31] examined the MPs in treated water compared to raw water
at a drinking water treatment plant, where MPs were detected in 10 out of 24 studied
water samples, with average contents of 0.7 particles/m3 in the treated water compared to
7 particles/m3 in the raw water. Concerns associated with the negative impacts of MPs are
attributed to many issues, including not only the direct toxicity of plastics to biota but also
their activity as vectors of other pollutants and invasive organisms/pathogens, as well as
the toxicity of adsorbed additives or those used in plastic production [12]. In this context,
particles of MPs can adsorb many toxic compounds from the surrounding environment,
such as heavy metals (e.g., Cu, Ni, Pb, and Zn) and persistent organic pollutants (POPs)
(e.g., polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), poly-
brominated diphenyl ethers (PBDEs), and dichlorodiphenyltrichloroethane (DDT)) [12,32].
In addition, chemicals added during the plastic manufacturing process might exist with
plastic particles, such as bisphenol A (BPA) and phthalates [33,34]. Previous studies have
reported that non-polymeric additives can be used as preferred carbon sources for mi-
croorganisms due to possible biodegradability over time [35,36]. However, the possibility
of these contaminants being transferred into edible seafood poses a significant concern
regarding food safety and quality [37].
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Compared with MPs, NPs are less well-explored, while the downsizing of waste
plastic from micro- to nanoscale was reported to be accompanied by significant changes in
physicochemical properties [8]. In addition, fewer studies on NPs have focused on the toxic
effects of NPs on marine organisms in the marine ecosystem, including fish, bacteria, and
algae [15,38,39]. Aquatic organisms can easily ingest NPs, which ultimately reach various
organs and accumulate in the aquatic food chain, including phytoplankton, zooplankton,
fish, crustaceans, snails, and marine mammals [40]. The exact translocation mechanisms of
NPs are still to be explored, but plastic particles were confirmed to be transported from the
gills and/or digestive tracts to the circulatory systems of these organisms [40]. The impact
of 51 nm polystyrene NPs on fish through transfer along the food chain from producers
to final consumers, as well as direct waterborne exposure, was evaluated [41]. The results
showed that NPs induced liver histopathological changes in the fish, which were attributed
to direct exposure to NPs, and had the ability to be transferred to fish along the food chain.
The latter aspect establishes a confirmed route for MNPs spreading throughout the food
chain to reach humans as well [42,43]. The spread has been confirmed by various different
types of MNPs detected in human feces [44], confirming the ingestion of MNPs from a
variety of sources and their ability to be excreted via the gastrointestinal tract. Particles
of MNPs were also detected in human colectomy specimens [45], providing proof that
these particles can reach the human colon. MNPs were also detected in the blood [46] and
placentas of pregnant women [47,48], which raises a serious concern about the impact on
subsequent generations. Therefore, MNP pollution represents a great concern as a potential
threat to human health and the whole ecosystem.

Table 1. Distribution and concentrations of microplastics in marine environments (water bodies and
sediments) as well as wastewater effluents in different regions of the world.

Region/Country Location Source Amount/Concentration References

I. Water bodies
Germany Teltow Canal Surface water 0.01–95.8 items/L [49]
Denmark Stormwater pond Pond water 2.7 × 105 items/m3 [50]
Portugal Antuã River Surface water March 58–193 and October 71–1265 items/m3 [51]

South Korea
Korean coastal water Surface water 1051 particles/m3 [52]
Jinhae Bay “ 88 particles/L [53]

USA
Lakes Huron “ 6541 particles/km2 [54]
Hudson River “ 0.625–2.45 fibers/L [55]
Lake Superior “ 12,645 particles/km2 [54]

Europe Carpathian Basin “ 3.52–32.05 particles/m3 [56]
Rhine River “ 3.9 million particles/km2 [57]

England Tamar Estuary “ 0.028 particles/m3 [58]
Qatar Arabian Bay “ 4.38 × 104–1.46 × 106 particles/km2 [59]
Iran Bandar Abbas Surface water 3252 particles/m2 [60]
Italy Subalpine lakes “ 4000–57,000 particles/km2 [61]
South Africa Southeastern coastline “ 257.9–1215 particles/m3 [62]
Mexico Northern Gulf “ 4.8–18.4 particles/m3 [63]

