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Abstract: Opportunistic pathogenic fungi arise in agricultural crops as well as in surrounding human
daily life. The recent increase in antifungal-resistant strains has created the need for new effective
antifungals, particularly those based on plant secondary metabolites, such as capsaicinoids and
capsinoids produced by Capsicum species. The use of such natural compounds is well-aligned
with the One Health approach, which tries to find an equilibrium among people, animals, and the
environment. Considering this, the main objective of the present work is to review the antifungal
potential of capsaicinoids and capsinoids, and to evaluate the environmental and health impacts of
biofungicides based on these compounds. Overall, capsaicinoids and their analogues can be used
to control pathogenic fungi growth in plant crops, as eco-friendly alternatives to pest management,
and assist in the conservation and long-term storage of agrifood products. Their application in
different stages of the agricultural and food production chains improves food safety, nutritional value,
and overcomes antimicrobial resistance, with a lower associated risk to humans, animals, and the
environment than that of synthetic fungicides and pesticides. Nevertheless, research on the effect
of these compounds on bee-like beneficial insects and the development of new preservatives and
packaging materials is still necessary.

Keywords: red pepper; capsaicinoids; pungency; plant defence; biofungicides; secondary metabolites

1. Introduction
1.1. Synthetic Fungicides and the One Health Concept

According to the World Health Organisation (WHO), the One Health concept is “an
approach to designing and implementing programmes, policies, legislation, and research
in which multiple sectors communicate and work together to achieve better public health
outcomes” [1]. This is not a new concept, but it has achieved more visibility in recent years.
Targets such as food safety, control of zoonosis, insect pests, and combating both microbial
pathogenicity and antimicrobial resistance are well within the scope of the One Health
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concept. This means that the One Health concept is an approach that recognises the health
of people, flora, and fauna are closely connected through a single shared environment [1].

The Food and Agriculture Organisation of the United Nations projects that the world
population will reach 9.7 billion people by 2050, and 10.4 billion by the end of the century [2].
The world needs technologies that safeguard food and environmental security for this
growing population scenario [2]. In this context, fungal diseases, particularly those affecting
crop production, are a major threat. The estimated annual crop losses range from 20 to
40% worldwide, which translates to a yearly cost valued up to USD 220 billion on a global
scale [3] and represents a risk to global food security and a threat to human wellbeing.
Furthermore, an additional level of complexity is to be considered due to the emergence of
antifungal resistance (AFR) developed by some fungal taxa. AFR is a global issue and has
been a growing threat for many years, affecting all kinds of environments, including crops,
food, animals, and people [4]. Such problems increase morbidity and mortality in humans
and animals, causing an operational and economic burden on healthcare systems [5].

In 2020, fungicides accounted for more than half (56.8%) of products belonging to the
“fungicides and bactericides” category sold in the European Union [6]. Fungicides used
to control phytopathogens share the target activity with antimycotics used in livestock
production and human clinical care. This represents a latent risk of the use of synthetic
fungicides in the development of fungicide-resistant pathogens in agricultural practices [7].
In addition, this could lead to an increase in the emergence of human pathogenic fungi, the
threat of which was previously restricted to agricultural crops.

The above statements have been corroborated by previous studies [7–10]. A specific
example is the case of azoles, which have been the most widely used synthetic fungicide
class for more than four decades, helping to control fungal plant diseases. Currently,
more than 25 different synthetic azoles have been developed for the control of diseases in
crops [11,12]. Azole fungicides are also frequently present in a myriad of personal care
products, such as hair shampoo, soap, toothpaste, face and body cream, and shower gel,
among others [12]. The indiscriminate use of synthetic fungicides in human healthcare
and wellbeing, as well as in agricultural production, could strongly impact human, animal,
and environmental health, being a key point for the development of AFR, which leads to a
vicious cycle.

Although the environmental impact of synthetic fungicides has not often been assessed
by analytical methods, there is evidence that farmers, their families, and those living
adjacent to farming areas may face long-term health issues associated with the use of such
xenobiotic compounds [13,14]. Synthetic fungicides also present a high level of toxicity to
the surrounding animal communities. An example of this is the effect of synthetic fungicides
on the health of a variety of both honeybee adults and larvae. Their ability to fly and their
physiological development has been shown to be affected [15]. The different synthetic
fungicide effects on environmental health reflect the pressing need for research and the
development of biocompounds with at least similar potential to synthetic fungicides;
however, with less environmental impact.

1.2. Capsicum spp. as a Source of Compounds with Natural Antifungal Activity

The Capsicum L. genus is one of the oldest cultivated plants in America, having been
spread and established in many subtropical and tropical regions of the world [16]. From its
outset, Capsicum spp. was used by American natives as a condiment and as medicine [17,18].
It belongs to the Solanaceae family, which also includes tomatoes (Solanum lycopersicon L.),
potatoes (Solanum tuberosum L.), eggplants (Solanum melongena L.), and tobacco
(Nicotiana tabacum L.) [19].

The Capsicum genus consists of up to 42 species of pepper, where C. annuum, C. baccatum,
C. frutescens, C. chinense, and C. pubescens are the most commonly produced. Overall,
Capsicum peppers are divided into two groups, pungent and non-pungent, also called
hot and sweet peppers [20]. The pungency of Capsicum cultivars is closely related to the
concentration of capsaicinoid molecules present in the pepper fruit [21]. The pungency
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index of peppers has been expressed in Scoville Heat Units (SHUs), which represent the
number of dilutions in water required for a sample to lose its pungency sensation [22].

The pungency classification levels on the Scoville scale are: non-pungent (0–700 SHU),
mildly pungent (700–3000 SHU), moderately pungent (3000–25,000 SHU), highly pungent
(25,000–80,000 SHU), and very highly pungent (>80,000 SHU). For instance, the pure
capsaicin score is about 16,000,000 units, while Carolina Reaper, a highly pungent pepper
cultivar, reaches up to 2,200,000 SHUs [23].

Capsaicinoids are phenolic alkaloid compounds which include capsaicin (CAP) and
dihydrocapsaicin (DHC), normally present as major components, and homocapsaicin (h-
CAP), nordihydrocapsaicin (n-DHC), homo-dihydrocapsaicin (h-DHC), and nonivamide,
that are generally present in trace amounts [24,25]. Together, CAP and DHC represent
approximately 91% of total capsaicinoids in pepper fruits of Capsicum, with CAP and
DHC accounting for c.a. 69 and 22%, respectively, in most of the pungent varieties of
Capsicum spp. In addition, n-DHC represents c.a. 7% of the total capsaicinoids, while
h-DHC and h-CAP represent c.a. 2% (1% each) of the total capsaicinoids amount in fruits
of Capsicum spp. [26–30].

These secondary metabolites have been determined as part of the host plant’s de-
fence mechanisms and play a key role as deterrents for herbivores and pathogenic fungi.
However, the plant−fungi interspecies crosstalk and fungi-plant microbiota crosstalk
are complex communication networks that can be affected by intrinsic and extrinsic fac-
tors [31–33]. The barriers established by the fruits’ bioactive metabolites can be deflected or
defeated either by a selected group of fungi previously equipped to overcome capsaicinoid
defence mechanisms or by a process of plant-fungus coevolution [32].

