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Abstract: Biochar and bioorganic fertilizers (BOF) that are used in agriculture can, both directly and
indirectly, impact rhizosphere soil microorganisms. However, changes to the halophyte rhizosphere
bacterial community after applying biochar and BOF to saline–alkali soil have not been thoroughly
described. This study has investigated the bacterial communities of halophytes in saline–alkali soil
through the addition of different biochar and BOF formulas using Illumina-based sequencing of
the 16S rRNA gene fragment. B_BOF (biochar and BOF combined application) had the best effect,
either by promoting the plant growth or by improving the physical and chemical properties of the
soil. The concentration of the rhizosphere bacterial communities correlated with the changes in
soil organic matter (OM) and organic carbon (OC). Proteobacteria, Actinobacteria, Chloroflexi, and
Acidobacteria accounted for >80% of the total bacteria in each treatment. In addition, the abundance
of Micromonospora was much higher in response to B_BOF than to the other treatments. BOF, with or
without biochar, significantly influenced the bacterial community composition in the saline–alkali
soil. The OC, OM, total nitrogen, and the available phosphorus had significant effects on the bacterial
structure of this soil. The complex correlation of the bacterial communities between CK and B_BOF
was higher compared to that between CK and FB or between CK and BOF. These findings suggested
that the plant growth, the soil characteristics, and the diversity or community composition of the
rhizosphere bacteria in saline–alkali soil were significantly influenced by B_BOF, followed by BOF,
and then biochar; fine biochar had a stronger effect than medium or coarse biochar. This study
provides an insight into the complex microbial compositions that emerge in response to biochar
and BOF.
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1. Introduction

Soil salinity is one of the most widespread threats to the sustainable development of
agriculture [1]. In addition to naturally caused saline land, much arable land gradually
becomes salinized due to either improper water or land management practices [2,3]. Seven
percent of the world’s arable land is impacted by salinity, which greatly threatens the
global food supply [4], including about 7.6 million hm2 of cultivated saline–alkali land
in China [5]. The Yellow River Delta, which is one of the three bayou deltas in China, is
characterized by high soil salinity and poor soil fertility due to the interaction between sea
and land and has great potential for land exploration and use [6]. An increasing number of
articles on the reclamation of saline–alkali land have mainly dealt with water conservancy
engineering measures, such as salt drainage by hidden pipes, physical measures, such as
sand mixing and mulching, chemical improvement measures, such as adding cow manure,
gypsum, and straw, and biological improvement measures, such as planting saline–alkali
tolerant plants [7–9]. Among them, biochar and bioorganic fertilizers (BOFs) have been
proven as effective measures to improve saline–alkaline soil quality [10,11].

As a carbon-rich material, biochar is produced from biomass raw materials, such
as crop residues, animal wastes, or wood, under anoxic conditions during a process
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called pyrolysis [12] and is a versatile source of renewable energy with the potential to
generate heat, electricity, and liquid biofuels [13]. With the improvement of the physical,
chemical, and biological properties of soil, biochar shows great potential as an effective and
ecological amendment to the soil, especially degraded coastal saline soil [14]. As a porous
material with a strong absorption ability, a huge surface area, and a low bulk density [3],
biochar could bring multiple benefits when it is applied to soils, including enhanced
carbon sequestration [15], improved soil fertility and quality [16], reduced greenhouse gas
emission [13], changes to the soil microbial structure [17], and increased plant growth [18].
In the meantime, studies on biochar in saline land reclamation are also attracting increasing
attention. They indicate improved saline soil physicochemical properties [19] and increased
biomass [20]. In conclusion, research on the application of biochar in agriculture has become
more and more extensive, and the positive effects in degraded soils are becoming better
known.

Bioorganic fertilizers (BOFs) are fertilizers that are composed of microorganisms
with specific functions and organic materials (such as the solid-state fermentation of agro-
industrial waste) [21]. Previous studies have shown that BOF is a safe and effective
alternative for chemical fertilizer [22]. It can improve the supply of plant nutrients [23],
increase the yield [24], and enhance crop disease and stress resistance [25]. BOFs also
aid in the secretion of plant growth hormones and help to counteract the negative effects
of chemical fertilizer [26]. Thus, the use of BOFs is an important measure to protect the
ecological environment and to promote the inevitable trend of the sustainable development
of agriculture. [27]. In addition, some researchers have reported that BOFs are effective
in improving saline soils [28], such as by promoting the soil microecological environment
of saline–alkali land [29] and enhancing nutrient buffering in order to prevent salt build-
up [11]; however, much less attention has been given to the combined use of BOFs and
biochar for the reclamation of saline–alkali land.

