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Abstract: Coxiella burnetii is a Gram-negative, intracellular bacterium that causes the zoonosis Q fever.
Among the many natural isolates of C. burnetii recovered from various sources, the Dugway group
exhibits unique genetic characteristics, including the largest C. burnetii genomes. These strains were
isolated during 1954–1958 from wild rodents from the Utah, USA desert. Despite retaining phase I
lipopolysaccharide and the type 4B secretion system, two critical virulence factors, avirulence has been
reported in a guinea pig infection model. Using guinea pig models, we evaluated the virulence, whole-
cell vaccine (WCV) efficacy, and post-vaccination hypersensitivity (PVH) potential of a representative
Dugway strain. Consistent with prior reports, Dugway appeared to be highly attenuated compared to
a virulent strain. Indeed, Dugway-infected animals showed similarly low levels of fever, body weight
loss, and splenomegaly like Nine Mile II-infected animals. When compared to a human Q fever
vaccine, QVax®, Dugway WCV exhibited analogous protection against a heterologous Nine Mile
I challenge. PVH was investigated in a skin-testing model which revealed significantly decreased
maximum erythema in Dugway ∆dot/icm WCV-skin-tested animals compared to that of QVax®. These
data provide insight into this unique bacterial strain and implicate its potential use as a mutated
WCV candidate.

Keywords: Coxiella burnetii; Q fever; guinea pig; whole-cell vaccine; hypersensitivity; Dugway;
avirulence; QVax; bacterial vaccine; virulence

1. Introduction

Coxiella burnetii is a Gram-negative, intracellular bacterium with a near worldwide
distribution [1,2]. The zoonosis Q fever is caused by this bacterium, typically following
inhalation of infectious particles generated by infected animals. Q fever encompasses
a wide spectrum of clinical disease; however, the most common manifestation is a flu-
like illness known as acute Q fever [3]. Due to the potentially debilitating nature of Q
fever, C. burnetii’s pronounced environmental stability, and aerosol infection potential, this
pathogen is considered a biodefense threat and has been classified as a select agent by
the U.S. Centers for Disease Control and Prevention (CDC)-Division of Select Agents and
Toxins (DSAT) [4]. C. burnetii Nine Mile II (NMII) Clone 4 (RSA439), is exempt from DSAT
regulation and may be manipulated at BSL-2 conditions [5]. This clonal strain expresses
truncated lipopolysaccharide (LPS) due to a large chromosomal deletion and has been
reported to exhibit avirulence in a guinea pig infection model [6]. In contrast, C. burnetii
NMI is a virulent strain expressing full-length LPS and is commonly used as a positive
control for virulence in animal studies. Beyond laboratory-generated strains such as NMII,
clinically and environmentally derived C. burnetii strains have been isolated from a wide
array of organisms including cats, chiggers, cows, dogs, goats, humans, rodents, sheep,
and ticks [7–9]. These strains exhibit genetic and phenotypic diversity [7,10,11] despite
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retaining full-length LPS and the type IVB secretion system (T4BSS), two core C. burnetii
virulence factors.

In 1959, the isolation of several novel “Dugway” C. burnetii strains was reported [12].
These strains were isolated from three rodent species (Peromyscus maniculatus, Dipodomys
ordii, and D. microps) from the Great Salt Lake Desert, Utah USA during a three-year
collection period (1954–1957) [12]. This marked the first report of C. burnetii recovery from
wild mammals. The unique biologic characteristics of the Dugway strains were reported
soon after these strains were isolated. The authors encountered difficulty passaging yolk sac
isolates in infected guinea pigs due to apparent avirulence, a hypothesis further bolstered
by guinea pig infection studies [13]. Additionally, hamsters appeared to be more susceptible
to the Dugway strain infection and pathology than guinea pigs, also developing higher
antibody titers following infection. These findings stood in contrast to results obtained
for non-rodent derived isolates (e.g., dairy and clinical human isolates). Recent studies
confirmed Dugway strain attenuation in guinea pig intraperitoneal [11] and aerosol [10]
infection models. Genetic analysis of the Dugway 5J108-111 strain indicated that this strain
has the largest genome with the fewest pseudogenes and insertion sequence elements
compared to all other C. burnetii strains [14]. These data suggest that the Dugway strains
supersede other isolates (e.g., NMI, K Q154, and G Q212) in terms of temporal lineage
establishment. Dugway strains possess the unique QpDG plasmid [15] and Dugway-
specific plasmid-encoded effector proteins have been identified [16]. It remains to be seen
whether chromosomal and/or plasmid genomic sequences lie at the root of Dugway strains’
unique behavior. Further, phylogenetic analysis of various C. burnetii strains based on
adaA gene variation suggested that Dugway strains may be the ancestor of all C. burnetii
strains [17].