The capsaicinoid analogue group named “capsinoids” has been mainly, but not ex-
clusively, identified in low-pungency Capsicum cultivars [34,35]. The capsinoids group
encompasses capsiate, dihydrocapsiate, and nordihydrocapsiate. Aside from the pungency
index, the main difference between these groups relies on their molecular structures: cap-
saicinoids have amide bonds, whereas capsinoids have ester bonds (Figure 1) [34,36]. Other
non-pungent capsaicinoid analogues produced in Capsicum fruits, called “capsiconinoids”
(e.g., capsiconiate and dihydrocapsiconiate), have also been identified. However, little
information is available regarding this residual secondary metabolite group of the Capsicum
genus [35,37].
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Figure 1. Scoville scale and molecular structure for the main capsaicinoids and capsinoids produced
by species of Capsicum genus.

The biosynthesis of capsaicinoids and capsinoids is genetically controlled, but it is also
dependent on environmental conditions, plant genotype or cultivar, and fruiting and mat-
uration stages [38,39]. Nevertheless, the ecological role of capsinoids and capsiconinoids
remains poorly understood. Capsaicinoids have been shown to be remarkably valuable
for human wellbeing. Due to the analgesia, anticancer, anti-inflammatory, antioxidative,
anti-obesity, anti-virulence, and antimicrobial activities of capsaicinoid molecules, several
studies have focused on their use in the development of cosmetic and pharmaceutical prod-
ucts [40–43]. In addition, the capsinoids group has similar medical and biotechnological
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applications with the added benefit of being less irritating and more palatable due to their
low pungency.

Opportunistic pathogenic fungi arise in agricultural crops, as well as in surrounding
human daily life. The increase in antifungal-resistant strains has prompted interest in
new effective antifungal compounds based on plant-derived secondary metabolites. The
effective management of fungal diseases, through bioactive compounds, can replace or
minimise the use of synthetic antifungals, meeting the demands of end consumers for
eco-friendly products, strengthening the One Health values. Therefore, One Health is a
pivotal strategy for tackling pathogenic fungal strains whilst catering to all aspects of health
care for humans, animals, and the environment [44]. Considering this, the main aim of
this work is to review the antifungal potential of capsaicinoids and capsinoids present
in different varieties of Capsicum, and to evaluate the impact of biofungicides produced
from these natural compounds on agrifood production, as well as their advantages and
limitations regarding environmental health.

2. Materials and Methods

The literature review was performed based on an analysis of scientific data published
concerning the antifungal potential of molecules belonging to the classes of capsaicinoids
and capsinoids present in different varieties of Capsicum genus; the impact of biofungicides
produced with capsaicinoids and capsinoids on agrifood production; and their advantages
and limitations regarding environmental health. The fragmented information was compiled
and tabulated, allowing for gap analysis and identification of which problems need to be
investigated in this field.

The concept map for the current review began with an analysis of capsaicinoids and
capsinoids of Capsicum pepper and the key factors that affect its biosynthesis. Then, key
information about the antifungal activity of these compounds was addressed, as well as
considerations as to how the processing of Capsicum products from the field to post-harvest
could affect the stability and concentration of capsaicinoids and capsinoids.

All scientific literature was taken into consideration with special attention paid to pub-
lications in the last decade (2012–2022), which represents more than 64% of the references
used (101 out of 156 references used).

3. Characteristics of Capsaicinoids and Capsinoids

Capsaicinoids and capsinoids represent two classes of chemical compounds that are sec-
ondary metabolites exclusively produced by species of the Capsicum genus [20,30,34,35,45,46].
The biosynthesis of capsaicinoids and capsinoids occurs in the placenta of the Capsicum pods,
being accumulated in vesicles of placenta epidermal cells and excreted on seeds and on
the pericarp [24]. Furthermore, in highly pungent or ‘super-hot’ peppers, capsaicinoids can
also be synthesised in vesicles on the inner surface of the pericarp [47,48], suggesting that
capsaicinoids are part of the host plant’s defence compounds, providing protection against
herbivory and microbial infections [30,49,50].

Regarding their chemical structure, capsaicinoids contain an amide bond, which is
responsible for their pungency [51], instead of the ester bond found in capsinoids (Figure 1).
In addition, the chemical backbone of capsaicinoid molecules is composed of a fatty acid
amide linked to vanillylamine moiety; while that of capsinoids molecules contains a fatty
acid ester bonded to vanillyl alcohol (Figure 1).

CAP ((E)-N-[(4-hydroxy-3-methoxyphenyl) methyl]-8-methylnon-6-enamide) has the
molecular formula C18H27NO3 and a molecular mass of 305.40 g/mol. It is obtained from
pepper fruits of the Capsicum genus as a crystalline, colourless, and odourless compound.
The CAP molecule has a melting point of 62 to 65 ◦C; it is not soluble in water but presents
relative solubility in ethanol, dimethyl sulfoxide, dimethyl formamide, acetone, and fatty
oils. The solubility of capsaicin in these solvents is at least 30 mg/mL. The trans isomer of
CAP is the most stable one and is the naturally occurring form of capsaicin, while the cis
isomer is the less stable arrangement of the molecule [30,52–54].
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DHC (N-[(4-hydroxy-3-methoxyphenyl)methyl]-8-methylnonanamide) has the molec-
ular formula C18H29NO3 and a molecular mass of 307.43 g/mol. It is a capsaicinoid
analogue and congener of capsaicin. Like CAP, DHC is an irritant compound with similar
pungency to capsaicin (Figure 1). DHC is obtained from fruits of Capsicum spp. as a
lipophilic, colourless, odourless, crystalline to waxy compound, and has a melting point of
65.5 to 65.8 ◦C. It presents a solubility of 14 mg/mL in water and is relatively soluble in
chloroform, dimethyl sulfoxide, or 100% ethanol [30,54].

The remaining three major capsaicinoid compounds found in Capsicum spp. are
n-DHC, h-DHC, and h-CAP, altogether forming no more than c.a. 9% of the total cap-
saicinoids in fruits of Capsicum spp. n-DHC (N-[(4-hydroxy-3-methoxyphenyl)methyl]-
7-methylnonanamide) has the molecular formula C17H27NO3 and a molecular mass of
293.40 g/mol. It presents a melting point of 60 to 61 ◦C and has moderate solubility in
chloroform, dichloromethane, ethyl acetate, dimethyl sulfoxide, and acetone [55].

h-DHC and h-CAP are capsaicinoids occurring in smallest abundance in pepper fruits.
h-DHC (N-[(4-hydroxy-3-methoxyphenyl)methyl]-9-methyldecanamide) has the molecular
formula C19H31NO3 and a molecular mass of 321.46 g/mol. The h-DHC melting point is
70 to 71 ◦C, and this molecule is soluble in dimethyl sulfoxide (100 mg/mL). h-CAP ((E)-N-
[(4-hydroxy-3-methoxyphenyl)methyl]-9-methyldec-7-enamide) has the molecular formula
C19H29NO3 and a molecular mass of 319.43 g/mol. The h-CAP melting point is 64.5 to
65.5 ◦C, and this compound is soluble in dimethyl sulfoxide [30,55]. Homohydrocapsaicin
and noviamide are also capsaicinoid molecules found in a residual amount in pepper fruits
of the Capsicum genus [56].