Salt-tolerant plants are preferred for saline reclamation because they can achieve
normal growth. Mesembryanthemum crystallinum Linn. is a medicinal and edible halophyte
that originates from South Africa [30,31], while Aptenia cordifolia (L. f.) Schwant, which is
also known as Mesembryanthemum cordifolium L. f., is a salt-tolerant succulent with potential
medicinal value that is endemic to South Africa [32–34]. M. crystallinum and A. cordifolia
were used in this study in order to examine the effect of biochar and BOF on plant growth,
soil physicochemical properties, and soil bacteria communities in saline–alkali land and to
explore the feasibility of using these components to improve the soil.

2. Materials and Methods
2.1. Biochar and BOF Preparation

The BOF was purchased from Yangfeng Agricultural Technology Co., Ltd. (Weifang,
China), which uses humic acid, mushroom residue, corn residue, and soybean meal as
the main substrates and supplements these with Bacillus subtilis, B. licheniformis, and B.
mucilaginous (among them, the effective bacteria is ≥500 million/g), OM ≥ 60%, nitrogen,
phosphorus, and potassium content ≥ 6–8%. The biochar was purchased from Taiyu
Bioengineering Co., Ltd. (Qixia, China). The biochar sample was made from apple stems
and was charred at 450 ◦C for 24 h. The sample was then milled to pass through 10, 30, and
60 mesh sieves, after which the pH was 7.49, 7.36, and 7.45, respectively, and the electrical
conductivity (EC) was 0.357 mS/cm, 0.355 mS/cm, and 0.349 mS/cm, respectively. The
larger meshed samples contained the smaller mesh samples.

2.2. Field Experiments

The field experiments were carried out at the Institute of Modern Agriculture on the
Yellow River Delta, Shandong Academy of Agricultural Sciences (118.37◦ N, 37.17◦ E),
which is located in Dongying, China. The experimental area was a saline–alkali wasteland,
which was used for this experiment after planting spinach for one year with no fertilizer.
The soil was classified as silty clay [10]. All biochar and fertilizer application rates used in
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the experiments were 150 t/ha and are hereafter referred to as CK (without biochar and
BOF), CB (10 mesh biochar), MB (30 mesh biochar), FB (60 mesh biochar), BOF (bioorganic
fertilizer), and B_BOF (60 mesh biochar + bioorganic fertilizer). The biochar and BOF
were spread on the field in November and the soil samples from each plot were taken in
March before planting. M. cordifolium and A. cordifolia seedlings were transplanted into
the field at the four-leaf stage in April and no field management was performed, except
watering. The plant biomasses were quantified in June. Three plants were randomly
selected from each treatment and the aerial parts of each plant were harvested, along with
the rhizosphere soil samples. The fresh weight (FW) of the aerial part of each plant was
recorded. Three plants were selected randomly from each treatment, the over-ground part
was harvested separately, and rhizosphere soil was collected at the same time. The excess
soil was removed from the root by shaking, and only tightly adherent soil remained for
study. The rhizosphere soils of the three plants in each treatment were removed from the
topsoil (0–20 cm) and mixed evenly, the impurities were removed, and the samples were
divided into two parts. A portion was immediately snap-frozen in liquid nitrogen and sent
on dry ice to MajorBio for high-throughput sequencing, while the remainder was air-dried,
homogenized, and again sieved (<2 mm) to remove any residue of silica sand or plant
roots in order to determine the soil’s physicochemical properties. All experiments were
conducted in triplicate.

2.3. Soil Physicochemical Analysis

The soil pH values were determined using a Shanghai Lei Magnetic Multi-Parameter
Water Quality Analyzer DZS-708. The EC was measured at a soil depth of 10 cm using a
FieldScout EC450 meter. The total phosphate (TP) content was measured using ICP-MS
after microwave digestion (MARS5, CEM, Matthews, NC, USA) (0.1 g sample + 6 mL
concentrated nitric acid). Available phosphorous (AP) was extracted with 0.5 M NaHCO3
and was measured using a segmented continuous flow analyzer (Quaatro, Bran+Luebbe,
Norderstedt, Germany). Alkaline nitrogen (AN) and TN contents were determined using
an elemental analyzer (FLASH-2000, Thermo Scientific, Waltham, MA, USA). The OM was
quantitated using the potassium dichromate oxidation method and OC was determined
using an SSM-5000A (Shimadzu, Kyoto, Japan) carbon analyzer [10].