Likely related to host adaptation and tropism, these unique genetic and phenotypic
features pose Dugway strains as valuable experimental tools and potential vaccine candi-
dates. Avirulence and/or severe attenuation despite retention of primary virulence factors
paired with Dugway strains’ unique genomic content all contribute to its intrigue and
utility. Dugway strains possess desired qualities for whole-cell vaccines (WCV); however,
protective efficacy has not yet been determined. Further, Q fever WCVs are known to
cause potentially severe post-vaccination hypersensitivity responses in pre-immune indi-
viduals [18], representing a major roadblock for widespread licensing of existing Q fever
vaccines (e.g., Q-VAX®). Although mechanisms of post-Q fever vaccination delayed-type
hypersensitivity (DTH) are being uncovered using novel animal models [19,20], causative
antigens have not yet been determined. Accordingly, despite Dugway strain uniqueness,
the reactogenicity of Dugway-based WCVs has not been reported. Here, we sought to char-
acterize Dugway-host interactions in vivo using guinea pig models of infection, vaccine
challenge, and post-vaccination DTH. Further, these studies were designed to evaluate
the feasibility of Dugway-based WCVs as an improved Q fever vaccine. Thus, we created
a mutant Dugway ∆dot/icm strain, lacking 23 or 26 genes within the dot/icm apparatus
encoding the TB4SS apparatus. This strategy has been used for C. burnetii NMI and con-
ferred attenuation, retained immunogenicity, and potentially reduced post-vaccination
DTH magnitude [21].

2. Materials and Methods
2.1. Coxiella burnetii Strains, Infection Stocks, and Whole-Cell Vaccines (WCV)

C. burnetii strains (NMI RSA 439, Dugway 7D 77-80, and Dugway ∆dot/icm clone 7)
were propagated in acidified citrate cysteine medium-2 or -D (ACCM-2 or ACCM-D) [22] at
37 ◦C, 2.5% O2, and 5% CO2 and were stored at −80 ◦C in a cell-freezing medium (DMEM
with 10% fetal bovine serum and 10% dimethyl sulfoxide) until use. C. burnetii Dugway
∆dot/icm was constructed as previously described for the NMI ∆dot/icm strain [21]. Whole-
cell vaccine (WCV) stocks, used for vaccination and skin testing, were cultured as infection
stocks and were fixed in 4% paraformaldehyde for at least 12 h, washed in sterile PBS, and
ultimately resuspended in USP-grade saline prior to being stored at −80 ◦C. C. burnetii in-
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fection stock concentrations were quantified using qPCR to enumerate genomic equivalents
(GE) [11] while WCV concentrations were determined via direct bacterial count, as previ-
ously described [21,23]. Lipopolysaccharide (LPS) from infection stocks was extracted via a
modified hot phenol method and visualized by silver stain, as previously described [24]
(Supplementary Figure S1). In accordance with standard operating procedures approved
by the Rocky Mountain Laboratories Institutional Biosafety Committee, any manipulations
of C. burnetii stocks and infected animal tissue were performed in a BSL-3 laboratory.

