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Abstract: Bovine mastitis (BM) is one of the most common diseases of dairy cattle, causing eco-
nomic and welfare problems in dairy farming worldwide. Because of the predominant bacterial
etiology, the treatment of BM is mostly based on antibiotics. However, the antimicrobial resis-
tance (AMR), treatment effectiveness, and the cost of mastitis at farm level are linked to limitations
in the antibiotic therapy. These scenarios have prompted the quest for new preventive options,
probiotics being one interesting alternative. This review article sought to provide an overview
of the recent advances in the use of probiotics for the prevention and treatment of BM. The cel-
lular and molecular interactions of beneficial microbes with mammary gland (MG) cells and the
impact of these interactions in the immune responses to infections are revised. While most re-
search has demonstrated that some probiotics strains can suppress mammary pathogens by compet-
itive exclusion or the production of antimicrobial compounds, recent evidence suggest that other
probiotic strains have a remarkable ability to modulate the response of MG to Toll-like receptor
(TLR)-mediated inflammation. Immunomodulatory probiotics or immunobiotics can modulate
the expression of negative regulators of TLR signaling in the MG epithelium, regulating the ex-
pression of pro-inflammatory cytokines and chemokines induced upon pathogen challenge. The
scientific evidence revised here indicates that immunobiotics can have a beneficial role in MG
immunobiology and therefore they can be used as a preventive strategy for the management of
BM and AMR, the enhancement of animal and human health, and the improvement of dairy cow
milk production.

Keywords: probiotics; bovine mastitis; immunomodulation; bovine mammary epithelial cells

1. Introduction

Bovine mastitis (BM) is one of the most prevalent and costly diseases of dairy cattle
worldwide. BM refers to inflammation of the mammary gland (MG), which greatly affects
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milk production and impacts product quality, animal health and welfare, the economic
profit of the dairy industry, and public health [1–3]. Numerous pathogens, including
bacteria, viruses, and fungi can induce a variety of clinical symptoms, from asymptomatic
sub-clinical infection to severe acute MG inflammation [4,5]. Acute inflammation brought
on by the intense activation of immune cells by cytokines and chemokines production
is one of the major clinical symptoms of MG infection [6,7]. The cure rate of mastitis
depends on the species of mastitis-causing pathogens and the efficacy of antibiotics used,
as well as the host immune status [8–10]. However, the irrational use of antibiotic medica-
tions frequently results in the emergence of antimicrobial resistance (AMR), which poses
a serious threat to the wellbeing of dairy cattle. Additionally, AMR due to BM might pose
serious risks to public health through the spread of AMR bacterial infections and drug
residues through the consumption of raw milk from cows that have received antibiotic
treatment [11]. Another major issue for the dairy sector is that the presence of antibiotic
residues in milk can interfere with the fermentation process, particularly in cheese and
yogurt production [1]. Due to both the low frequency of mastitis during lactation being
cured and the high probability of AMR genes spread to pathogens by antibiotic ther-
apy [12,13], it is necessary to review the traditional antibiotic-based treatment strategy
and look for innovative and sustainable therapeutic alternatives. Herbal remedies, home-
opathy, probiotics, genetic selection, and vaccination have been investigated as potential
alternatives to antibiotics for the treatment or prevention of mastitis [14–17]. Compared
to herbal therapy, homeopathy, and vaccination, it was found that probiotics may have
a superior efficacy in terms of cost and effectiveness. In addition, the use of probiotics
may reduce AMR, and it is environment friendly [18]. Thus, probiotics, particularly those
with immunomodulatory capacities or immunobiotics, could be an interesting alternative
to control or treat BM [3,19–25]. Immunobiotics have beneficial effects on human and
animal health by modulating the host immune responses and are considered safe for
human and healthy livestock production [19]. While most research has demonstrated that
some probiotic strains can suppress mammary pathogens by competitive exclusion or
the production of antimicrobial compounds, recent evidence suggest that other probiotic
strains have a remarkable ability to modulate the response of MG to Toll-like receptor
(TLR)-mediated inflammation. In this regard, using an originally established bovine
mammary epithelial (BME) cell line, our group demonstrated that immunobiotic lactic
acid bacteria (LAB) strains could be effectively used in the prevention of BM through
the modulation of mammary epithelium immune responses [20]. The application of
immunobiotics in the field of MG immunobiology is a novel concept. According to
several research works, probiotics in dairy cows or breast-feeding women have report-
edly inspired claims of usefulness for preventing or treating mastitis [26–30]. However,
despite the amount of research being carried out on this topic, research is still needed
to conclusively demonstrate the efficacy of immunobiotics and to clarify in detail their
mechanisms of action. Considering the current understanding of host-bacterial interaction
in MG mucosa, this review sought to explore whether the probiotic concept fits the MG
biology, and if mastitis prevention or treatment is amenable to probiotic/immunobiotic
intervention. A summary of scientific literature on the use of putative probiotics in mastitis
trials is only taken into consideration here because the small number of studies did not
allow meta-analysis. The review also explores the cellular and molecular interactions of
immunobiotic LAB with bovine mammary epithelial cells and the transcriptional markers
of mastitis, providing a novel preventive approach for the effective control of mastitis in
dairy cows.