2.4. Soil Microbial Community Analysis

The genomic DNA from the microbial community was extracted from the rhizosphere
soil samples using the E.Z.N.A.® soil DNA Kit (Omega Bio-Tek, Norcross, GA, USA) accord-
ing to the standard protocol, and a NanoDrop 2000 UV-vis spectrophotometer was used to
check the quality of the extracted DNA. The bacterial universal V3-V4 region of the 16S
rRNA gene was amplified using the primers 338F (50-ACTCCTACGGGAGGCAGCAG-30)
and 806R (50-GGACTACHVGGGTATCTAAT-30). The PCR mixtures contained 4 µL of 5×
TransStartFastPfu buffer, 2 µL of 2.5 mM dNTPs, 0.8 µL of each primer (5 µM each), 0.4 µL
of TransStartFastPfu DNA Polymerase, and 10 ng template DNA, adding ddH2O to a final
volume of 20 µL. All reactions were performed in triplicate. The PCR cycling conditions
included an initial denaturation at 95 ◦C for 3 min, 27 cycles of denaturing at 95 ◦C for
30 s, annealing at 55 ◦C for 30 s, and extension at 72 ◦C for 45 s, followed by a single exten-
sion at 72 ◦C for 10 min and a continued hold at 4 ◦C. The resulting PCR products were
extracted from 2% agarose gels and quantified using a Quantus™ Fluorometer (Promega
Corporation, Madison, WI, USA) after purification. The purified amplicons were pooled
in equimolar ratios and paired-end sequenced by Majorbio Bio-Pharm Technology Co.,
Ltd. (Shanghai, China) using an Illumina MiSeq PE300 platform (Illumina Inc., San Diego,
CA, USA). Raw 16S rRNA gene sequencing reads were demultiplexed, quality-filtered
with fastp version 0.20.0 [35], and merged by FLASH version 1.2.7 [36]. The operational
taxonomic units (OTUs) with a 97% similarity cut-off were clustered using UPARSE v.7.1,
and chimeric sequences were identified and removed. The taxonomy of each OTU repre-
sentative sequence was analyzed with RDP Classifier v.2.2 against the 16S rRNA database
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using a confidence threshold of 0.7. The complete sequences generated in this study are
available in the NCBI SRA database under accession number SRA data: PRJNA863446.

2.5. Data Analysis

The calculations were performed using Microsoft Excel, and the statistical analyses of
all parameters were performed using DPS Statistics 18.10 software (http://www.dpsw.cn,
accessed on 6 August 2022). All analyses, including α-diversity, β-diversity, and network
structure, were performed on the Majorbio Cloud Platform (www.majorbio.com, accessed
on 16 August 2022) and α-diversity was calculated using Mothur software (v.1.30.2). Rar-
efaction curves were generated based on the observed species richness using Mothur at
a 97% identity level. Venn and bar diagrams were generated using R script (v.3.3.1), and
Circos was visualized using Circos-0.67-7 (http://circos.ca/, accessed on 16 August 2022).
Beta diversities were visualized using principal coordinates analysis (PCoA), based on the
distance matrix, with bray_curtis. RDA was analyzed using R (version 3.3.1) RDA and
graphed using the vegan package, and VPA (variance partitioning analysis) was analyzed
by an analysis of VPA in R language vegan package. Finally, a network analysis was
performed to explore the complexity of the interactions among the microbial taxa using
Networkx software. Data are presented as the means and standard errors. Differences
between the means of different treatments were determined using the Duncan test at
p < 0.05.

3. Results
3.1. Biomass of M. crystallinum and A. cordifolia

Significant increases in the FW were observed in all of the treatment plots, except
for the MB of A. cordifolia (Figure 1 and Figure S1), regardless of whether the seedlings
were M. crystallinum or A. cordifolia, and whether biochar and BOF were applied alone or
in combination. For both M. crystallinum and A. cordifolia, the FW was highest following
the B_BOF application, followed by the BOF and FB. The results from the current study
showed an increase of 25–79% following the biochar application alone and an increase of
92.73–106.76% under the BOF application alone, compared to CK; furthermore, there was a
13.71–44.67% increase after B_BOF amendment, compared to biochar alone, and an increase
of 5.67–15.35% compared to BOF alone (Table S1).
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3.2. Soil Physicochemical Properties