2.2. Guinea Pigs

Four- to six-week-old Hartley guinea pigs were obtained from Charles River, Wilming-
ton, MA, USA (strain code 051) and were acclimated for at least a week prior to experimental
manipulation. Female guinea pigs were utilized in these studies to minimize potentially
confounding sex-associated factors (e.g., behavior, body weight, hormonal effects) and are
used in accordance with historical Q fever virulence studies [10,25]. Animals were housed
in individually ventilated plastic cages (Allentown, Allentown, NJ, USA; two animals per
cage) with hardwood Sani-chip bedding (PJ Murphy, Montville, NJ, USA). A high-fiber
guinea pig diet (Teklad global high-fiber guinea pig diet; Envigo, Indianapolis, IN, USA, cat
n. 2041) and chlorinated, reverse osmosis filtered tap water was administered ad libitum.
A 12 h light–dark cycle was maintained in animal housing facilities which were kept at
68–72 ◦F and 40–60% relative humidity with a 50% set point. Six animals per group were
utilized for the experiment evaluating virulence, while four animals per group were utilized
in vaccine challenge and post-vaccination hypersensitivity experiments. Animals were
housed in approved animal biosafety level 3 (ABSL-3) facilities and manipulated under
ABSL-3 standard operating procedures approved by the Rocky Mountain Laboratories
Institutional Biosafety Committee and an Institutional Animal Care and Use Committee-
approved protocol. Animal experiments and procedures were performed in an Association
for Assessment and Accreditation of Laboratory Animal Care-accredited NIH/NIAID
animal facility.

2.3. Infection Model

On the day of infection, animals were placed under isoflurane-induced sedation using
an anesthetic vaporizer with activated charcoal absorption filters (VetEquip Inc., cat. N.
901801 and 931401, Livermore, CA, USA) and subcutaneously implanted with an IPTT-300
transponder (BioMedic Data Systems, Seaford, DE, USA) above the shoulder using a large
bore needle. Guinea pigs were then infected with 1 mL of 106–107 GE of C. burnetii in USP-
grade saline via intraperitoneal injection. Negative control animals were mock infected
with USP-grade saline. Body weights, body temperatures, and any behavioral/clinical
changes were recorded daily at a consistent time for 14 days following infection. Body
temperatures were collected using a DAS-8007-P reader (BioMedic Data Systems) and a
temperature of ≥39.5 ◦C was defined as fever [10,26,27]. Fourteen days post-infection,
animals were euthanized. Blood and spleens were collected at euthanasia and processed
as previously described and bacterial outgrowth from spleen tissues was quantified by
TaqMan qPCR (groel gene) [21].

2.4. WCV Challenge Model

On the day of vaccination, animals were sedated by isoflurane inhalation and im-
planted with IPTT-300 transponders as described above. Four guinea pigs per group were
vaccinated subcutaneously in the upper back with 0.5 mL of USP-grade saline containing
25–2.5 µg of QVax® or paraformaldehyde-fixed C. burnetii. Negative control animals were
mock vaccinated with USP-grade saline. Body weights, body temperatures, and behav-
ioral/clinical changes were recorded daily following vaccination for a total duration of
28 days. At 28 days post-vaccination, animals were infected with 1 mL of 106 GE C. burnetii
(NMI) as described above. Upon euthanasia, blood, mesenteric lymph nodes, and spleens
were collected and processed as previously described [21].
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For mLN and splenic flow cytometric analysis, single-cell suspensions were aliquoted
into 96-well U-bottom plates at a density of 1 × 106 cells per well. Cells were washed in a
staining buffer (PBS + 1% bovine serum albumin) and stained using a cocktail of antibodies
specific for guinea pig cell surface antigens, including B Cells (clone: MsGp10, fluorophore:
S/N unconjugated, BioRad, Hercules, CA, USA, cat. N. MCA567) with secondary antibody
(anti-mouse IgG1, clone: RMG1-1, fluorophore: AF700, BioLegend, San Diego, CA, USA, cat.
N. 406632), CD4 (clone: CT7, fluorophore: RPE, BioRad, cat. n. MCA749PE), and CD8 (clone:
CT6, fluorophore: FITC, BioRad, cat. n. MCA752F). Following surface staining, cells were
washed in staining buffer and fixed overnight at 4 ◦C using Cytofix (BD, San Jose, CA, USA,
cat. n. 554655). Following fixation, cells were washed in staining buffer and analyzed on a
BD FACSymphony flow cytometer using FacsDiva software (BD Biosciences). Data analysis
was performed with FlowJo 10.0 software (TreeStar Inc., Ashland, OR, USA). A minimum
of 20,000 events were captured for each sample. Single-stained compensation controls and
fluorescence minus one staining controls were included to help set gating boundaries.