China

Bei Lake “ 8925 items/m3 [29]
Huanzi Lake “ 8550 items/m3 [29]
Pearl River “ 94–2098 items/m2 [64]
Xianjia Lake “ 3825 items/m2 [65]

II. Sediments
USA Estuaries Sediment Charleston 413.8 and Winyah Bay 221.0 [66]
Europe Carpathian Basin “ 9.5 × 105 items/kg dw [50]
Italy Tyrrhenian Sea “ 42–1069 items/kg dw [67]

Germany Main river “ 786–1368 particles/kg dw [68]
Rhine River “ 228–3763 particles/kg dw [68]

United Kingdom River Tame “ 165 particles/kg dw [69]
Portugal Antuã River “ March 100–629 and October 18–514 items/kg dw [51]
Denmark Stormwater pond “ 9.5 × 105 items/kg dw [50]



Microorganisms 2022, 10, 2400 5 of 20

Table 1. Cont.

Region/Country Location Source Amount/Concentration References

South Korea Nakdong River “ 1971 particles/kg dw [70]
Spain Canary Islands “ 2–115.5 items/m2 [71]

Remote beach “ 36.3 g/m2 [72]
Iran Persian Gulf “ 61 particles/kg dw [73]

Persian Gulf “ 2–1258 particles/kg dw [74]
Russia Beaches “ 1.3–36.3 items/kg dw [75]

Baltic Sea “ 34 items/kg dw [76]

China

North Yellow Sea “ 499.76 items/kg dw [77]
Bohai Bay “ 96.7–333.3 and 56.7–113.3 items/kg dw [78]
Yellow Sea “ 60–240 items/kg dw [30]
Maowei Sea “ 520–940 items/kg dw [79]

III. Wastewater treatment plants

Region Type Concentration Polymer type References

USA Secondary 1–30 particles/L Fibers and particles [80]
UK “ 0.25–8.7 particles/L Flakes, fibers, film, beads, and foam [81]
Germany “ 0.08–7.52 particles/L PE and PP [82]
Australia “ 0.48 particles/L PET fibers and irregularly shaped PE particles [83]
Canada “ 0.5 particles/L Fibers and fragments [84]
China “ 28.4 particles/L Fibers and fragments [85]
Finland “ 0.4–1 particles/L PE particles [86]

3. Detection and Identification of MNPs

Different types of plastics have different chemical and physical characteristics, which
poses a challenge in establishing a universal accurate method for identification. Gravimetric
analysis and visual inspection are used usually for the quantification and identification
of MPs, even if chemical characterization is applied at later stages. Visual investigation,
Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy are the conven-
tional methods used for the detection of plastic particles [87]. Visual investigation allows
the classification of plastic particles based on their physical characteristics, directly ob-
served by microscope or using a fluorescent microscope. This method is considered, at
present, to be the most applicable and widely available for plastic particle identification
and quantification, and is usually used before further chemical characterization [87]. How-
ever, it is highly time-consuming and not accurate because of the wide variation in results
produced by different observers. For instance, MPs visually detected in beach sediments by
multiple observers showed wide variation within the detection range of 60–100%, due to
differences in individual perception, fatigue, experience, and underestimation (e.g., avoid-
ing all white fragments in a sample) or overestimation (e.g., by counting some biological
materials) of certain MP particles [88]. For the identification of plastic particles and study
of their chemical characteristics, Raman spectroscopy and FTIR are widely used [89,90].
Other new methods have been suggested that are characterized by cost-effectiveness and
high efficiency, including FTIR combined with focal plane array (FPA) detection, Nile red
(NR) staining, thermogravimetric analysis combined with differential scanning calorimetry
(TGA-DSC), thermal extraction desorption–gas chromatography–mass spectrometry (TED-
GC–MS), etc. Thus, the identification and detection of NPs are major challenges, even more
than for MPs. Photothermal atomic force microscopy coupled with infrared spectroscopy
(AFM-IR) or Raman spectroscopy can be used to analyze MNPs [91]. In addition, organisms
that are sensitive to MNPs can be used as biosensors for MNP detection, which might have
an impact on stress response genes and cell surface proteins [92,93]. Overall, exploring new
analytical methods and instruments that can be coupled with existing instruments will
overcome the recent issues associated with the characterization of different plastic particles.