The effect of biochar and BOF on the physical and chemical properties of soil is shown
in Table 1. There was no significant difference in the soil pH caused by the treatment type.
All of the treatments, except for CB, significantly reduced the EC versus the CK. The TP
and the AP were significantly higher following the B_BOF, BOF, and FB treatments than the
MB, CB, and CK treatments. The B_BOF and the FB significantly promoted the TN content,
compared to CK, with the highest levels produced by B_BOF. The B_BOF also induced the
highest AN content of all of the treatments. The OC and the OM of all of the plots receiving
biochar (B_BOF, FB, MB, and CB) were significantly higher than those without (CK and
BOF), and B_BOF promoted the highest OC and OM levels.

Table 1. Effect of biochar and BOF on the physical and chemical properties of soil.

CK CB MB FB BOF B_BOF

EC 1.07 ± 0.08 a 0.93 ± 0.05 ab 0.92 ± 0.05 b 0.86 ± 0.05 b 0.85 ± 0.03 b 0.83 ± 0.04 b
pH 7.93 ± 0.07 a 7.86 ± 0.04 a 7.8 ± 0.08 a 7.82 ± 0.02 a 7.77 ± 0.1 a 7.78 ± 0.07 a
TP 0.71 ± 0.002 b 0.7 ± 0.006 bc 0.68 ± 0.011 c 0.74 ± 0.006 a 0.75 ± 0.008 a 0.76 ± 0.007 a
AP 7.18 ± 0.27 d 7.19 ± 0.27 d 7.31 ± 0.32 d 8.82 ± 0.32 c 12.4 ± 0.4 b 15.01 ± 0.56 a
TN 1.35 ± 0.06 c 1.47 ± 0.05 bc 1.46 ± 0.05 c 1.64 ± 0.06 b 0.97 ± 0.04 d 2.55 ± 0.11 a
AN 75.5 ± 2.8 cd 89.1 ± 3.66 ab 82.82 ± 2.38 bc 70.54 ± 2.17 d 68.86 ± 3.57 d 94.07 ± 4.85 a
OC 9.82 ± 0.49 c 13.69 ± 0.56 b 12.75 ± 0.72 b 13.57 ± 0.76 b 10 ± 0.49 c 22.57 ± 1.06 a
OM 17.12 ± 0.88 c 23.65 ± 1.28 b 22.17 ± 0.96 b 23.42 ± 1 b 17.22 ± 0.72 c 38.56 ± 1.99 a

Data are the means ± SD of three replicates. Values within a column followed by different lowercase letters are
significantly different (p < 0.05).

3.3. Sequence Data and α-Diversity Index Analysis

After processing, 891,819 high-quality sequences remained, with an average length
of 415 bp across all of the 18 samples, and were investigated after read-quality filtering.
The total number of bases was 370,190,141. The rarefaction curves tended to approach
the saturation plateau in all of the 18 samples (Figure S2), combined with the estimated
coverage values (Table S2), demonstrating that the data were sufficiently large enough to
capture most of the bacterial diversity in the samples. The number of OTUs obtained was
the highest in the MB treatment and the lowest in the B_BOF treatment. The indices of sobs,
ace, Shannon, etc., showed that the diversity and the richness of the B_BOF were lower
compared with the other treatments.

The number of common and unique bacterial OTUs in the different samples is shown
in Venn diagrams (Figure 2). A total of 7328 OTUs were detected across all of the libraries,
with 3677 OTUs common to the different plant samples (Figure 2a). The different particle
sizes of the plots receiving the biochar shared 2538 OTUs of the total 6507 OTUs, with
the highest unique OTUs (n = 538) in the MB, and the lowest unique OTUs (n = 392) in
the CB (Figure 2b). In addition, CK, FB, BOF, and B_BOF harbored 540, 508, 527, and 532
unique OTUs, respectively, and they shared 2165 OTUs (Figure 2c). Additionally, all of the
treatments shared 2000 OTUs, with a higher number of unique OTUs being obtained in the
B_BOF samples than in the CK, CB, MB, FB, and BOF samples (285, 250, 360, 256, and 302,
respectively) (Figure 2d).
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3.4. Microbial Taxonomic Analysis and Core Genus Distribution