Capsinoids were first reported by Yazawa et al. [34] in the non-pungent pepper cultivar
CH-19 Sweet. To date, three capsinoids have been described in pepper fruits: capsiate,
dihydrocapsiate, and nordihydrocapsiate. Capsiate (4-hydroxy-3-methoxyphenyl)methyl
(E)-8-methylnon-6-enoate) has the molecular formula C18H26O4 and a molecular mass
of 306.18 g/mol. It is the major compound among capsinoids found in the Capsicum
pepper [35].

Dihydrocapsiate (4-hydroxy-3-methoxyphenyl)methyl 8-methylnonanoate) has the
molecular formula C18H28O4 and a molecular mass of 308.41 g/mol. It is the second
capsinoid compound in terms of its natural abundance in pepper fruits of Capsicum spp.
Finally, nordihydrocapsiate (4-hydroxy-3-methoxyphenyl)methyl 7-methyloctanoate) has
the molecular formula C17H26O4 and a molecular mass of 294.18 g/mol. It is the less
abundant compound of the capsinoid family, naturally occurring in the pepper fruits of
Capsicum spp. [35].

According to previous studies, capsinoids present similar physiological effects in
plants as those observed for capsaicinoid molecules [55,57]. The gap in pungency in capsi-
noids molecules could be an advantage when using these compounds in some biotechno-
logical processes. In fact, pungency is a relevant chemical characteristic for the application
of capsaicinoids in food, beverages, and pharmacological processes. However, the use
of irritant compounds can represent a limitation in the production of some cosmetics or
even during the processing of pepper pods at laboratorial, semi-industrial, or industrial
levels during the development of biotechnology-based products. Based on our research
conducted at both laboratory and semi-industrial levels, we have observed the challenges
of manipulating fruits of pungent varieties of different Capsicum species [18,20,58,59].

Capsiconinoid molecules such as capsiconiate and dihydrocapsiconiate are non-
pungent capsaicin-related molecules that are found in residual amounts in fruits of different
varieties in the Capsicum genus [35,60]. The occurrence of both capsinoids and capsiconi-
noids in low and very low concentrations, respectively, in pepper fruits of Capsicum spp. can
be a limitation for their use in the form of pure natural extracts. However, such compounds
can have synergistic activity, together with major capsaicinoid compounds, regarding their
antimicrobial potential.
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4. External Factors That Affect Capsaicinoids and Capsinoids

The biosynthesis and accumulation of Capsaicinoids and capsinoids can be affected by
Capsicum genotype, agronomic parameters (soil type and quality, sowing time, fertilization,
fruit maturity, crop geometry), environmental factors (temperature, drought stresses), and
postharvest processing (drying and/or smoking processes, storage conditions, sanitation
treatments, and packing) (Figure 2) [61–64].
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On the field, soil type and quality strongly affect Capsicum physiology [65–67].
Das et al. [66] reported that capsaicin biosynthesis of C. frutescens cv. Nodaria and
C. annuum cv. Balijur were superior in alluvial soil than in lateritic soil. According to
the author, soil organic carbon (SOC), fulvic acid carbon (FAC), humic acid carbon (HAC),
total nitrogen, and microbial biomass-enriched alluvial quality buster capsaicin biosynthe-
sis. In addition, good fertilisation management influences capsaicinoid accumulation on
fruit (Figure 2). Mineral supplementation (N-P-K) and organic inputs (e.g., vermicompost)
on soil can promote plant growth and the pungency of Capsicum [67,68]. However, each
landrace of Capsicum shows a different level of adaptability to each soil type and fertiliser
approach, showing that the genetic make-up of Capsicum landrace plays a key role in
capsaicinoids and capsinoids accumulation. Indeed, the content of capsaicinoids and capsi-
noids in Capsicum cultivars can be more or less stable depending on different environments
(Figure 2) [67,68]. Gurung et al. [69] analysed the yield and stability of capsaicinoid content
in Capsicum spp. cultivated in six different environments. According to the authors, the
cultivar Dallay khorsaney had high capsaicin, dihydrocapsaicin, and total capsaicinoids
content, yet was very sensitive to environmental changes. In contrast, the cultivar KKU-P-
11003 was more stable and suitable for diverse environments. Mahmood et al. [63] reported
that stress suffered during Capsicum pod formation may restrict capsaicin synthase activity,
affecting pepper pungency in the case of both pungent pepper varieties Pusajuala and
Ghotki (Capsicum annuum). Overall, the content of capsaicinoid and capsinoid compounds
in the Capsicum plant begins to accumulate 10–20 days after flowering (DAF) and continues
to accumulate until 30–50 DAF [70,71]. Some studies have suggested that capsaicinoids and
capsinoids content continues to increase until the fruit ripens [72–74]; while other studies
have demonstrated a sharp decrease during the last stages of development [62,75,76]. Other
agronomic parameters such as sowing time, fruit node position, and crop geometry are
relevant to Capsicum fruit productivity, and consequently, could affect the plant metabolite
composition. Up to now, their roles in the accumulation and biosynthesis of capsaicinoids
and capsinoids have been poorly evaluated [47,77,78].

Capsicum fruits undergo several post-harvest procedures, such as smoking and drying
processes, following traditional methods (e.g., smoking firewood, long-term sun-dried)
or industrial methods (e.g., short-term heat treatment) which can differently affect their
physical, chemical, and nutritional components.

Topuz et al. [79] analysed the influence of drying methods on the capsaicinoid compo-
sition of Jalapeno (C. annuum L.) pepper (medium hot). The capsaicinoids concentrations
in freeze-dried, oven-dried, and refractive window-dried samples were significantly lower
than using the natural convective drying (NCD) method. The NCD is a slow drying
process at ambient temperature, while the other drying processes use high temperatures
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(> 60 ◦C). The major loss of capsaicinoids in these processes can also be caused by water
removal from the pepper puree. Conversely, Maurya et al. [80] reported freeze-drying
was the most efficient method for retaining capsaicin content over other drying methods
(e.g., sun drying, hot air oven drying, microwave-vacuum drying), although it resulted
in C. annuum samples with lower water activity. According to the authors [80], before the
drying processes, all samples of C. annuum had previously undergone blanching using hot
water at 90 ◦C. The boiling process negatively influenced capsaicinoid content and other
phytochemical components, which may alter their bioaccessibility and bioavailability in
Capsicum samples [81,82].

In the smoking process, pepper fruits are dried using smoke from burning fire-
wood. Moreno-Escamilla et al. [83] reported that pecan–oak smoked jalapeño pepper
samples (221.13 ± 55.64) showed a total capsaicinoid concentration lower than fresh pepper
(1302.50 ± 359.02), oak–poplar smoked jalapeño samples (1234.93 ± 265.07), and pecan
wood smoked jalapeño samples (834.61 ± 72). The authors determined that the type of
wood used in the smoking process influenced the Capsicum phytochemical content. The
reduction of capsaicinoids could be related to high temperatures throughout the smok-
ing process, which can catalyse fragmentation and oxidation of capsaicin to produce
vanillin [84]. However, the decrease in capsaicinoids is not a unanimous result of the
smoking process. The ripening level of pepper pods used, adjacent processing (e.g., pick-
ling, blanched), and smoking/drying processes features of each locality can explain the
differences in capsaicinoid accumulation after these processes [80,81].