2. Global Economic Impact of Bovine Mastitis

BM causes enormous economic losses to the dairy industry. These economic losses
are due to the treatment, production loss, changes in product quality, discarded milk,
extra labor, culling, poor animal welfare, and the risk of other diseases [4]. Mastitis causes
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one of the biggest expenses for the dairy industry worldwide, including India [31], Banglad-
esh [32], Japan [33,34], Canada [35], the USA [36], Colombia [37], Netherlands [38], the
United Kingdom [5], and Australia [39,40] for treatment and control. The cost or impact of
mastitis on the economy varies by country, and even by region within a country, depending
on market condition and milk quality regulations. Ultimately, BM contributes to potential
financial losses to the farmer and the dairy industry. The anticipated losses to BM are related
to 31% in milk production, 24% treatment costs, 18% wasted milk, 4% excess labor demand,
and 23% premature culling [41,42]. A total annual cost due to BM has been estimated as
USD 19.7 to USD 32 billion in the global dairy industries [36]. Annual economic losses
due to BM are projected to be USD 2 billion in the United States [36], USD 0.31 billion
in Canada [35], USD 0.8 billion in Colombia [37], USD 1.3 billion in Australia [39,40],
USD ~1.55 billion in the EU [39], USD ~0.77 billion in Japan [33,34], USD ~0.002 billion in
Bangladesh [32], and USD ~0.8 billion in India [31]. A single case of clinical mastitis may
lead to an economic loss that ranges between USD 128 and USD 444 [41,42]. According to
these data, mastitis has a significant economic impact on dairy cattle production.

3. Prevention and Control Strategies of Bovine Mastitis

Currently, most BM management strategies focus on prevention during milking
by following hygienic milking practices and a good management system. Other al-
ternative approaches for the control of mastitis include vaccination, antibiotics, im-
munotherapy, bacteriocins, bacteriophages, antimicrobial peptides, stem cell therapy,
native secretory factors, diet, dry cow and lactation therapy, genetic selection, botanicals,
nanoparticle technology-based therapy, and probiotics [18]. The most widely utilized
techniques to treat mastitis are antibiotic therapy and vaccination, which are not always
effective in the control of BM. Extensive and uncontrolled use of antibiotics for the
treatment along with the induction and spread of AMR in mastitis has led to reduced
responsiveness to antibiotic therapy [43,44]. On the other hand, vaccination has lim-
ited effectiveness against BM because of the variety of microorganisms involved in its
development [24,45,46]. Even though there are several commercial vaccines available,
the majority do not provide complete protection, and are also expensive, limiting their
extensive application [18,47]. Thus, alternative tactics are required to efficiently man-
age mastitis.