2.5. Post-Vaccination Hypersensitivity Modeling

The guinea pig post-vaccination hypersensitivity model was performed as previously
described [21]. Briefly, four guinea pigs per group were infected with 106 GE of NMI or
mock infected with saline and monitored for 42 days. Next, animals were sedated by
isoflurane inhalation and skin tested with 0.1 mL of 25, 2.5, and 0.25 µg of C. burnetii WCV
in USP-grade saline via intradermal injection at three separate sites on the shaved back.
Negative control animals were mock skin tested with USP-grade saline. Body weights, body
temperatures, behavioral/clinical changes, and skin metrics were recorded daily for 21 days
post-skin tests. Skin-testing sites were shaved one day prior to intradermal inoculation
(“skin testing”) and one day prior to subsequent skin metric measurement. Erythema
diameter and induration severity were measured as previously described [21]. Animals
were euthanized 21 days following skin testing. Blood, mesenteric lymph nodes, spleens,
and skin biopsies were collected for subsequent analysis, as previously described [21].

2.6. Histology

Histology was performed as previously described [20]. Briefly, skin biopsies were
fixed in 10% Neutral Buffered Formalin for 48 h, placed in tissue cassettes, and processed
with a Sakura VIP-6 Tissue Tek (Torrance, CA, USA) on a 12 h automated schedule using
a graded series of ethanol, xylene, and PureAffin. Embedded tissues were sectioned at
5 µm, mounted and dried overnight at 42 ◦C prior to staining with hematoxylin and eosin
using established methods. Biopsy specimens were evaluated using an Olympus BX53
microscope (Tokyo, Japan).

2.7. Statistical Analysis

Statistical analyses were conducted using GraphPad Prism version 7.0 (GraphPad
Software, La Jolla, CA, USA). Statistical evidence for differences in group means was
assessed using two-sample Welch t tests, allowing for unequal variances between groups.
For each comparison, we computed Wald-type 95% confidence intervals and describe
statistical significance with two-sided p-values. We represent p-values in equal to or below
0.05 with a single asterisk (*), p-values equal to or below 0.01 with a double asterisk (**),
and p-values equal to or below 0.001 with a triple asterisk (***) unless otherwise indicated.
Error bars represent the standard deviation of a group mean.

3. Results
3.1. C. burnetii Dugway Is Attenuated in an Intraperitoneal Guinea Pig Model of Q Fever

We first evaluated the virulence of Dugway strain 7D 77-80 using a guinea pig model of
intraperitoneal infection (Figure 1A). Guinea pigs were injected with 106−7 genome equiva-
lents (GE) of C. burnetii or saline. Next, body temperatures and weights were recorded for
14 days, followed by euthanasia. Body temperatures for saline mock-infected animals re-
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mained stable along with NMII (106), Dugway (106), and Dugway ∆dot/icm infected animals
(Figure 1B). Animals infected with 107 NMII and Dugway displayed low-grade, transient
fever profiles, in contrast to NMI-infected animals (106) which experienced sustained,
robust fever responses. When body temperatures were normalized to the initial readings
at day 0, a clear divergence between NMI-infected animals and all other groups emerged
(Figure 1C). Body weight change corresponded with body temperature findings, with NMI-
infected animals experiencing higher body weight loss than all other groups (Figure 1D).
Following the same trend, NMI-infected animals displayed significant splenomegaly com-
pared to saline, NMII, Dugway, and Dugway ∆dot/icm-infected animals (Figure 1E). NMII
(107), Dugway (106/7), and Dugway ∆dot/icm (107)-infected animals exhibited significant
splenomegaly compared to saline mock-infected animals. Day 14 splenic bacterial burdens
were highest in NMI-infected animals but also present in NMII and Dugway-infected
animals (Supplementary Figure S2). No C. burnetii DNA was detected in saline or Dugway
∆dot/icm-infected animals.
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Figure 1. Coxiella burnetii Dugway strain displays reduced virulence in a robust guinea pig infection
model compared to the Nine Mile strain. The guinea pig model of intraperitoneal infection is outlined
in (A). Body temperatures (B), body temperature change (C), and body weight change (D) kinetics
are displayed for 7 days following infection. Spleens were weighed at euthanasia (day 7) and
splenomegaly was determined by normalizing spleen weight to total body weight (E). * p ≤ 0.05;
** p ≤ 0.01; *** p ≤ 0.001, **** p ≤ 0.0001.