In drought-stressed plants, their growth and secondary metabolite production can
be significantly affected [33]. Previous studies have reported an increase in capsaicinoid
content under a water deficit [61,68]. However, depending on the level of drought stress
and plant stage development, it can lead to a considerable decrease in capsaicinoid con-
tent [61,63,85]. Jeeatid et al. [61] evaluated the influence of water stress on capsaicinoid
accumulation in different pepper cultivars of C. chinense (e.g., Bhut Jolokia, Akanee Pirote,
Orange Habanero, and BGH1719). The authors observed different pungency levels after
flowering and reported that severe drought stress reduced or restricted the increase in
capsaicinoid content in all analysed cultivars. Furthermore, under drought stress, high-
pungency cultivars with large fruits were more susceptible to changes in total capsaicinoid
content than smaller fruit cultivars [85,86].

During storage, total capsaicinoid concentrations are mainly affected by temperature
and storage time. Giuffrida et al. [87] reported that, during long-term storage, total capsaici-
noids decreased about 75% at room temperature (20 to 24 ◦C) and were stable at low temper-
atures (<20 ◦C). Decreased capsaicinoids were not homogeneous over 12 months of storage
at room temperature; capsaicin and dihydrocapsaicin content decreased, while nordi-
hydrocapsaicin was almost unchanged, and only homocapsaicin significantly increased
(range from 2.5 to 3.5% of total capsaicinoids) [87]. This suggests that transformation and
conversion between capsaicinoid isomeric forms are possible [87,88].

Furthermore, different packaging materials (polyethene and jute bags) can affect
capsaicinoid levels in the final Capsicum product [89,90]. Iqbal et al. [89] showed that in
polyethylene-packed red peppers, capsaicin and dihydrocapsaicin decreased in a range
c.a. 9 to 13% and 11 to 15%, respectively. For red peppers stored in jute bags, the reduction
percentage of capsaicin and dihydrocapsaicin ranged from 9 to 14% and 10 to 16%, respec-
tively. To build on these results and form a more definitive conclusion, more studies on
other types of packaging and different Capsicum products are needed. Currently, there is
no information about the influence of storage parameters on capsinoid content.

To reduce the growth of unwanted spoilage microorganisms on Capsicum pepper
and its derivatives, gamma irradiation has been used [91,92]. The effect of gamma irra-
diation on both capsaicinoid biosynthesis and chemical stability has been a controversial
topic. Previous studies have reported that low gamma irradiation doses may signifi-
cantly increase [88,91,93,94] or not change capsaicinoid content concentrations [90,95].
Iqbal et al. [90] reported that gamma irradiation at 2, 4, or 6 kGy did not affect the capsaicin
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and dihydrocapsaicin content in C. annuum. In contrast, Kyung et al. [94] reported that the
total capsaicinoids content (e.g., capsaicin, dihydrocapsaicin, and nordihydrocapsaicin) was
higher (c.a. 59%) in red pepper samples treated with a low dose rates of gamma irradiation
(c.a. 106 mg/100 g; 1.8 kGy/h), than in non-irradiated pepper samples (c.a. 67 mg/100 g)
or those irradiated at high doses (c.a. 99 mg/100 g; 9 kGy/h). These results seem to indicate
that gamma irradiation can be safely used at a low rate to promote capsaicinoid stability in
pepper fruits. On the other hand, the increase in gamma irradiation shows a negative effect
on capsaicinoid stability [96,97]. Duah et al. [93] reported that pepper samples irradiated at
10 kGy decreased c.a. 12 to 25% of capsaicinoid content when compared to non-irradiated
samples. The authors determined that, as the irradiation dose increased, the total capsai-
cinoid content decreased in red pepper. Meanwhile, some studies have reported slight
changes and increases in capsaicin, dihydrocapsaicin, and homodihydrocapsaicin contents
when high doses of gamma irradiation (≥10 kGy) are supplied [88,93,98]. Capsaicinoids
content has been treated with other types of irradiations (e.g., electron beams and X-rays)
at doses up to 10 kGy with no significant changes in capsaicin or dihydrocapsaicin contents
between the irradiated and control samples [98,99]. Overall, the degree of synthesis and
degradation of capsaicinoids is beam dose-dependent, but is also strongly affected by
cultivar, growth, and storage conditions (Figure 2) [88,93].

5. Capsaicinoids Antifungal Activity

The antifungal capability of capsaicinoids has been evaluated in vivo, in vitro, in post-
harvest tests, and as a component of nanomaterials. As mentioned above, all capsaicinoids
have a similar structure (e.g., vanillyl ring, an amide linkage, and a hydrophobic tail),
varying only by the length of the aliphatic side chain (ranges from 9 to 11 ◦C), and the
presence or absence of unsaturation (Figure 1).

The antifungal activity of capsaicinoids has been attributed to the existence of the
polar moiety (hydroxyl group of the vanillyl ring), and mainly to the lipophilic part of their
chemical structure (e.g., acyl chain) [100]. It has also been suggested that the side chain
has more inhibitory activity than the phenolic part of the molecule. Indeed, the number of
carbons and double bonds present in the capsaicinoid side chain can affect its interaction
with the fungal lipid bilayers [32,100,101]. This indicates that the capsaicinoids’ antifungal
mechanisms involve osmotic stress and damage to the plasma membrane structure [102].

In Capsicum plants, capsaicinoids can act by triggering the pathways of antifungal
defences. Capsaicinoids have been reported to be able to induce resistance against plant
pathogens, such as Verticillium dahlia [100]. This indirect inhibition of fungal growth can
include the enhancer expression of host defence genes and chitinase activity [100,103].

Despite their ability to produce capsaicinoids, Capsicum plants are susceptible to pathogens
such as Fusarium oxysporum, Colletotrichum capsica, and Botrytis cinerea [58,104,105]. Some stud-
ies have established a correlation between the pungency index of the Capsicum plant and
resistance to fungal pathogens [32,106]; while other studies did not detect such a correlation
between pungency and fungal control, nor a consistently higher susceptibility of non-pungent
peppers to spoilage fungi [107–109].

Further to the biotic factors and the plants’ own physiology ability to respond to
pathogenic invaders, it is pivotal to highlight the fungal physiology plasticity. Alterna-
tive respiratory enzymes and capsaicin degradation are mechanisms that can be used
by pathogenic fungi to overcome the stressful environment imposed by the presence of
capsaicinoids [32]. In non-pungent peppers, despite the low concentration of capsaicin
and capsaicinoids analogues, other phytoalexins (e.g., carotenoids, flavonoids, lactones,
terpenes) can act as part of the plant defence system [30].