The high-throughput sequencing of bacterial 16S rRNA genes performed in the past
few years has demonstrated the existence of bovine milk and MG microbiota [48]. In fact,
a diverse range of opportunistic and commensal bacteria can inhabit the intramammary
ecosystem [49,50]. Metagenomic investigations have demonstrated diverse bacterial groups
in MG and milk samples obtained from non-mastitis quarters of dairy cows. Furthermore,
there is growing evidence that the reduction of the diversity or the alteration of MG sig-
nificantly augment the susceptibility to BM [49,50]. It is postulated that MG commensal
bacteria help the bovine host to resist the pathogens’ colonization by several mechanisms,
including competition for nutrients, conditioning the microecosystem to disfavor pathogen
growth through organic acid production, the synthesis of antimicrobial compounds, the
inhibition of adhesion to epithelial surfaces, and the regulation of MG epithelium immu-
nity [49,50] (Figure 1). Recent studies revealed that probiotics may be used as a novel tool
to treat or prevent BM while also addressing the issue of emerging AMR [3,20,27]. One
innovative preventive strategy for the management of BM is the use of probiotics with
immunomodulatory capacities or immunobiotics.
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4. In Vivo Studies of Probiotics for the Prevention or Treatment of Bovine Mastitis

The microorganisms that have been used as probiotics for the prevention or treatment
of BM are presented in Table 1. Some studies have evaluated the ability of probiotics to
protect against BM using mice models. L. lactis LMG 7930 was shown to possess antago-
nistic effects against ruminant mastitis-causing pathogens [51]. Campeiro et al., 2017 [51]
conducted an in-depth investigation of the mammary gland immune response induced by
intramammary inoculum of a live culture of the LMG 7930 strain using the mouse mastitis
model. The work reported that L. lactis LMG 7930 injected into the mouse inguinal glands
before the injection of Staphylococcus chromogenes, decreased pathogen loads by improving
the innate immune response. More recently, it was shown that Enterococcus mundtii H81,
originally isolated from the milk of healthy dairy cows, injected to the nipple duct before S.
aureus infection reduced neutrophil infiltration and TNF-α and IL-1β production, as well as
the phosphorylation of p65 nuclear transcription factor kappa B (NF-κB) and IκB [52].

To combat mastitis, probiotics have also been administered to cows by the oral route
or through an intramammary infusion. When LAB such as L. lactis are infused into the
MG quarters, they induce significant increases in the recruitment of neutrophils and lym-
phocytes to the udder [17]. The administration of live culture of L. lactis DPC3147 into
the MG enhance the innate immune response [17]. The expression of IL-1β and IL-8 genes
were markedly increased in DPC3147-treated animals, with the highest expression corre-
sponding to high somatic cell count in bovine mammary secretion [17,53]. Moreover, live
cultures of L. lactis DPC3147 showed the same potential as antibiotic therapy for the eradi-
cation of persistent subclinical mastitis [17]. In addition, different strains of Lactobacillus,
Bacillus, Bifidobacteria, and Enterococcus could reduce inflammation of the MG and control
the milk microorganisms in dairy cows with mastitis [48]. Peng et al. (2013) [7] found that
ultrasonicated Enterococcus faecium SF68 is compatible with cow MG and is an enhancer of
innate immunity by accelerating neutrophil chemotaxis immediately following milking
and lowering the somatic cell count (SCC) in milk. The treatment with Bifidobacterium breve
and L. lactis subsp. lactis LMG 7930 reduces the infection rate of subclinical mastitis and
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SCC in milk [54,55]. Furthermore, the B. breve and L. lactis DPC3147 used in intramammary
infusion lessens chronic subclinical mastitis in cows [51,54]. Another study observed that
the intramammary infusion of L. lactis subsp. lactis CRL1655 and Lactobacillus perolens
CRL1724 can mitigate the mastitis and lower SCC in milk by inducing a rise in IgG levels in
blood and milk [29]. Animals that had received L. lactis CRL1655 and L. perolens CRL1724
infusions did not show any clinical symptoms related to MG infection. Of note, the blood
serum of lactobacilli-treated animals had markedly enhanced opsonophagocytic activity
against Staphylococcus spp. and improved expression of the proinflammatory cytokines
IL-1β, IL-8, and TNF-α [29]. Intramammary treatment with inactivated cultures of Lacticas-
eibacillus rhamnosus GG to quarters naturally affected by subclinical mastitis has a transient
pro-inflammatory activity assessed by low SCC and is capable of modifying the microbiota
of milk [55]. These findings revealed that different probiotic strains have the potential to
prevent mastitis by antagonizing pathogens, relieving MG inflammation, and regulating
milk microorganisms (Figure 2).