3.2. C. burnetii Dugway Exhibits Heterologous Protection as a Whole-Cell Vaccine (WCV)

Next, we evaluated the efficacy of C. burnetii Dugway as a whole-cell vaccine against
a challenge with the virulent Nine Mile I (NMI) strain. Guinea pigs were subcutaneously
vaccinated with saline, C. burnetii WCV, or QVax® in the upper back (Figure 2A).
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Figure 2. C. burnetii Dugway whole-cell vaccine exhibits heterologous protection against fever and
body weight loss. The guinea pig vaccine-challenge model is outlined in (A). Body temperatures
(B), body temperature change (C), and body weight change (D) kinetics are displayed for 14 days
following infection.

Body temperature and body weight were taken for 28 days and vaccinations did not in-
duce alterations in body temperature or weight (Supplementary Figure S3A,B). Guinea pigs
were then intraperitoneally challenged with C. burnetii NMI (106 GE) and monitored for 14
days before euthanasia. Mock vaccinated and NMI-challenged guinea pigs (Saline:NMI)
experienced sustained fever following NMI infection (Figure 2B), serving as a positive
infection control. In contrast, Dugway- and QVax®-vaccinated animals appeared to be
protected from the development of fever apart from a few transient breakthrough animals
at the lowest vaccination dose (0.25 µg). When normalized to day 0 starting body temper-
atures, these trends persisted (Figure 2C). Body weight change was stable in all groups
with the exception of mock vaccinated, NMI-infected animals and QVax® (0.25 µg) vacci-
nated, NMI-infected animals with both groups losing a higher percentage of body weight
than others (Figure 2D). Significant splenomegaly was observed in mock vaccinated, NMI-
infected animals compared to uninfected animals (Figure 3A). Significant splenomegaly
was not observed in any vaccinated and NMI-infected animals compared to uninfected
animals. No significant differences in splenic bacterial burden were detected in vaccinated
groups compared to unvaccinated, NMI-infected animals (Figure 3B). Although mesen-
teric lymph node (mLN) cellularity was not altered in Saline:Saline animals compared
to vaccinated groups (Supplementary Figure S4A), spleen cellularity was significantly
increased in QVax® (25 and 2.5 µg)- and Dugway (2.5 and 0.25 µg)-vaccinated animals
compared to Saline:Saline negative controls (Supplementary Figure S4B). Flow cytometry
was performed on secondary lymphoid tissues and the gating strategy for CD4+/CD8+

T cells and B cells is depicted in Supplementary Figure S4C,D, respectively. dLN B cell
frequency was significantly decreased in Dugway (25 µg):NMI animals and appeared to
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be generally reduced in additional vaccinated groups (Supplementary Figure S4E). CD4+

T cell frequency appeared unaltered regardless of treatment (Supplementary Figure S4F).
CD8+ T cell frequency was significantly increased in unvaccinated, NMI-infected animals
compared to unvaccinated, uninfected animals (Supplementary Figure S4G). Splenic flow
cytometry revealed significantly decreased B cell frequency in Saline:NMI, QVax® (2.5 and
0.25 µg):NMI and Dugway:NMI groups compared to that of untreated Saline:Saline ani-
mals (Supplementary Figure S4H). CD4+ T cell frequency was significantly decreased in
Saline:NMI, QVax® (0.25 µg):NMI and Dugway:NMI groups compared to that of untreated
Saline:Saline animals (Supplementary Figure S4I). No significant alterations in splenic CD8+

T cell frequency were observed in treated groups (Supplementary Figure S4J).
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Figure 3. C. burnetii Dugway whole-cell vaccine prevents post-infectious splenomegaly but does not
alter bacterial burden. Spleens were weighed at euthanasia (day 14) and splenomegaly was deter-
mined by normalizing spleen weight to total body weight (A). Splenic bacterial burden at euthanasia
is represented by fold change in genome equivalents compared to uninfected (Saline:Saline) animals
in (B). * p ≤ 0.05.