4. Remediation Technologies for MNPs

Despite the current efforts in plastic management policies and the promotion of
waste plastic recycling, improper plastic disposal is still the “talk of the town”. In the
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last decade, the removal of MNPs from aquatic environments represents a big challenge
due to the concurrent disastrous impacts on aquatic species, humans, and the whole
ecosystem [14]. So far, many remediation technologies and biotechnologies have been
suggested for efficient waste plastic management [94–96], such as coagulation, membrane
separation, and biodegradation (Figure 2).
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4.1. Coagulation

The untreated sludge from WWTPs, which is contaminated with MNPs, is used as a
biofertilizer in several countries, acting as a prime vehicle for the redistribution of MNPs
into terrestrial and agroecosystems [97]. In WWTPs, MNP removal is usually carried out
during the coagulation process [98], in which Al and Fe salts bind with plastic particles
and facilitate their remediation through complexation [99]. Several studies have confirmed
the efficiency of MNP removal via coagulation [95,100,101]. For instance, Ma et al. [95,100]
evaluated coagulation efficiency using aluminum chloride and ferric chloride for the
removal of PE particles of different sizes. The results confirmed the efficiency of plastic
removal by coagulation in the case of relatively small particles, while particles of ≥5 mm
were bigger than the typical colloidal particles removed by coagulation. Previous studies
have evaluated MP removal by coagulation and subsequent ultrafiltration [95,100]. The
results showed that the traditional coagulation process has low PE removal efficiency
(below 15%) and that it is significantly affected by water characteristics. Thus, MP removal
by ultrafiltration processes was suggested as a promising alternative for further application
in drinking water treatment.

4.2. Membrane Technology

Although the removal of MNPs using membrane technology is still limited, recent
years have seen a tremendous increase in the number of studies related to membrane biore-
actors (MBRs) and the conventional membrane separation process for effective wastewater
treatment coupled with energy production [14,102–104]. In addition, ultrafiltration using
membrane separation has been recommended as an effective method for the removal of
high MP concentrations which allows the attainment of high-quality drinking water with a
relatively low energy consumption, high separation efficiency, and compact plant size [14].
For example, the utilization of an MBR improved the removal efficiency of MPs by up to
99.4% compared to conventional activated-sludge-based treatment [105]. The application
of MBRs for MP and NP remediation in WWTPs revealed their superiority to oxidation
ditches [106], which can be attributed to their dual action for anti-fouling and separation
performance [107]. Although ultrafiltration coupled with coagulation is currently used
in WWTPs and allows for significant removal of organic matter, this technology is not
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properly designed yet for the removal of MNPs that remain in the final effluents [108,109].
Thus, low concentrations of MPs can be detected in drinking water after treatment by MBR,
which is attributed mainly to irreversible membrane fouling [100]. It was reported that
ultrafiltration can be used to totally remove PE particles [14], but more research efforts and
studies are still needed to understand how fouling and cake formation in MBRs are influ-
enced by different loads of MNPs. In addition, the impacts of plastic shape on the removal
process and reactor performance need to be evaluated. Moreover, the rate of MNP removal
depends on hydrophobic and electrostatic interactions [110]; therefore, membrane-based
technology requires further R&D for the adoption of measures and methods to overcome
MNP-induced fouling to effectively remediate MNPs.

4.3. Biodegradation

Biodegradation is a new strategy for plastic waste remediation that has been increas-
ingly discussed as an eco-friendly technology. Microbial potential (mainly bacteria and
fungi) for plastic degradation through enzymatic hydrolysis has been intensively studied in
recent years [111–113]. The exploration of new microbial enzymes and further mechanistic
elucidations are crucial for enhanced MNP remediation by biodegradation [114]. Thus,
identifying plastic-active enzymes for further application in biotechnological processes and
elucidating their actual action in nature is an emerging research field, which is still in its
infancy [36]. The process of MNP biodegradation is divided into four main steps [115]:
biofilm development on plastispheres that decreases the hydrophobicity and buoyancy of
plastic particles, followed by biodeterioration through exopolysaccharides and enzymatic
action (endo-/exoenzymes). The third step is the destabilization of the carbon skeleton
in MNP particles through enzymatic depolymerization, using oxidases, amidases, peroxi-
dases, and laccases, then assimilation of monomers by microbial biomass [116]. Hydrolases
were reported to play a vital role in plastic polymer hydrolysis and therefore in determining
MNP biodegradation rates [117].