The 7328 OTUs were classified into 37 phyla, 101 classes, 271 orders, 501 families,
1054 genera, and 2221 species. The bacterial composition and the relative abundances
varied across the different samples. High-throughput sequencing revealed the diversity
of the bacterial communities in the different samples at the phylum level (Figure 3). The
dominant bacterial phyla were Proteobacteria and Actinobacteria, accounting for more than
50% across all of the samples, followed by Chloroflexi. The dominant phylum in the B_BOF
samples was Actinomycetes, while the dominant phylum in the other treatment groups
was Proteobacteria. The B_BOF harbored 40.38% Actinobacteria, which was significantly
higher than the other samples, and 10.2% Choloroflexi and 4.3% Acidobacteria, which was
significantly lower than the other samples.
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Actinobacteria, the red band is Acidobacteria, and the blue-purple band is Chloroflexi.

The clustering of the top 38 genera is shown in Figure 4 and Table S3. The distribu-
tion of the genera differed significantly across the different samples and belonged to five
phyla, including Actinobacteria (12 genera), Chloroflexi (9), Proteobacteria (7), Acidobac-
teria (3), Firmicutes (2), Gemmatimonadetes (1), Bacteroidetes (1), Rokubacteria (1), and
Patescibacteria (1). Norank_f_Geminicoccaceae was the predominant genus in the FB and
the MB samples, norank_c_Subgroup_6 was the predominant genus in the CK, the CB, and
the BOF samples, and Micromonospora was the most abundant genus in the B_BOF sam-
ples. The co-application of biochar and BOF increased the abundances of Hydrogenophaga
and norank_f_Saccharimonadaceae by different degrees, regardless of the particle size, or
the presence or absence of added fertilizers. However, the abundance of norank_f_A4b,
norank_o_SBR1031, and norank_f_Caldilineaceae decreased, compared to the CK, regardless
of the particle size, or the presence or absence of added fertilizers.
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communities, and the y-axis represents different communities.

The relative abundance of the core genera was also compared, and the top 10 are
shown in Figure 5. The relative frequencies of Micromonospora and norank_f_Microscillaceae
were higher in the B_BOF than in the CK samples, while the frequency of norank_o_Gaiellales
was lower in the B_BOF than in the CK samples. The relative abundance of Pseudomonas
(p = 0.047) was significantly higher in the BOF than in the CK samples. Seven genera
were higher in the FB than in the CK samples, norank_c_JG30-KF-CM66, Archangium,
norank_o_Subgroup_7, norank_f_D05-2, norank_f_AKIW781, norank_f_Acetobacteraceae, and
norank_f_Rhodanobacteraceae. In the MB sample, Cdidatus_Alysiosphaera, unclassified_f_
Gemmatimonadaceae, Nordella, norank_f_Acetobacteraceae, Nocardia, Crossiella, and norank_o_
HOC36 were higher than that in the CK samples, while norank_c_JG30-KF-CM66, no-
rank_o_Subgroup_7, norank_f_Rhodanobacteraceae, Sphingobium, and Geoalkalibacter were
higher in the CB than in the CK samples. Micromonospora was much higher in the B_BOF
samples than in the BOF and FB samples, while Ramlibacter was higher in the BOF than in
the FB samples.
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Figure 5. Comparison of the abundance of the top 10 dominant bacterial genera in the different sam-
ples. *** indicates a significant difference of p < 0.001, ** p < 0.01, and * p < 0.05. The x-axis represents
the mean proportion of the genus, and the y-axis shows the top 10 dominant bacterial genera. (a)
Grouping by CK and CB. (b) Grouping by CK and MB. (c) Grouping by CK and FB. (d) Grouping by
CK and BOF. (e) Grouping by CK and B_BOF. (f) Grouping by FB and BOF. (g) Grouping by FB and
B_BOF. (h) Grouping by BOF and B_BOF.

3.5. β-Diversity Analysis

In order to further identify the microbial population that was associated with biochar
and BOF, PCoA was conducted in order to determine the extent of the rhizosphere soil
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population variation by treatment type (Figure 6). The clustering of the samples that
were treated with biochar of different particle sizes and CK indicated that the community
structures were similar among them. In contrast, there were significant differences in the
community structures of the samples that were treated with the BOF, the B_BOF, or the
CK, especially between the B_BOF and the other treatments. These findings indicated
that the BOF and B_BOF treatments were associated with unique bacterial community
structures. PCoA identified two principal component factors that were related to the
percentage of abundance of the groups, explaining 61.96% (PC1) and 9.39% (PC2) of the
variation, respectively. The highest variation in the microbiota associated with the different
samples (61.96%) represented a strong separation based on the B_BOF, while the BOF was
associated with a higher PCoA 2 value (9.39%). The PCA analysis revealed that the BOF
treatment shifted the bacterial communities, and the B_BOF was a strong factor that was
associated with variation in the community composition.
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variation.