3.3. Dugway ∆dot/icm Strains Exhibit Reduced Post-Vaccination Erythema

A guinea pig post-vaccination hypersensitivity (PVH) model was employed to eval-
uate the reactogenic potential of various C. burnetii WCVs. Guinea pigs were sensitized
by intraperitoneal infection using the NMI or Dugway strains (Figure 4A). Body weights
and body temperature were measured for 14 days following inoculation and these data
indicated a successful infection (Supplementary Figure S5A,B). Following sensitization,
guinea pigs were intradermally injected with saline or C. burnetii WCVs on the back at three
different doses (25, 2.5, and 0.25 µg) and skin responses were monitored for 21 days prior
to euthanasia. Maximum erythema area was significantly increased for all C. burnetii sensi-
tized (infected) and skin-tested guinea pigs compared to Saline:Saline mock-treated animals
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(Figure 4B). Further, compared to unsensitized, skin-tested animals (Saline:NMI) maximum
erythema for NMI:QVax®, Dugway:Dugway, and NMI:Dugway groups was significantly
increased. Compared to highly reactive NMI:QVax® animals, C. burnetii ∆dot/icm WCV
skin-tested animals demonstrated significantly reduced maximal erythematous responses.
Erythema kinetics reflect maximal values (Supplementary Figure S6A). Induration was
assessed at various time points post-skin testing; early (5 days; Supplementary Figure S6B)
and late (20 days; Figure 4C) intragroup responses were similar. Generally, induration
severity was aligned among all sensitized and skin-tested groups at the 25 µg dose. At the
2.5 and 0.25 µg doses, the NMI:Dugway ∆dot/icm group appeared to experience reduced
early and late induration severity. Despite the occurrence of localized PVH responses,
body temperature (Supplementary Figure S7A) and body weight (Supplementary Figure
S7B) changes due to skin testing were not detected. Significant splenomegaly was de-
tected in NMI:QVax® and NMI:Dugway groups compared to Saline:Saline control animals
(Supplementary Figure S7C). Despite this, spleen cellularity (Supplementary Figure S7D)
and mesenteric lymph node cellularity (Supplementary Figure S7E) remained unchanged
among groups at day 21 post-skin testing.
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Figure 4. C. burnetii Dugway ∆dot/icm whole-cell vaccine reduces post-skin testing erythema and
late-phase induration magnitude. The guinea pig model of post-vaccination hypersensitivity is
outlined in (A). Maximum erythema at any given timepoint post-skin testing is depicted in (B).
Induration scoring values at indicated skin testing site at day 20 post-skin testing (C). * p ≤ 0.05;
** p ≤ 0.01; *** p ≤ 0.001.

A standardized histological scoring scheme was applied to guinea pig skin biopsies
collected from skin testing sites (Figure 5A). General histological findings associated with
sensitization and skin testing occurred in the dermis, hypodermis, and panniculus muscle.
Lesions ranged in severity from minimal to severe with abscess formation. Minimal in-
flammation was characterized by small foci of macrophages, lymphocytes, and sometimes,
heterophils within either the dermis, hypodermis, or panniculus muscle. Mildly inflamed
foci were increased in size, may occur in more than one tissue layer and contain more
macrophages, lymphocytes, and heterophils. Granulomatous to pyogranulomatous inflam-
mation consisted of epithelioid macrophages, multinucleated giant cells, lymphocytes with
heterophils which were often degenerative and extended into multiple tissue layers. Mod-
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erate to marked pyogranulomatous inflammation consisted of epithelioid macrophages,
multinucleated giant cells, lymphocytes, and clusters of degenerate heterophils sometimes
associated with necrotic cores. The most severe lesions had a fully developed foci of lique-
factive necrosis mixed with degenerative heterophils forming an abscess. There was some
blending or overlap of the categories; for instance, a focus of marked pyogranulomatous
inflammation was reported just a short distance away from a developing abscess which
did not make it into the tissue section. Histological scoring revealed a generally robust
inflammatory response in unsensitized Saline:NMI control samples (Figure 5B). Histol-
ogy score severity was difficult to parse out among groups due to this finding. Notably,
NMI:NMI ∆dot/icm animals displayed the least robust histological scores at the lowest skin
testing dose site (0.25 µg) and histology scores from NMI:Dugway ∆dot/icm animals were
analogous to Saline:NMI unsensitized control guinea pigs (Figure 5C).
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Figure 5. Low-dose skin testing inflammatory responses are reduced following ∆dot/icm whole-
cell vaccination. Skin-testing site biopsy histological scoring is outlined in (A) with inflammatory
score (0–5), magnification (40×, 100\×), and brief description denoted. Guinea pigs are identified
as follows: 0—Saline:Saline, 25 µg, 1—Saline:NMI, 25 µg, 2—Saline:NMI, 2.5 µg, 3—Saline:NMI,
25 µg, 4—QVax:NMI, 25 µg, 5—QVax:NMI, 25 µg. Inflammatory scoring at euthanasia (day 21
following skin testing) is reported in (B). The legend is formatted as infection Strain:Skin testing WCV.
Histological scoring at the 0.25 µg site is highlighted in (C).