Certain microbes, such as the alkane-degrading marine bacterium Alcanivorax borku-
mensis, were reported to have a key role in LDPE degradation [118], resulting in significant
physicochemical alterations. In addition, other bacterial strains, such as Bacillus gottheilii
and Bacillus cereus, showed high potential to effectively remove a wide range of MNPs (PP,
PET, PS, and PE) from mangrove sediments [119]. Fungi, such as Zalerion maritimum, also
showed high efficiency in plastic degradation [120] using different mechanisms, through
the release of sticky natural biosurfactants, such as hydrophobins [121]. In some cases,
pretreatment is required to enhance the degradation process. In this context, PP biodegra-
dation by two different fungal strains (Phanerochaete chrysosporium and Engyodontium album)
was enhanced after starch/pro-oxidant pretreatment [122]. Despite their promising roles,
the enzymes available at present act mainly on high-molecular-weight polymers of PET
and ester-based PUR, with moderate turnover rates, and no enzymes acting on other
high-molecular-weight polymers, such as PS, PP, ether-based PUR, and polyethylene are
known [123]. Bioengineering of bacterial strains for enhanced protein production could
further enhance MNP biodegradation by increasing enzyme activities [124]. In addition,
the application of targeted microbial strain engineering can accelerate cellular enzymatic
activities towards enhanced plastic degradation. In this respect, an engineered strain of
Bacillus subtilis showed enhanced PETase activity (ca. four-fold) by inactivating the twin
arginine translocation complexes, which further enhanced MNP degradation [125]. An
integrated microalgae–bacteria system also showed potential to enhance the degradation of
MNPs through enzymatic action. In this context, the photosynthetic diatom Phaeodactylum
tricornutum was used as a cell factory for engineered PETase isolated from Ideonella sakaien-
sis, a known bacterium with a high capability for plastic degradation and for consuming it
as both a carbon and energy source [126]. Although microbial biodegradation of MNPs
is a promising approach, few studies have been conducted on microalgae, which require
further investigations.
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5. Plastic Waste and Microalgae as Biofuel Feedstocks

Due to modernization and industrialization, energy demand is increasing all over the
world, giving rise to the need to overexploit the limited available natural resources for
energy generation [127,128]. Currently, it is estimated that 524 quadrillion thermal British
units (Btu) are consumed globally, which is projected to increase to 820 quadrillions Btu
by 2040 [129]. Bioenergy can be produced from various biomass resources in the form of
biodiesel, biogas, bioethanol, biohydrogen, and crude bio-oil. In this context, using first-
generation biofuel feedstocks, which include edible food sources, such as soybean, rapeseed,
sunflower, and corn, competes with human requirements for food and agricultural land,
which raises the Food-versus-Fuel dispute [130]. To overcome such issues, the most effective
techniques were developed to utilize waste and non-edible biomass. In this context,
integrated approaches for the utilization of waste plastic [131–133] and/or microalgal
biomass [134,135] as promising feedstocks for biofuel production have been discussed.

Waste plastic conversion involves the treatment of plastic waste to transform it into
different forms of energy, including heat, electricity, and liquid fuels [136]. Plastic can be
converted into different forms of biofuel via thermochemical conversion methods, includ-
ing gasification, pyrolysis, and liquefaction. Algal biomass, meanwhile, can be converted
into different forms of biofuel, including crude bio-oil, bioethanol, biogas, biodiesel, and
bio-hydrogen [137–139], as well as value-added products/chemicals [140]. Compared to ter-
restrial plants and seaweeds, microalgal cells can accumulate more lipids over a shorter life
cycle [139], and therefore they are discussed as a promising feedstock for third-generation
biodiesel. In addition, microalgal biomass has been recognized as a carbon-neutral feed-
stock for fuel production due to its diverse phytochemical biomass characteristics, with
high CO2 fixation efficiency. Thus, the development of microalgal biorefinery systems and
the establishment of integrated routes have the potential to successfully reduce the reliance
on fossil fuels and achieve a reduction in greenhouse gas (GHG) emissions, which would
serve to mitigate the associated concerns about global warming and climate change.