Most antifungal activity has been tested with extracts of C. annuum, C. chinense, and
C. frutescens, showing promising antifungal potential, but with variable inhibition results
(Table 1). The extracts are obtained from different varieties and parts of Capsicum (e.g.,
seed, pericarp, and whole plant) and extracted with different approaches, which ren-
ders an accurate comparison more difficult. Pure and synthetic substances have shown
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promising results, although the costs of the products are an unfavourable factor. Fungi-
cidal and fungistatic activities of Capsicum extracts and purified capsaicinoids have been
demonstrated in vitro. The growth rate of several pathogenic fungi of Capsicum plants
(Botrytis cinerea, Cladosporium cucumerinum, Colletotrichum gloeosporioides, Rhizoctonia solani),
spoilage fungi of agro-products (Aspergillus flavus, A. niger, Fusarium oxysporum, Fusarium
sp., Penicillium digitatum, P. expansum), and mycotoxigenic fungal strains (Aspergillus parasiti-
cus, Aspergillus section Nigri) has been reduced in the presence of capsaicinoid compounds
(Table 1).

According to the results obtained in our research group via the research project
ANID/FONDECYT/1221024 (unpublished data), fungal strains belonging to the genera
Aspergillus, Fusarium, Penicillium, and Rhizopus presented macro- and micro-morphological
modifications after treatment with pepper pod extracts obtained from the different varieties
of Capsicum spp. Even for some fungal genera, after treatment, the isolates were not
able to produce conidiophores. The results obtained indicate the fungistatic potential of
the assessed pepper pod extracts. In fact, the pepper pod extracts can act by controlling
fungal growth and reproduction. This is an important characteristic of the assessed pepper
pod extracts once they do not kill fungal biodiversity, but could control their growth,
reproduction, and mycotoxin production in the field.

The anti-mycotoxigenic potential of capsaicinoids has also been evaluated.
Kollia et al. [110] investigated the anti-ochratoxigenic and antifungal activity of capsaicin
against Aspergillus carbonarius and four other strains of Aspergillus section Nigri. The authors
reported that capsaicin effectively restricted ochratoxin A (OTA) production, and that the
growth of all Aspergillus strains was suppressed by over 50%.

Buitimea-Cantúa et al. [111] analysed the anti-aflatoxigenic and antifungal activity
of C. chinense fruit extract and synthetic capsaicin. Both presented antifungal and anti-
aflatoxigenic activity against A. parasiticus, yet synthetic capsaicin analogue was more
efficient. These results suggest that capsaicin and Capsicum extract influence aflatoxins
biosynthesis either by downregulating genes or by inhibiting fungal growth. The capsaici-
noids’ modulatory effect on other mycotoxins should be further explored.

Furthermore, the exogenous application of capsaicinoids has been tested on apples (fruit),
avocados (fruit), tomatoes (plant and fruit), and peppers (plant and fruit) [100,106,112–114].
Zanotto [113] evaluated, through in vitro and post-harvest tests (directly on apples), the
antifungal activity of capsaicin and five synthetic capsaicin analogues (CAP-1, CAP-2, CAP-3,
CAP-4, and CAP-5) against C. gloeosporioides and P. expansum. Among capsaicin analogues, the
best results obtained from the in vitro tests were CAP-3 and CAP-4, with minimum inhibitory
concentrations (MIC) of 600 µM against Penicillium expansum, while for C. gloeosporioides all
analysed capsaicin analogues showed a MIC of 800 µM. In the tests carried out directly on
apples, CAP-3 and CAP-4 had no fungicidal action, yet both retarded the growth of P. expansum,
showing a fungistatic effect [113]. Similarly, Valencia-Hernandez [112] analysed the antifungal
activity of the synthetic capsaicinoid oleoresin (CO) containing 70% nonivamide and 30%
dihydrocapsaicin on tomato fruits after harvest. According to the authors, treatment with
CO 0.05% and CO 0.20% reduced weight loss and fruit damage compared to the control [112].

Until now, the main data on the antifungal potential of capsinoids and their analogues
has been mostly obtained from in vitro tests. Overall, fruit extracts and pure or synthesised
analogue substances have shown positive results; though the percentages of inhibitory
action have varied depending on the fungal species and strain antagonised. Furthermore,
in most cases, the inhibition of fungal growth has been dose-dependent, which means that
substances with higher concentrations are needed for greater effectiveness.

To the best of our knowledge, there have been very few studies that have applied cap-
saicinoids to plants in the field [112,115,116]. García [115] analysed the in vivo properties of
vanillyl nonanoate (VNT), a synthetic capsinoid analogue, to control both Phytophthora capsica
(oomycete) and B. cinerea. According to the authors, VNT treatment reduced the percent-
age of expanding lesions caused by P. capsica and B. cinerea in C. annum plants by around
25% and 30%, respectively. Valencia-Hernandez [112] analysed the antimicrobial activity
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of a synthetic capsaicinoid oleoresin (CO, containing 70% nonivamide and 30% dihydro-
capsaicin) against F. oxysporum inoculates in the soil of tomato seedlings. The damage
severity caused by F. oxysporum slightly decreased after CO foliar applications at 0.05 and
0.10%. Vázquez-Fuentes [116] conducted in vivo experiments to evaluate the suitability of
avocado and tomato plants for treatment with the synthetic capsaicinoid ABX-I (N-vanillyl-
butanamide). Both plants were sprayed with 0, 400 µM, 800 µM, and 1600 µM ABX-I twice a
week for one month. As a result, neither plant showed any phenotypic alteration compared
with plants sprayed with the control solution. The ABX-I antifungal activity against B. cinerea
and C. gloeosporioides was only tested in vitro.

The results of in vivo studies have indicated that the direct application of synthetic
capsaicinoid analogues to the plant led to a decrease in lesion expansion caused by phy-
topathogens. Furthermore, when sprayed on the plant, capsaicinoid analogues did not
affect plant productivity or the quality of fruits or leaves produced. Despite the promising
results, there is still room for improvement. To date, all in vivo tests have only used syn-
thetic analogue substances (e.g., ABX-I, CO, VNT). In addition to the synthetic analogue
compounds, the in vivo experiments should be expanded using Capsicum plant extracts.
These experiments should first be scaled up to greenhouse conditions, and then later vali-
dated in open field conditions. From this, it could be determined whether factors found
in the field (e.g., temperature, sunlight, pH, fruit tissue features, levels of nutrients, and
natural phenolic compounds) could limit or enhance the effectiveness of these compounds.

It is then important to define at which stage of the production chain capsinoids and
their analogues would be best applied. Though they could have fungistatic activity and
not interfere with the organoleptic properties of the agrifood product, their large-scale
production, either in pure or synthesized analogue molecules, is an additional obstacle
to overcome. It is feasible to suggest that these compounds would be a strategic tool to
improve product conservation during the seed and post-harvest stages. Both stages are
critical for fungal contamination and require a smaller applicable volume of biofungicide.
Further studies are needed to confirm these hypotheses.

Finally, a new approach has emerged, associating capsaicinoids and capsinoids with
natural polymers, lipids, or essential oils in nano-formulations, or linking them to fibres,
pellets, films, or membranes [117–120]. The development of these kinds of materials can
unravel new opportunities for their application as biofungicides and protective membranes
for the long-term storage of agrifood products [117,120].

Table 1. In vitro analysis of antifungal activities of capsaicinoids and capsinoids as pure molecules or
pepper extracts.