4. Discussion

Initial reports regarding Dugway strain characteristics included attenuation or avir-
ulence in a guinea pig model of infection [12] and high infectivity and antibody respon-
siveness in a hamster model of infection [13]. Compared to high antibody titers induced
by virulent strains in hamsters, guinea pigs, and mice, Dugway isolates only induced
comparable titers in hamsters. More recently, Dugway strain avirulence in guinea pig
infection models has been replicated [10,11]. Building on these studies, we address the
potential of Dugway strain virulence, heterologous WCV protective capacity, and post-
vaccination reactogenicity. Our guinea pig infection study data indicate that Dugway
isolate 7D 77-80 displays similar virulence potential to the exempted NMII strain (RSA 439,
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clone 4), widely considered to be avirulent or severely attenuated [6,25]. This assessment is
based on the effect of infection on body temperature, weight, and changes to the size and
histological composition of the spleen. Animals inoculated with Dugway ∆dot/icm yielded
a similar clinical profile compared to the saline mock-infected control group, apart from
slight splenomegaly in animals inoculated with 107 GE. This data complements former
reports of Dugway strain attenuation in the guinea pig model [10,11,13] and avirulence in
∆dot/icm strains [21]. Considering the physiologic relevance of the guinea pig model with
humans in the context of Q fever [28,29] and the lack of any reported human infections
involving Dugway strains, they are likely to exhibit attenuation in humans. Other phase I
C. burnetii isolates exhibit attenuation in guinea pig infection models, including G Q212,
Priscilla/MSU Goat Q177, and P Q238 [10,11]. These isolates are derived from human heart
valve samples (G Q212 and P Q238) and a goat cotyledon following abortion (Priscilla/MSU
goat Q177). Together, this information indicates factors beyond plasmid type and LPS
influence C. burnetii virulence potential.

Despite an incomplete understanding of protective antigens involved in WCV im-
munity, the role of full-length LPS/O-antigen has been well-established [25]. Given the
presence of full-length LPS in Dugway strains, heterologous protection displayed by Dug-
way WCV was expected. In a direct comparison to QVax®, Dugway WCV demonstrated
similar efficacy with neither breakthrough fever nor splenomegaly as evidenced at the low-
est dose of QVax®. Despite clear protective efficacy after challenge infection, demonstrated
by a lack of fever, body weight change, and splenomegaly, C. burnetii was detectable via
qPCR in spleens of all vaccinated animals. Notably, at 14 days post-infection, C. burnetii
splenic burden appears to be low and difficult to detect, likely due to host clearance. Re-
gardless, sterilizing immunity was not achieved for QVax® or Dugway WCV, although
the absence of clinical disease is notable. Further, a significant increase in mLN CD8+ T
cell frequency in the Saline:NMI group following infection was not reflected in vaccinated,
challenged animals. This observation recalls data reported in earlier studies [21] and
may indicate a role for cytotoxic CD8+ T cells in primary immunity. Here, we present a
comprehensive assessment of fever in the guinea pig model in response to QVax® dose
escalation in the intraperitoneal guinea pig infection model. This data will likely prove
useful for future comparative vaccine studies, as QVax® is considered the gold standard
for protection against Q fever.