6. Microalgae–MNP Interaction

Different from bacteria and fungi, microalgae are photoautotrophic organisms that
can grow also mixotrophically in varied habitats, including water (fresh, marine, as well as
wastewater), soil, and wet surfaces [141]. Microalgae have much higher biomass produc-
tivity compared to terrestrial plants [142], with a high capacity for the removal of heavy
metals, ions, pesticides, pharmaceuticals, and other harmful contaminants. Different meth-
ods are used by microalgae to remove contaminants, such as adsorption, accumulation,
and immobilization, followed by intracellular conversion to valuable products [143,144].
In WWTPs, there is a useful symbiotic interaction between microalgae and bacteria for
pollutant removal. In these systems, autotrophic microalgae and heterotrophic bacteria rely
on each other to grow, i.e., algal cells produce oxygen while bacterial cells use it for BOD
removal and produce CO2 which is fixed by algal cells. In addition, the produced inorganic
nitrogen and phosphorus are used by the microalgae for biomass production [145]. In lab
experiments, microalgae showed high potential to treat different wastewater streams, such
as municipal wastewater [146–148], distillery wastewater [149], brewery wastewater [150],
pharmaceutical-rich wastewater [151], and dairy effluents [152]. In addition, microalgae
have the potential to play a significant role in seawater desalination coupled with biofuel
production [153–155]. From an economic perspective, microalgae have been reported as po-
tential candidates to contribute to the bioeconomy through biofuel generation coupled with
eco-friendly clean-up of different wastewaters and the application of biomass/byproducts
as biofertilizers, nutrients, biopesticides, and bioplastics [156]. Compared to traditional
biological wastewater treatment systems, microalgae offer many attractive benefits, such as
cost-effectiveness, low energy consumption, higher pollutant removal, valuable biomass
formation, nutrient recycling, and reductions in greenhouse gas emissions [157,158]. Thus,
a microalgae-based system for MNP removal could have superior advantages over other
biodegradation processes.
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On the other hand, microalgae exist within a broad range of marine organisms that can
be affected by MNPs, which alarms the scientific community due to the extreme importance
of marine organisms as primary producers in the food chain [159,160]. Microalgae have a
great capacity to interact with plastic particles in the aquatic system. Lagarde et al. [161]
evaluated the interactions of PP and HDPE microplastics with the chlorophyte Chlamy-
domonas reinhardtii as a model microalgal species and observed a significant reduction
in microalgal growth (about 18%) after 78 days of contact with PP at a concentration of
400 mg/L. This was attributed to the formation of hetero-aggregates of microalgae with
microplastics over 20 days of mixing, which continued to increase until the end of the exper-
iment. Microalgae trapping in MP aggregates explains the growth reduction in microalgae
due to the reduction of photosynthetic efficiency because of shading effects [162]. However,
the results showed no significant changes in the expression of the studied chloroplast genes
using PP or HDPE and compared to the control (Figure 3) and thereby highlighted the
negligible effect of plastics on microalgal molecular structure. Interestingly, HDPE at the
applied high concentration of 400 mg/L showed a real effect on microalgal growth in a
long-term experiment, while stress conditions applied in the experiment due to MNPs
could enhance the production of desired compounds, such as lipids and carbohydrates
(Figure 3), which could be beneficial for further biodiesel or bioethanol production.
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Interactions between microalgae and MNPs may vary based on the cellular character-
istics of the microalgae, such as shape, size, and physiological activity. In addition, the algal
cell wall acts as a barrier to prevent particle penetration into the cell, and therefore cell wall
characteristics influence MP sorption. However, NPs can easily penetrate the cell wall and
might have an impact on algal cellular behavior. A previous study evaluated the response of
the marine diatom Thalassiosira pseudonana with a silicate cell wall, the marine chlorophyte
Dunaliella tertiolecta without a cell wall, and the freshwater chlorophyte Chorella vulgaris
with a polysaccharidic cell wall to polystyrene particles [163]. Both negatively charged and
uncharged particles of three different sizes (0.05, 0.5, and 6 µm) were tested. The results
showed negligible effects on the photosynthetic efficiency of D. tertiolecta (<10% inhibition
compared to the control) upon exposure to any of the three sizes of polystyrene beads, and
none of the beads affected microalgal photosynthesis, even at the highest concentration
of 250 mg polystyrene/L. However, microalgal growth was negatively affected (by up to
45%) by uncharged polystyrene, but only at high concentrations of 250 mg/L. The recorded
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negative impacts on growth were demonstrated to increase with decreasing particle size,
which could be attributed to the possibility of cell wall/membrane penetration.