3.6. Relationship between Environmental Parameters and Microbial Communities

RDA was conducted in order to examine the relationship between the environmental
parameters and the composition of the microbial communities (Figure 7a). For the microbial
community composition, the first axis accounted for 64.20% of the overall variation, while
the second axis accounted for 5.09%. The RDA showed that the bacterial community
structure that was associated with the B_BOF treatment was positively correlated with the
AP, the TN, the OC, and the OM. The VPA showed that the saline (pH and EC), the organic
nutrition (OC and OM), and the nutrition (N and P) factors explained 13.27%, 15.15%,
and 17.93% of the total variance in the rhizosphere bacterial communities, respectively
(Figure 7b). Meanwhile, a joint environmental effect (4.73%) explained a lower proportion
of the variation in the rhizosphere bacterial turnover. Among these variables, N and P had
a large influence on governing the bacterial turnover in the rhizosphere.
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3.7. Network Structure

Correlation network analysis was conducted in order to explore the complexity of the
interactions within the communities following the different treatment types and to assess
their topological properties. The findings showed that there was a difference between
the communities based on the addition of biochar and BOF (Figure 8). The complexity
and the modular structures were higher following the CK–B_BOF treatment (between
CK and B_BOF) than the CK–FB (between CK and FB) or the CK–BOF (between CK and
BOF) treatment. Specifically, the average number of connections per node was higher
following the CK–B_BOF treatment (node average degree = 8) than the CK–FB (node
average degree = 3.11) or the CK–BOF (node average degree = 3.75) treatment (Table S4).
The CK–B_BOF treatment also resulted in a higher number of positive correlations (positive
edges = 67) than the CK–FB (positive edges = 23) or the CK–BOF (positive edges = 26)
treatment. The positive edges were higher following CK–FB treatment than CK–BOF
treatment, albeit with the same number of negative correlations. The nodes with the
highest connections were norank_f_JG30-KF-CM45 in CK–B_BOF, with a degree of 14,
Micromonospora in CK–BOF, with a degree of 10, and Norank_f_Gemmatimonadaceae and
norank_f_67-14 in CK–FB, with a degree of 7 (Table S5).
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4. Discussion

The response of plants to biochar amendments in the soil varies enormously based
on differences in the soil type, the biochar properties, and the biochar application rates,
methods, and frequencies [37]. Additionally, biochar is often used in combination with
inorganic fertilizers, organic fertilizers, and PGPRs in agricultural research and significantly
promotes plant growth [38,39]. Similarly, the above-ground biomass in the current study
was enhanced, regardless of the biochar or BOF application alone, and the results of the
BOF were better than those of the biochar; furthermore, the combined application of the two
was more effective than the individual application. This is similar to the findings by Saxena
et al., who reported that the addition of biochar to soil induced the overall growth of plants,
but inoculation with Bacillus sp. enhanced the growth even further [38]. One reason for the
increased effectiveness of B_BOF may be that the direct source of nutrients that the B_BOF
brings to the soil was more than that of biochar or BOF alone. Another reason may be the
reduced nutrient leaching of B_BOF, owing to the fact that more nutrients can be adsorbed
to biochar’s surface and be retained in the soil; additionally, the refuge for microorganisms
that was provided by the porosity of biochar, combined with the abundant nutrients and
bacteria of the BOF, aided the survival of microbial species, which was beneficial to the
growth of the plants. In the current study, no significant difference was observed among
the treatments, regardless of the biochar particle size and whether BOF was added, which
was partially identical to You et al. [37]. This may be due to the pH of the biochar that
was used in the current study being lower than that of the soil, or the secretion of organic
acids from the stimulated roots of the plants receiving the fertilizer treatment [40]. The
EC of soil was shown to vary significantly in response to biochar application in different
studies [41–43]. The EC may have decreased in this study because salt-tolerant plants grow
better in response to biochar and BOF, or because different raw materials or preparation
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methods were used in the biochar manufacturing process. Additionally, there were no
significant differences in the EC for all of the treatments, except for the control, which
indicated that the effect of biochar and BOF application alone, or combined, in reducing
the soil EC is similar. The effects of biochar on plant-available P in soils vary [44], but most
studies suggest that biochar can increase the availability and the uptake of P in soils by
acting as a direct source of P and indirectly improving the conditions of the medium [2]. In
the current study, P was significantly higher in response to the BOF than the biochar alone
or the CK, and there were no differences in the CK, the MB, or the CB. The B_BOF induced
the highest AP content on the basis of the same TP content, which may be an important
factor in promoting plant growth. The biochar effects on N are also inconsistent [45,46].
The co-application of biochar and BOF significantly increased both the TN and the AN
content, which may be related to biochar feedstock and the ability of organic fertilizer and
biochar to increase N compared to biochar alone [45]. Biochar amendment significantly
increased the content of the OC and OM, which is consistent with the results of previous
studies [41,46–49]. However, the addition of BOF had no effect, while B_BOF led to the
greatest improvement of all of the treatments. N and P explained a higher proportion of the
variation in the rhizosphere bacteria compared to the saline and organic nutrients, which
may be owing to the fact that N and P are the main nutrients and limiting factors for plant
growth [50], which in turn affected the bacterial changes.