In a guinea pig PVH model, the Dugway strain appeared to be as reactive as NMI and
QVax®. Further, regardless of sensitization strain (Dugway or NMI), Dugway skin-tested
animals appeared to experience reactogencitiy comparable to NMI skin-tested animals.
Histological characterization of skin-testing sites also appeared comparable between strains.
This indicates common PVH antigens shared among Dugway and Nine Mile strains. As
previously reported [21], ∆dot/icm strains appeared to be less reactive based on several
experimental endpoints, including erythema and induration. Indeed, Dugway ∆dot/icm
demonstrated the most promising reduction in reactogenicity. Beyond the potential contri-
bution of the T4BSS, additional antigens remain to be identified. Newly developed murine
PVH models may provide utility in further studies [19,20].

The host species from which Dugway strains were isolated from may contribute to
their unique characteristics in guinea pig models. Dugway strains were isolated from
deer mice (Peromyscus maniculatus) and kangaroo rats (Dipodomys ordii and D. microps).
Despite the recent identification of C. burnetii DNA in deer mice (Canada) and wild rodents
(Spain), further strain characterization was not performed [30,31]. In laboratory settings,
deer mice, kangaroo rats, and other wild rodent species were shown to be susceptible to
intraperitoneal C. burnetii infection, albeit to a lesser degree than guinea pigs [32,33]. Due
to the environmental range of C. burnetii, a hypothesis exists that describes wild rodents
as disease reservoirs with the potential involvement of ticks in the natural lifecycle of
the bacterium separate from or associated with the genesis of the livestock lifecycle of
infection [9,32,33]. It is tempting to suggest that wild rodent host adaptation may influence
C. burnetii characteristics such as virulence and behavior in a distinct host, such as a guinea
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pig or human. Further study is needed to address this hypothesis and the Dugway strain
group will likely prove a valuable resource in this effort.

The presented data build upon historic findings relating to unique C. burnetii Dugway
strains. Our characterization of Dugway host-pathogen interactions in vivo reveals an
attenuated strain with vaccine potential. Specifically, the Dugway ∆dot/icm strain appears
to be a viable WCV candidate, exhibiting significantly reduced reactogenicity. The unique
behavior of Dugway isolates paired with the large amount of unique genomic material
contained in these isolates raises many important questions. For example, why are Dug-
way strains attenuated, what do novel genomic regions encode and are they functionally
relevant, and does host adaptation play a role in Dugway strain behavior? This manuscript
highlights Dugway strain behavior in vivo and provides a framework for future studies
to address these inquiries. Indeed, the unique background and phenotype of the Dugway
strain group provide a valuable experimental platform for the study C. burnetii pathogenesis
and mechanisms of virulence.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/microorganisms10112261/s1, Figure S1: Infection strain LPS profiles-LPS
profiles of C. burnetii strains used in infection modeling are depicted via silver stain (A); Figure S2:
Splenic bacterial burdens post-infection-Guinea pig splenic bacterial burden at euthanasia (day 7 post-
infection) is represented by C. burnetii GE per spleen; Figure S3: Systemic vaccination tolerance-Body
temperature (A) and body weight change (B) kinetics are displayed for 25 days following vacci-
nation. The legend is formatted as-WCV:infection strain; Figure S4: Post-vaccination and challenge
flow cytometric analysis of secondary lymphoid organs-Mesenteric lymph node and spleen cellularity
at euthanasia (day 14 following challenge) are depicted in A and B, respectively. Flow cytometric
gating strategies for T cells (C) and B cells (D) are displayed. Lymph node B cell (E), CD4+ T cell
(F), and CD8+ T cell (G) frequency are displayed. Splenic B cell (H), CD4+ T cell (I), and CD8+ T
cell (J) frequency are displayed. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; Figure S5: PVH sensitization
response-Body temperature (A) and body weight change (B) kinetics are displayed for 9 days following
infection. The legend is formatted as- infection strain:skin testing WCV; Figure S6: PVH erythema
kinetics and early phase induration response-Erythema measurements for days 0, 7, 14, and 21 following
skin testing (A). Early phase induration severity scores (day 7 post-skin test) are displayed for in-
dividual animals (B). Figure S7: Systemic PVH responses-Body temperature change (A) and body
weight change (B) kinetics are displayed for 21 days following skin testing. The legend is formatted
as infection strain:skin testing WCV. Spleen weight (C), spleen cellularity (D), and mesenteric lymph
node cellularity (E) are displayed from tissues harvested at euthanasia (day 21 following skin testing)
* p ≤ 0.05; *** p ≤ 0.001.
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