Different suggested mechanisms for the effects of MNPs on molecular and cellular
levels are presented in Figure 3. MNPs could reduce photosynthetic activity and/or trans-
portation mechanisms through accumulation at the cell surface. Additionally, MNPs can
result in physical damage to the cell wall [164]. NPs can penetrate the cell and result in
direct effects on chloroplasts, as well as other cellular organelles, and enhance reactive
oxygen species (ROS) generation. As shown in Table 2, there is a confirmed influence of
MNPs on microalgal growth, while no consistent conclusion can be summarized, because
different studies were performed with different microalgal species, types of MNPs, and
concentrations. For instance, recent studies have reported the negative impact of NPs on
photosynthetic activity [165–167], while others have shown insignificant effects [163]. In
addition, the type of MNP surface charge affects the inhibition level. Since microalgal cells
have negative surface charges [168], positively charged MNPs have stronger interactions
with microalgal cells due to electrostatic interactions. In this context, the growth of My-
crocystis aeruginosa was inhibited by 23.57% and 46.10%, respectively, after exposure to
positively charged PS particles at concentrations of 3.40 and 6.8 mg/L [169]. However,
exposure to negatively charged PS particles, even at a high concentration of 100 mg/L,
showed insignificant effects on growth.

Due to the adsorption of other contaminants in the environment by MNP particles,
there are confirmed synergistic and/or antagonistic interactions between MNPs and other
contaminants. For instance, the combined action of NPs with dibutyl phthalate on Chlorella
pyrenoidosa was evaluated [170]. The results showed that low NP concentrations of less
than 10 mg/L resulted in antagonistic action at low dibutyl phthalate concentrations,
while synergistic action was recorded at relatively high dibutyl phthalate concentrations.
However, high NP concentrations of more than 10 mg/L resulted in antagonistic action
with NPs. This was attributed to the competitive adsorption of dibutyl phthalate by NPs,
which leads to reduction in dibutyl phthalate bioavailability. In conclusion, the impact
of MNPs on the growth and photosynthetic activity of microalgae is species-dependent
and also depends on the kind and size of particles used. Most studies that have evaluated
MNP interactions with microalgae were short-term, while the long-term effects of MNPs
on microalgal cells require further evaluation in order to elucidate the possibility of chronic
effects or the adaptability of microalgae to MNPs. In addition, further studies should be
conducted to explore the relationships between MNP characteristics and macromolecular
changes in microalgal cells.

Table 2. Previous reports on the impact of micro-/nanoplastics (MNPs) on the growth and photosyn-
thetic activity of microalgae.

Microalgae
MNPs Impacts

Ref.
Types Size (nm) Concentration

(mg/L) On Growth On Photosynthesis

Skeletonema costatum PS, PE, and PVC 74,000 10, 20, 50, and 100 Growth inhibition - [171]
Chlorella
pyrenoidosa PS 100 10, 50, and 100 Dose-dependent negative effect from the lag to earlier

logarithmic phase [165]

Scenedesmus obliquus PS 100 and 500 0 to 100 Significant inhibition Significant inhibition [172]
Raphidocelis
subcapitata PE 63,000–75,000 25, 50, and 100 Growth promotion - [173]