Plant
Species

Pure
Molecule
(PM) or

RAW Extract
(RE)

Plant
Substrate

Compound
Name Concentration Fungal Taxa Inhibition

(%) Reference

Capsicum
annuum RE Seed NI 5 mg mL−1 Colletotrichum

gloeosporioides 46.4 [121]

Capsicum
annuum RE Seed NI 10 mg mL−1 Colletotrichum

gloeosporioides 54.6 [121]

Capsicum
annuum RE Seed NI 5 mg mL−1 Colletotrichum

gloeosporioides 25.0 [121]

Capsicum
annuum RE Seed NI 10 mg mL−1 Colletotrichum

gloeosporioides 38.1 [121]

Capsicum
annuum RE Pericarp NI 5 mg mL−1 Colletotrichum

gloeosporioides 20.7 [121]

Capsicum
annuum RE Pericarp NI 10 mg mL−1 Colletotrichum

gloeosporioides 43.6 [121]

Capsicum
annuum RE Pericarp NI 5 mg mL−1 Colletotrichum

gloeosporioides 21.4 [121]
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Table 1. Cont.

Plant
Species

Pure
Molecule
(PM) or

RAW Extract
(RE)

Plant
Substrate

Compound
Name Concentration Fungal Taxa Inhibition

(%) Reference

Capsicum
chinense RE Fruit NI 50 mg mL−1 Aspergillus parasiticus

ATCC 16992 23.5 [111]

Capsicum
chinense RE Fruit NI 75 mg mL−1 Aspergillus parasiticus

ATCC 16992 39.0 [111]

Capsicum
chinense RE Fruit NI 150 mg mL−1 Aspergillus parasiticus

ATCC 16992 50.0 [111]

Capsicum
chinense RE Fruit NI 250 mg mL−1 Aspergillus parasiticus

ATCC 16992 65.0 [111]

Capsicum
chinense RE Fruit NI 300 mg mL−1 Aspergillus parasiticus

ATCC 16992 76.0 [111]

Capsicum
chinense PM Unknown Capsaicin 50 mg mL−1 Aspergillus parasiticus

ATCC 16992 50.0 [111]

Capsicum
chinense PM Unknown Capsaicin 75 mg mL−1 Aspergillus parasiticus

ATCC 16992 58.0 [111]

Capsicum
chinense PM Unknown Capsaicin 150 mg mL−1 Aspergillus parasiticus

ATCC 16992 60.0 [111]

Capsicum
chinense PM Unknown Capsaicin 200 mg mL−1 Aspergillus parasiticus

ATCC 16992 67.0 [111]

Capsicum
chinense PM Unknown Capsaicin 250 mg mL−1 Aspergillus parasiticus

ATCC 16992 77.0 [111]

Capsicum
chinense PM Unknown Capsaicin 300 mg mL−1 Aspergillus parasiticus

ATCC 16992 80.0 [111]

Capsicum
frutescens RE Leaf NI 10 mg mL−1 Aspergillus flavus 88.1 [122]

Capsicum
frutescens RE Leaf NI 20 mg mL−1 Aspergillus niger 79.3 [122]

Capsicum
frutescens RE Leaf NI 5 mg mL−1 Penicillium sp. 20.5 [122]

Capsicum
frutescens RE Leaf NI 5 mg mL−1 Rhizopus sp. 69.0 [122]

Capsicum
frutescens RE Leaf NI 5 mg mL−1 Aspergillus flavus 79.2 [122]

Capsicum
frutescens RE Leaf NI 10 mg mL−1 Aspergillus niger 88.3 [122]

Capsicum
frutescens RE Leaf NI 1.25 mg mL−1 Penicillium sp. 32.9 [122]

Capsicum
frutescens RE Leaf NI 5 mg mL−1 Rhizopus sp. 77.2 [122]

Capsicum
frutescens RE Whole

plant NI 3 µg mL−1 Aspergillus niger 91.4 [123]

Capsicum
frutescens RE Whole

plant NI 3 µg mL−1 Penicillium digitatum 83.1 [123]

Capsicum
frutescens RE Whole

plant NI 3 µg mL−1 Fusarium sp. 87.6 [123]

Capsicum
frutescens RE Whole

plant NI 2 µg mL−1 Aspergillus niger 78.9 [123]

Capsicum
frutescens RE Whole

plant NI 2 µg mL−1 Penicillium digitatum 74.0 [123]

Capsicum
frutescens RE Whole

plant NI 2 µg mL−1 Fusarium sp. 69.3 [123]

Capsicum
frutescens RE Whole

plant NI 1 µg mL−1 Aspergillus niger 73.2 [123]

Capsicum
frutescens RE Whole

plant NI 1 µg mL−1 Penicillium digitatum 69.2 [123]
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Table 1. Cont.

Plant
Species

Pure
Molecule
(PM) or

RAW Extract
(RE)

Plant
Substrate

Compound
Name Concentration Fungal Taxa Inhibition

(%) Reference

Capsicum
frutescens RE Whole

plant NI 1 µg mL−1 Fusarium sp. 61.3 [123]

Capsicum
frutescens RE Whole

plant NI 0.5 µg mL−1 Aspergillus niger 55.7 [123]

Capsicum
frutescens RE Whole

plant NI 0.5 µg mL−1 Penicillium digitatum 51.5 [123]

Capsicum
frutescens RE Whole

plant NI 0.5 µg mL−1 Fusarium sp. 49.0 [123]

Capsicum sp. RE Fruit NI 500 mg mL−1 Sphaeropsis sapinea 100.0 [124]
Capsicum sp. RE Fruit NI 500 mg mL−1 Sphaeropsis sapinea 100.0 [124]
Capsicum sp. RE Fruit NI 350 mg mL−1 Sphaeropsis sapinea 40.0 [124]
Capsicum sp. RE Fruit NI 350 mg mL−1 Sphaeropsis sapinea 100.0 [124]

Capsicum sp. PM Unknown Capsaicin 25 mg mL−1 Colletotrichum
truncatum 15.0 [109]

Capsicum sp. PM Unknown Capsaicin 50 mg mL−1 Colletotrichum
truncatum 35.0 [109]

Capsicum sp. PM Unknown Capsaicin 100 mg mL−1 Colletotrichum
truncatum 41.0 [109]

Capsicum sp. PM Unknown Capsaicin 200 mg mL−1 Colletotrichum
truncatum 59.0 [109]

Capsicum sp. PM Unknown Capsaicin 122.16 µg mL–1 Penicillium expansum 75.0 [125]

Capsicum sp. PM Unknown Capsaicin 76.4 µg mL−1 Verticillium dahliae
VDL 22.0 [100]

Capsicum sp. PM Unknown Capsaicin 76.4 µg mL−1 Verticillium dahliae
UDC53Vd 35.3 [100]

Capsicum sp. PM Unknown Capsaicin 76.4 µg mL−1 Verticillium dahliae
2694 0.9 [100]

Capsicum sp. PM Unknown Capsaicin 76.4 µg mL−1 Verticillium dahliae
2884 19.9 [100]

Capsicum sp. PM Unknown Capsaicin 76.4 µg mL−1 Verticillium tricorpus
2695 2.7 [100]

Capsicum sp. PM Unknown Capsaicin 76.4 µg mL−1 Botrytis cinerea 2850 20.6 [100]