Microorganisms 2022, 10, x FOR PEER REVIEW 5 of 17 
 

 

perolens CRL1724 can mitigate the mastitis and lower SCC in milk by inducing a rise in 

IgG levels in blood and milk [29]. Animals that had received L. lactis CRL1655 and L. 

perolens CRL1724 infusions did not show any clinical symptoms related to MG infection. 

Of note, the blood serum of lactobacilli-treated animals had markedly enhanced opso-

nophagocytic activity against Staphylococcus spp. and improved expression of the proin-

flammatory cytokines IL-1β, IL-8, and TNF-α [29]. Intramammary treatment with inacti-

vated cultures of Lacticaseibacillus rhamnosus GG to quarters naturally affected by subclin-

ical mastitis has a transient pro-inflammatory activity assessed by low SCC and is capable 

of modifying the microbiota of milk [55]. These findings revealed that different probiotic 

strains have the potential to prevent mastitis by antagonizing pathogens, relieving MG 

inflammation, and regulating milk microorganisms (Figure 2). 

 

Figure 2. Effect of probiotic and immunobiotic microorganisms on the susceptibility to bovine mam-

mary gland infections. 

On the other hand, there are fewer studies that have evaluated the effect of orally 

administered probiotics for improving mastitis in animals. It was observed that the addi-

tion in the feed of the marine-derived Bacillus amyloliquefaciens GB-9 enhanced immunity 

and protected against mastitis in Saanen dairy goats [56]. It was also demonstrated that 

the feeding of Holstein cows with supplemental Saccharomyces cerevisiae and L. lactis re-

duced MG inflammation and the proportion of microorganisms with the ability to cause 

BM, including Enterococcus and Streptococcus [53]. Similarly, the addition to the diet of a 

symbiotic formulated with medicinal plants (Taraxacum officinalis and Zingiber officinalis, 

and Lactobacillus and S. cerevisiae) significantly reduced the prevalence of subclinical mas-

titis [57]. In addition, supplements of S. cerevisiae improved the calcium level in blood [58] 

and tended to reduce mastitis. We evaluated the capacity of Bacillus subtilis C-3102, which 

has been extensively used as a probiotic feed additive for livestock, to impact on dairy 

cows with a previous history of mastitis [59]. The prophylactic administration of the C-

3102 strain significantly reduced the mean SCC in milk. When blood immune cells were 

analyzed, no differences were found in the levels of granulocytes, monocytes, and B cells 

between control and C-3102-treated animals. However, cows receiving B. subtilis C-3102 

had an increased proportion of CD4+ T cells and lower levels of the inflammatory WC1+γδ+ 

T cells and CD8+γδ+ T cells. In addition, bovine peripheral blood dendritic cells were 

Figure 2. Effect of probiotic and immunobiotic microorganisms on the susceptibility to bovine
mammary gland infections.