Chaetoceros
neogracile PS-NH2 500 2.5 No toxicity effect [174]

Dunaliella tertiolecta PS 50 and 500 25 and 250
Negative effect, adverse
effects increase with
decreasing particle size

No effect on micro-
algal photosynthesis [163]

Chlorella pyrenoidosa PS 100 and 550 0.5–64

Size-dependent inhi-
bition effect; smaller size
led to higher
inhibition

Inhibition effect on
chlorophyll fluore-
scence intensity

[170]

Karenia mikimotoi PVC 1000 5, 25, 50, and 100 Growth inhibition - [175]
Dunaliella salina PE 200,000 200, 250, 300,

and 350 Growth promotion - [176]
Phaeodactylum
tricornutum PP, PE, PET, and PVC 74,000 200 Growth inhibition - [177]

Chlorella sp. PE, PET, and PVC 74,000 200 Growth promotion - [177]
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A recent study confirmed that MPs induce nutrient and environmental stress, which fur-
ther enhances lipid accumulation and the production of other desirable macromolecules [178].
In this regard, several pathways have been suggested for biofuel production using mi-
croalgae based on the characteristics of the produced biomass, including bioethanol pro-
duction through fermentation, direct transesterification of lipids into biodiesel, anaerobic
digestion for biogas production, and thermochemical conversion for crude bio-oil produc-
tion [179]. Microalgal lipids and carbohydrates have been discussed as potential feedstocks
for biodiesel and bioethanol/biobutanol, respectively [180–184]; however, such individual
routes showed relatively low energy recovery due to partial conversion of the biomass to en-
ergy, which results in an elevated cost for the final product [185]. Therefore, the large-scale
production of biofuel from microalgae has not yet been realized. Major R&D gaps, such as
maximizing energy yield, reducing energy input, and cost-effective cultivation, need to be
addressed. Regarding energy, sequential biofuel recovery using two or more conversion
methods has recently been suggested in order to enhance energy recovery from microal-
gal biomass. For instance, the sequential biodiesel and biogas route enables the initial
utilization of lipids for biodiesel production, followed by anaerobic digestion of lipid-free
residual biomass for biogas production, which increases the overall energy output [186].
In addition, there is an integrated route of sequential fermentation of Chlamydomonas mex-
icana biomass to carbohydrates and proteins, followed by lipid transesterification, then
further fermentation of lipid-free residue and waste glycerol [187]. The utilization of
such a high-throughput sequential route resulted in plenty of biofuels, including higher
alcohols (from proteins), bioethanol (from carbohydrates), biobutanol (from lipid-free
residues with glycerol), along with biodiesel, leading to a high biomass conversion effi-
ciency of 89%. Regarding cost-effective cultivation, the cost of growth medium for nutrient
supplementation has a significant impact on the overall production cost, whereas major
nutrients can be delivered from wastewater. In addition, some mixotrophic microalgae
might be able to ingest/degrade MNPs in wastewater, which requires further validation
through screening studies. Such integrated approaches could have significant impacts in
terms of the maximization of dual microalgae utilization for MNP removal coupled with
energy production.