Capsicum sp. PM Unknown Capsaicin 76.4 µg mL−1 Rhizoctonia solani
2815 32.0 [100]

Capsicum sp. PM Unknown Capsaicin 76.4 µg mL−1 Fusarium
oxysporum 2715 18.7 [100]

Capsicum sp. PM Unknown Capsaicin 76.4 µg mL−1 Pythium ultimum
2364 29.2 [100]

Capsicum sp. PM Unknown Capsaicin 76.4 µg mL−1 Phytophthora
capsici P12M 25.2 [100]

Capsicum sp. PM Unknown Capsaicin 76.4 µg mL−1 Phytophthora
capsici P15M 44.4 [100]

Capsicum sp. PM Unknown Capsaicin 76.4 µg mL−1 Phytophthora
capsici UDC1Pc 40.5 [100]

Capsicum sp. PM Unknown Capsaicin 76.4 µg mL−1 Phytophthora
capsici UDC141Pc 46.8 [100]

Capsicum sp. PM Unknown Capsaicin 76.4 µg mL−1 Phytophthora
capsici UDC288Pc 24.9 [100]

Capsicum sp. PM Unknown Capsaicin 76.4 µg mL−1 Phytophthora
capsici UDC299Pc 73.2 [100]

Capsicum sp. PM Unknown Capsaicin 76.4 µg mL−1 Phytophthora
capsici UDC265Pc 59.9 [100]
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Table 1. Cont.

Plant
Species

Pure
Molecule
(PM) or

RAW Extract
(RE)

Plant
Substrate

Compound
Name Concentration Fungal Taxa Inhibition

(%) Reference

Capsicum sp. PM Unknown Capsaicin 76.4 µg mL−1 Phytophthora
capsici UDC384Pc 55.8 [100]

Capsicum sp. PM Unknown Capsaicin 152.7 µg mL−1 Verticillium dahliae
VDL 31.7 [100]

Capsicum sp. PM Unknown Capsaicin 152.7 µg mL−1 Verticillium dahliae
UDC53Vd 46.1 [100]

Capsicum sp. PM Unknown Capsaicin 152.7 µg mL−1 Verticillium dahliae
2694 3.7 [100]

Capsicum sp. PM Unknown Capsaicin 152.7 µg mL−1 Verticillium dahliae
2884 29.5 [100]

Capsicum sp. PM Unknown Capsaicin 152.7 µg mL−1 Verticillium tricorpus
2695 10.3 [100]

Capsicum sp. PM Unknown Capsaicin 76.4 µg mL−1 Botrytis cinerea 2850 35.9 [100]

Capsicum sp. PM Unknown Capsaicin 152.7 µg mL−1 Rhizoctonia solani
2815 45.6 [100]

Capsicum sp. PM Unknown Capsaicin 152.7 µg mL−1 Fusarium
oxysporum 2715 33.3 [100]

Capsicum sp. PM Unknown Capsaicin 152.7 µg mL−1 Pythium ultimum
2364 49.1 [100]

Capsicum sp. PM Unknown Capsaicin 152.7 µg mL−1 Phytophthora
capsici P12M 38.7 [100]

Capsicum sp. PM Unknown Capsaicin 152.7 µg mL−1 Phytophthora
capsici P15M 59.5 [100]

Capsicum sp. PM Unknown Capsaicin 152.7 µg mL−1 Phytophthora
capsici UDC1Pc 62.4 [100]

Capsicum sp. PM Unknown Capsaicin 152.7 µg mL−1 Phytophthora
capsici UDC141Pc 60.6 [100]

Capsicum sp. PM Unknown Capsaicin 152.7 µg mL−1 Phytophthora
capsici UDC288Pc 65.5 [100]

Capsicum sp. PM Unknown Capsaicin 152.7 µg mL−1 Phytophthora
capsici UDC299Pc 79.1 [100]

Capsicum sp. PM Unknown Capsaicin 152.7 µg mL−1 Phytophthora
capsici UDC265Pc 69.6 [100]

Capsicum sp. PM Unknown Capsaicin 152.7 µg mL−1 Phytophthora
capsici UDC384Pc 68.3 [100]

Capsicum sp. PM Unknown Dihydrocapsaicin 153.7 µg mL−1 Verticillium dahliae 37.4 [100]
Capsicum sp. PM Unknown Dihydrocapsaicin 153.7 µg mL−1 Verticillium dahliae 62.6 [100]

Capsicum sp. PM Unknown Capsaicin 60 mg mL−1
Aspergillus

carbonarius ATHUM
2854

89.7 [110]

Capsicum sp. PM Unknown Capsaicin 60 mg mL−1 Aspergillus section
Nigri 54.5 [110]

Capsicum sp. PM Unknown Capsaicin 60 mg mL−1 Aspergillus section
Nigri ATHUM 6998 78.9 [110]

Capsicum sp. PM Unknown Capsaicin 60 mg mL−1 Aspergillus section
Nigri ATHUM 6999 79.0 [110]

Capsicum sp. PM Unknown Capsaicin 60 mg mL−1 Aspergillus section
Nigri ATHUM 7000 70.0 [110]

Capsicum sp. PM Unknown ABX-I 115.6 mg mL−1 Botrytis cinerea 2.0 [116]
Capsicum sp. PM Unknown ABX-I 231.2 mg mL−1 Botrytis cinerea 9.0 [116]
Capsicum sp. PM Unknown ABX-I 462.4 mg mL−1 Botrytis cinerea 33.0 [116]

Capsicum sp. PM Unknown ABX-I 115.6 mg mL−1 Colletotrichum
gloeosporioides 18.0 [116]
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Table 1. Cont.

Plant
Species

Pure
Molecule
(PM) or

RAW Extract
(RE)

Plant
Substrate

Compound
Name Concentration Fungal Taxa Inhibition

(%) Reference

Capsicum sp. PM Unknown ABX-I 231.2 mg mL−1 Colletotrichum
gloeosporioides 28.0 [116]

Capsicum sp. PM Unknown ABX-I 462.4 mg mL−1 Colletotrichum
gloeosporioides 65.0 [116]

Capsicum sp. PM Unknown ABX-I 115.6 mg mL−1 Rhizoctonia solani 44.0 [116]
Capsicum sp. PM Unknown ABX-I 231.2 mg mL−1 Rhizoctonia solani 62.0 [116]
Capsicum sp. PM Unknown ABX-I 462.4 mg mL−1 Rhizoctonia solani 87.0 [116]
Capsicum sp. PM Unknown ABX-I 115.6 mg mL−1 Fusarium sp. 41.0 [116]
Capsicum sp. PM Unknown ABX-I 231.2 mg mL−1 Fusarium sp. 51 [116]
Capsicum sp. PM Unknown ABX-I 462.4 mg mL−1 Fusarium sp. 67.0 [116]

Capsicum sp. PM Unknown Capsaicin 244.3 µg mL−1 Colletotrichum
gloeosporioides 60.0 [116]

Capsicum sp. PM Unknown Capsaicin 244.3 µg mL−1 Colletotrichum
acutatum 59.0 [116]

NI = Not identified.