On the other hand, there are fewer studies that have evaluated the effect of orally ad-
ministered probiotics for improving mastitis in animals. It was observed that the addition
in the feed of the marine-derived Bacillus amyloliquefaciens GB-9 enhanced immunity and
protected against mastitis in Saanen dairy goats [56]. It was also demonstrated that the
feeding of Holstein cows with supplemental Saccharomyces cerevisiae and L. lactis reduced
MG inflammation and the proportion of microorganisms with the ability to cause BM, in-
cluding Enterococcus and Streptococcus [53]. Similarly, the addition to the diet of a symbiotic
formulated with medicinal plants (Taraxacum officinalis and Zingiber officinalis, and Lacto-
bacillus and S. cerevisiae) significantly reduced the prevalence of subclinical mastitis [57]. In
addition, supplements of S. cerevisiae improved the calcium level in blood [58] and tended
to reduce mastitis. We evaluated the capacity of Bacillus subtilis C-3102, which has been
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extensively used as a probiotic feed additive for livestock, to impact on dairy cows with
a previous history of mastitis [59]. The prophylactic administration of the C-3102 strain
significantly reduced the mean SCC in milk. When blood immune cells were analyzed, no
differences were found in the levels of granulocytes, monocytes, and B cells between control
and C-3102-treated animals. However, cows receiving B. subtilis C-3102 had an increased
proportion of CD4+ T cells and lower levels of the inflammatory WC1+γδ+ T cells and
CD8+γδ+ T cells. In addition, bovine peripheral blood dendritic cells were analyzed, and
it was found that the C-3102 treatment increased CD11c+CD172ahigh populations, while
it did not affect the levels of CD11c+CD172adim dendritic cells [59]. Therefore, the oral
ingestion of probiotics has the potential to offer beneficial effects beyond intestinal health,
but the mechanism underlying these effects in distal mucosal sites such as the MG in the
bovine host remains largely unknown.

Table 1. Summary of in vivo studies of probiotics against bovine mastitis.

Species Administration
Route In-Vivo Model Mechanism of Probiotics

against Mastitis References

L. lactis LMG 7930 Injection through
inguinal glands CD-1 mice

Staphylococcus chromogenes ↓
IL-1β ↑

TNF-α ↑
[51]

E. mundtii H81 Intramammary
infusion BALB/c mice

Pathogens ↓
NF-κB ↓

Inflammatory response ↓
[52]

L. lactis DPC3147 Infusion via streak
canal Holstein–Friesian cows

Lymphocytes ↑
Neutrophils ↑

Acute phase protein
haptaglobin ↑

Milk amyloid A ↑

[17]

L. lactis DPC3147 Intramammary
infusion

Holstein–Friesian, New
Zealand Friesian,
Norwegian Red,
Normande and

Montebelliards cows

Pathogens ↓
Intramammary response ↑ [29]

L. lactis DPC 3147 Intramammary
infusion Holstein Friesian cows IL-8 ↑

Somatic cell count ↓ [60]

L. rhamnosus GG Intramammary
inoculation

Multiparous water
buffaloes (Bubalus bubalis)

Leukocytes ↑
Pseudomonas ↓

Somatic cell count ↓
[55]

E. faecium SF68 Intramammary
infusion Holstein cows

Innate immunity ↑
Metalloproteinase 9 ↑

Neutrophil infiltration ↓
[7]

B. breve Intramammary
infusion Holstein cows

Pathogens ↓
Innate immune response ↑

Somatic cell counts ↓
[61]

B. breve Intramammary
Infusion Holstein cows Pathogens ↓

Innate immune response ↑ [54]

L. lactis subsp. lactis
CRL1655; L. perolens

CRL1724

Intramammary
infusion Holstein cows

Pathogens ↓
Innate immune response ↑

Somatic cell counts ↓
[30]

Saccharomyces cerevisiae and
Lactobacillus Oral feed Fleckvieh cows Prevalence of subclinical

mastitis ↓ [58]

Saccharomyces cerevisiae and
L. lactis Oral feed Holstein cows

Mammary gland
inflammation ↓
Enterococcus ↓
Streptococcus ↓
Lactococcus ↑

[48]
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Table 1. Cont.