7. MNP–Microalgae Biofuel Integrated Approach

Microalgal biomass generation using wastewater as a growth medium and/or flue gas
for CO2 supplementation has been considered advantageous in terms of waste and emis-
sion reduction while producing valuable biomass, leading to sustainable development [185].
Another aspect of biofuel production from microalgal biomass is maximum energy recovery
through whole biomass conversion to achieve a zero-waste approach, as discussed in the
previous section. The aforementioned two aspects of microalgae cultivation could further
enhance their potential, which supports sustainable fuel production coupled with other
applications and reduced emissions. However, the main bottlenecks for establishing a
microalgal-based biofuel system are the elevated production costs and the fact that inte-
grated microalgal biorefinery routes are in their infancy [185]. On the other hand, serious
measures have been implemented to manage plastics, from production to disposal. For
waste plastic disposal, four main methods are currently used globally, namely, landfill,
incineration, thermochemical conversion, and regenerative granulation [188]. Among
them, thermochemical conversion into biofuel is recommended to avoid landfill constraints,
reduce costs, and provide carbon neutrality [189]. Compared with other thermochemical
conversion methods, hydrothermal liquefaction was suggested for microalgal biomass
conversion in order to avoid the drying step and reduce the energy input. Plastic waste can
also be blended with biomass and undergo hydrothermal co-liquefaction, which produces
syngas, biochar, and bio-oil of better quality than the conversion of individual feedstocks
due to synergistic action [190]. Other biological conversion methods, such as fermentation
and anaerobic digestion of microalgal biomass, can also be utilized [191,192]. Regarding the
biomass harvested after MNP absorption from contaminated water, special precautions are
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needed to avoid the re-entry of MNPs into the ecosystem. Hence, a consolidated approach
of sequential biomass conversion, including thermal conversion for MNP degradation,
has been suggested to achieve finite improvements in terms of energy and the environ-
ment. From an economic perspective, biomass biorefineries, through maximizing energy
recovery by full utilization of biomass, could be cost-effective systems, and there is much
encouragement nowadays of research and development. In this regard, microalgal biomass
contains a magnificent amount of energy, which can be significantly utilized through differ-
ent conversion pathways (Figure 4). Previous studies have shown that the conversion of
microalgae to crude bio-oil has the highest energy output among different pathways, due
to the advantage that bio-oil production involves the conversion of whole biomass rather
than the conversion of a particular component [185]. In addition, the thermal conversion of
MNP-contaminated microalgal biomass could serve the aim of the safe disposal of MNP
particles. As previously discussed, MNP particles can also undergo hetero-aggregation
with microalgae, which would be a promising approach for possible application in microal-
gae harvesting. In addition, low concentrations of MNPs could enhance the accumulation
of desirable macromolecules, such as lipids and/or carbohydrates, based on the microalgal
species. Thus, microalgae–MNP-based biorefining through integrated conversion routes,
could present a new approach to be investigated, with the aim of providing a wide range of
products, including treated water, biofuels, biopolymers, and biofertilizers, all of which are
in high demand globally. In summary, microalgae can grow in MNP-contaminated water
and act as bio-scavengers for plastic particles. Pyrolysis and/or hydrothermal liquefaction
can be applied to MNP-rich microalgal biomass for crude biofuel production in the form
of syngas and crude bio-oil (Figure 4). The biochar so produced can be used for many
purposes, mainly as a soil amendment or in the development of biocatalysts, which can be
further employed for enhanced biofuel production. Further studies are required to evalu-
ate the impacts of MNPs on biological conversion processes, such as anaerobic digestion
and fermentation of MNP-contaminated biomass, for biogas and bioethanol production.
The digested residue after biological conversion rich in MNPs can undergo hydrothermal
liquefaction, ensuring a zero-waste approach.
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8. Conclusions

There is a vital need to explore sustainable and alternative energy forms, which is
steadily growing with the increasing depletion of fossil fuel resources. In addition, MNP
distribution in all water bodies is alarming, and serious measures need to be taken to
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avoid the negative impacts. The utilization of microalgae as biofuel feedstocks offers an
economic and eco-friendly alternative to the use of fossil fuels. It also could serve the aim of
wastewater treatment and MNP removal. Interactions between MNPs and microalgal cells
could enhance several important features for possible microalgal harvest and/or desirable
macromolecule accumulation. One hypothesis is that microalgal biomass can accumulate
lipids and carbohydrates under MNP stress, supporting biomass conversion into biodiesel
and bioethanol, respectively. In addition, microalgal biomass can be converted to biogas
through anaerobic digestion. However, biological conversion results in residues rich in
MNPs, which are associated with serious concerns about plastic redistribution into the
environment. The most recommended route in such cases is thermochemical conversion,
which could be considered as a post-treatment process for microplastic conversion as well.
In such systems, algal cells act as bio-scavengers for MNPs, binding the particles to algal
surfaces or incorporating them into their cells so that they are filtered from the water
body and finally destroyed by further downstream processing of the polluted biomass.
The present article has suggested a new approach that could assist in MNP removal
from contaminated water through microalgal cultivation together with sustainable biofuel
production using a net-zero approach in order to mitigate the environmental impacts of
disposed waste.
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