Recent studies indicate that the addition of biochar, BOF, or both in combination,
effectively impacts the soil microorganisms, which play a critical role in nutrient recycling,
the suppression of pests and diseases, and the promotion of plant growth [13,21]. The
richness of B_BOF was significantly lower than that of the other treatments, suggesting
that the co-application of biochar and BOF greatly altered the composition of the bacterial
communities, which may be due to the blooms of the dominant species affecting the
growth of the rare species. Although there were no differences in the unique OTUs among
the plant treatments and the CK, the number of OTUs shared by both of the plants was
higher than that shared between each plant and the CK. This indicated that M. crystallinum
and A. cordifolia both affected the soil microbial composition in similar ways. Dominant
phyla vary with soil properties and additives [51,52]. It can be seen that, in our study,
Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteria, were the top four most
abundant phyla, which is partly consistent with prior research. You et al., reported that
Bacteroidetes and Proteobacteria were the predominant phyla in the rhizosphere soil of
M. crystallinum [37]; however, according to Huang et al., Proteobacteria, Chloroflexi, and
Acidobacteria were the three most abundant phyla following the application of biochar
under salt-stress treatment [5]. Actinobacteria are often associated with the degradation of
recalcitrant polymers and are thus considered to be ecologically important for the turnover
of the OM in soil [53], and the relative abundance of Actinobacteria increases with biochar
amendment [54]. Compared to the CK group, the relative abundance of Actinobacteria was
slightly higher following the treatment with biochar, but the difference was not significant.
However, the relative abundance of Actinobacteria was significantly higher following the
treatment with B_BOF than that following the CK treatment, which may be related to the
higher soil nutrients of B_BOF, as RDA also showed that the relative bacterial abundance
after the B_BOF application correlated positively with the TN, the AP, the OC, and the
OM, which is partly consistent with previous studies [11]. Chloroflexi is an oligotrophic
bacterium that survives in low-nutrient soil, while Proteobacteria prefers nutrient-rich
soil [5]. This may explain the low abundance of Chloroflexi in the B_BOF-treated soil,
and the high abundance of Proteobacteria in the MB-, BOF-, and B_BOF-treated soil.
Interestingly, the bacterial community of CK–B_BOF is more complex than that of CK–FB or
CK–BOF, in other words, compared to the FB or BOF group, the application of the B_BOF
enhanced and elevated the complexity of the microbial networks and reshaped the network
core microorganisms and hubs, which deserves further study.