6. Impact of Using Capsaicinoids and Capsinoids on Environmental and Human
Health

Due to their versatile applicability, capsaicinoids and analogue molecules have re-
ceived constant scientific interest [94,114,116,117,120]. Capsaicin and its analogues have
been proven to exhibit antimicrobial activity against phytopathogens, such as the fungus
Botrytis cinerea, Aspergillus niger, Colletotrichum capsici, Fusarium oxysporum, or
Rhizoctonia solani [112,114,126,127]. Although capsaicinoids and capsinoids from pepper ex-
tracts are natural products that can be applied to control pathogenic fungi growth in plant
crop production, it is important to understand the effect these compounds could have on
species sharing the same environment [128]. In fact, in agricultural production, capsaicinoid
molecules can play a dual role as biocidals. Firstly, the bioinsecticide potential of capsaici-
noid molecules could be an eco-friendly pest management strategy to avoid the spread of
phytophagous insects themselves [129]. Secondly, these compounds can also prevent fungal
infection, either through their antifungal activity, but also by reducing risk, since insects can
be fungal disease vectors due to their feeding mechanisms [106].

Capsaicin has a broad spectrum of repellent and insecticide activity against many
species, such as stored product beetles, rice grain insects, alfalfa weevils, and some whitefly
and cabbage moths [129–131]. The secondary metabolites produced by Capsicum plants,
including capsaicinoids and capsinoids, have been reported to have the ability to affect
insects at the cellular, tissue and organism levels [132]. For instance, low concentrations of
capsaicin (10−7 and 10−4 M) were applied in Tenebrio molitor L. and revealed that both con-
centrations induced changes in its thermoregulation behaviour that ultimately affected all
the physiological processes [133]. Edelson et al. [134] demonstrated that capsaicin extracts
alone were only able to produce low levels of mortality in peach aphids (Myzus persicae
Sulzer) but synergistically acted in mixtures with other insecticides, providing levels of
mortality even higher than expected [134]. Li et al. [130] applied a solution with 0.05%
of capsaicinoids (c.a. 96%, including c.a. 60% of CAP and c.a. 30% of DHC) against
14 agricultural insect species in laboratory and field conditions. Based on obtained results,
a high insecticidal activity of capsaicinoids solution when used to control Aphis gossypii
in Cucumis sativus was observed (Lethal Concentration 50—LC50 152.82 mg/L). However,
a low insecticidal activity when used against Ectropis obliquahypulina and Pieris rapae was
obtained (LC50 1557 and 1502 mg/L, respectively). Furthermore, results from field exper-
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iments showed that the insects’ control effect of successively spraying the capsaicinoids
solution two times was significantly higher than the effect of spraying once [130].

More importantly, the application of capsaicinoids and their analogues as pesticides,
unlike synthetic compounds, has very low toxicity to non-target organisms [130,135]. Up
to now, there is no information on the effect of these compounds on the bee-like beneficial
insect. As a natural compound, capsaicinoids and their analogues are much less hazardous
than chemical pesticides. They present a low risk to humans and domestic animals and
could be applied in different stages of agricultural production without risking workers [135].
Furthermore, as they are not recalcitrant molecules, they do not pose a risk of soil and
groundwater contamination.

Regarding the role of capsaicin in human health, a large body of evidence about its
benefits has been established [136]. The research carried out so far has shown that capsai-
cinoids, particularly capsaicin, have a diversity of biological functions, highlighting their
roles as antioxidants, stimulants of the energetic metabolism, fat accumulating suppressors,
anti-inflammatories, neurostimulants and apoptosis-alleviating agents in neurodegenera-
tive disorders [137]. Capsaicin has demonstrated a slight analgesic action in chronic pain
complaints, where topical usage promotes desensitisation to pain after recurrent appli-
cations [138]. A significant pain reduction of 57 and 33% was reported by topical use of
a 0.025% capsaicin cream for treating osteoarthritis and rheumatoid arthritis in patients,
respectively, which confirms the positive analgesic effects of capsaicin [139]. In addition,
capsaicin has exhibited protective properties against many mutagenic and tumour-causing
cells, specifically inducing apoptosis in these cells [140]. Previous studies have shown that
the administration of low doses of capsaicin can suppress the growth of many human
cancers, and there are even reports that high doses of capsaicin have been used to treat
cancers [141]. Furthermore, it has been described that capsaicin effectively lowered the
expression and activity of many proteins associated with cell cycle progression, thereby
reducing the rates of proliferation and migration of the cancer cells [142].

Most applications described in this section rely on the use of pure capsaicinoids and
capsinoids extracts. Although new extraction and purification protocols are continuously
being reported [143], in order to meet future capsaicinoids and capsinoids demands, it will
be essential to develop new synthetic capsaicinoids’ analogues. Such solutions will allow
the exploitation of full potential of these compounds, while simultaneously mitigating
the potential impact that the necessary large-scale production of Capsicum could have,
particularly in terms of required soil area and associated economic costs.

New synthesis solutions that are currently being explored include approaches relying
on marker-assisted selection in breeding programmes [144,145], or the use of transformed
cell factories such as Saccharomyces cerevisiae or Escherichia coli [146–149]. In recent years,
particularly after the release of the first hot pepper genome assembly (Mexican landrace
of Capsicum annuum cv. CM334) [150], genetic engineering of Capsicum plants has become
an attractive approach to transform and improve this crop of social and economic im-
portance [151,152]. Genome editing of Capsicum plants is being developed through the
establishment of methods for reagents delivery, such as Agrobacterium-mediated transforma-
tion [153], coupled with the identification of CRISPR-based tools and editing sites [154,155]
and the design of feasible regeneration techniques [156]. These techniques have not yet
been specifically applied to improve capsaicinoids and capsinoids content in Capsicum
plants. However, possible targets include regulatory genes involved in the biosynthetic
pathways of these compounds, which can be identified, for example, through quantitative
trait locus (QTL) mapping [48,145].

7. Conclusions

Based on the information described and summarised in this work, the antifungal
properties of capsaicinoids and capsinoids can be of value as part of the One Health
concept. Overall, the use of natural compounds, such as capsaicinoids and their analogues,
as biofungicides has the potential of improving food safety, nutritional value, and of
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overcoming antimicrobial resistance, with a lower associated risk than that of chemical
fungicides and pesticides.

Capsaicinoids and capsinoids can be used in the different stages of the agricultural and
food production chains with negligible risk to workers, consumers, and the surrounding
environment. The beneficial characteristics of these molecules include the demonstrated
fungicidal and fungistatic activities of pure Capsicum extracts and purified capsaicinoids.
In the field production stage, capsaicinoids and their analogues can be used to control
pathogenic fungi growth in plant crops and as eco-friendly alternatives to pest management.

Unlike their synthetic counterparts, such natural-based fungicides and pesticides have
low toxicity to non-target organisms. Nevertheless, future studies on the effect of these
compounds on bee-like beneficial insects are still necessary. In the post-harvest produc-
tion stage, capsinoid analogues have the advantage of not interfering with the products’
organoleptic properties, which can assist in the conservation and long-term storage of
agrifood products. Future research focusing on the development of new preservatives and
packaging materials based on the use of capsaicinoids and capsinoids represents a topic of
interest.
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