Pseudomonas is a well-known bacterium that is used as plant-growth-promoting rhi-
zobacteria (PGPR) because of its ability to protect plants from disease and increase the
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availability of phosphates [55,56]. The fertilizer effect can be augmented by the application
of Pseudomonas and biochar in order to alleviate salt stress [57]. This may explain the
much higher relative abundance of Pseudomonas in BOF than in CK. Being a denitrifier
and pesticide degrading bacterium [58,59], the abundance of Hydrogenophaga was higher
following the application of biochar and BOF in different degrees, regardless of the particle
size or the presence of additional fertilizers, which is consistent with the findings of Guo
et al. and You et al. [58,59]. The same increase was seen for norank_f_Saccharimonadaceae,
which can degrade hydrocarbons, especially following B_BOF treatment [60]. These could
benefit the soil nutrients and the plant growth. Bacillus is well known as an effective
biological control bacterium [38]. Wang et al. demonstrated that biochar soil amendment
enriched this bacterium [61]. It is worth noting that the presence of Bacillus in soil does
not necessarily increase with the addition of Bacillus. Indeed, Zhu et al., found that the
Bacillus concentration in soil did not increase after the application of Bacillus compound
biofertilizer [62]. In the current study, the relative abundance of Bacillus in the BOF-treated
soil was >80% higher than that in the CK-treated soil. Bacillus was also higher following
FB and MB treatment than CK treatment but was lower following B_BOF treatment than
CK treatment. BOF contains Bacillus, therefore it is not surprising that the amount of
Bacillus increased in the BOF-treated soil. The FB and MB findings are consistent with
those that were reported by Wang et al. [61]. The inability of B_BOF to induce the growth
of Bacillus may be explained by the competitive relationship between Bacillus and other
bacteria in the treated soil. While the effect of BOF on Bacillus growth was unexpected,
the effect on the Micromonospora growth was way beyond expectations. Micromonospora
was the most abundant genus in the B_BOF-treated soil and was much higher in both the
B_BOF-treated and BOF-treated soil than in the CK-treated soil. This result is consistent
with the findings of Deng et al., who reported enhanced Micromonospora growth under
the biochar and microcapsule treatment of phenanthrene polluted soil [63]. According to
Li et al., Micromonospora has plant-growth-promoting traits, including nitrogen fixation
and the inhibition of plant pathogens, therefore, it may aid B_BOF- and BOF-induced
plant growth [64]. Gaiella and norank_o_Gaiellales are both Actinobacteria, which promote
plant growth by increasing the nutrient availability and assimilating and enriching the
beneficial bacteria. Norank_o_Gaiellales contributes to the ability of ramie to tolerate poor
soil [65]. Interestingly, the relative abundances of Gaiella and norank_o_Gaiellales alone
were higher in the biochar-only treatments than in the CK treatments, regardless of the
biochar particle size. However, when BOF was present, the abundance was lower than
CK. Norank_f_Geminicoccaceae was the predominant genus in the FB and the MB; however,
the reason for this finding requires further study. Overall, the biochar and the BOF were
able to directly recruit beneficial bacteria through their intrinsic ability to improve the soil
conditions for plant growth.

The particle size of the biochar is another important factor affecting the soil char-
acteristics and functions that has received minimal research attention [66,67]. With the
exception of AN, the FB performed best when the soil N and P indicators were involved,
and the biochar amendment significantly increased the content of the soil OC and OM,
regardless of the particle size, although there were no significant differences between the
treatments that used different biochar particle sizes. The different plants responded slightly
differently to the biochar particle size, but the trend was similar, with fine biochar inducing
the best response. The results of the current study have confirmed the conclusion of Liu
et al. and Gu et al. that fine biochar is superior to coarse biochar [49,68]. The larger internal
surfaces and the porous structure of the finer particle size biochar should be responsible
for this conclusion, as these factors result in lower soil volumetric weight and higher soil
aeration [49] and cause the biochar to be more effective at storing water, nutrients, and
microbiomes [69], all of which can improve the physical and chemical properties of soil
and be beneficial to plant growth. Additionally, as small particulate materials are more
readily degraded than those with large particles, fine particles of biochar can be more
readily degraded by microbes than coarse ones, thereby affecting the nutrient cycle and
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other enzyme activities [69]. Nonetheless, intensive studies are still required to explore a
long-term study of different biochar particles and BOF in saline–alkali soil in order to gain
a more comprehensive understanding.

5. Conclusions

This study sought to determine the bacterial community and diversity of the root-
associated soil of M. crystallinum and A. cordifolia in the saline–alkali land of China using
high-throughput sequencing. The findings showed that adding biochar and BOF to soil
positively influenced the growth of M. crystallinum and A. cordifolia, with B_BOF performing
the best. Biochar and B_BOF also improved the physical and chemical properties and
enhanced the nutrient concentration of the saline–alkali soil. Moreover, the diversity and
community structure of the rhizosphere bacteria in the saline–alkali land was significantly
affected by B_BOF, followed by BOF, and then biochar. The FB particle size was improved
over the MB and CB. The current study provides guidance for the restoration of saline–
alkali land in China. However, further studies are needed in order to focus on the long-term
impacts of biochar and BOF on saline–alkali soil.
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