Species Administration
Route In-Vivo Model Mechanism of Probiotics

against Mastitis References

Bacillus subtilis C-3102 Oral feed Holstein cows

Inflammation ↓
Blood CD4+ T cells ↑

Blood CD11c+CD172ahigh

dendritic cells ↑
Blood WC1+γδ+ T ↓

Blood CD8+γδ+ T cells ↓

[59]

Abbreviations: ↑, increased; ↓, decreased.

5. In Vitro Studies of Probiotics for the Prevention or Treatment of Bovine Mastitis

The use of probiotics in animal trials has been shown to improve udder health, reduce
udder inflammation by lowering the pathogen load, and lower the SCC in milk, according
to the in vivo research described above (Table 1). However, there is still no clarity on the
precise underlying mechanisms of the function of probiotics in the prevention of BM in cat-
tle due to the limitation of adequate mammary experimental systems related to the bovine
host. Several research groups have performed in vitro studies to evaluate the effect of pro-
biotics against predominant mastitis-causing pathogens [62–69]. It was shown that several
microorganisms can beneficially modulate parameters related to the control or prevention
of BM (Table 2). Studies have reported the ability of potential probiotic strains to induce
inhibition and antagonistic activity against relevant BM pathogens, including S. aureus, S.
agalactiae, S. haemolyticus, S. simulans, S. vitulinus, Listeria innocua, and L. monocytogenes.

Considering that the mammary epithelium acts as a first line of defense against pathogens
causing BM, several studies focused on the in vitro evaluation of potential probiotic strains
using bovine mammary epithelial cells (Table 2). The use of primary cells for in vitro inves-
tigation has the benefits of reflecting appropriate mitogenic responses as well as preserved
physiological functions, including those related to the generation of immune responses [70].
However, the isolation of epithelial cells from MG tissue is costly, difficult, and allows only
single and short-term experiments. For this reason, the use of cell lines has advantages over
primary cultures because of their replicate capability by numerous passages and the retention
of reasonably constant cellular characteristics [3]. Different types of cell lines, including bovine
mammary epithelial cells and bovine teat canal epithelial cells, have been used to evaluate the
efficacy of potential probiotic strains against mastitis pathogens (Table 2). The teat canal of
a cow is a longitudinally folded cylinder-shaped body covered with an epithelial cell layer,
which has contact with the teat lumen and the environment [12,30]. Thus, some studies
concentrated in BTCEC cells as in vitro models. It was shown that LAB strains including L.
lactis subsp. lactis CRL 1655 can adhere to teat canal epithelial cells and inhibit the growth
of S. aureus, S. epidermidis, S. xylosus, S. uberis, S. agalactiae, and E. coli [30,71]. Similarly, it
was demonstrated that LAB strains may interfere with the adhesion of S. aureus to the MDA-
MB-231 [59] and bMEC [72] cell lines as well as decrease the internalization of S. agalactiae, S.
intermedius, and S. aureus in BME-UV1 cells [56].

When pathogenic bacteria enter the udder lumen via the teat canal, they interact with
bovine mammary epithelial cells to establish colonization. This microbe invasion is sensed by
the host through pattern recognition receptors (PRRs), such as the Toll-like receptors (TLRs)
expressed in bovine mammary epithelial cells that detect microbial associated molecular
patterns (MAMPs). This pathogen–epithelial cell crosstalk induces the generation of a local
inflammatory response [78]. Some studies have also focused on the ability of potential
probiotic strains to modulate the immune responses of bovine mammary epithelial cells,
particularly in their capacity to beneficially regulate the production of inflammatory cytokines
and chemokines (Table 2). It was observed that the treatment of bMEC cells with L. lactis
V7 [57], L. gasseri LA806 [13], and other LAB strains [9] differentially modulated the production
of inflammatory factors in response to S. aureus or E. coli challenges. Similarly, L. lactis LL11 was
shown to reduce TNF-α production in BME-UV1 cells after challenge with BM pathogens [32].
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Table 2. Summary of in vitro studies of probiotics against bovine mastitis.

Species/Strains Experimental Mode Probiotics Effects References

L. bulgaricus In vitro (SDS-PAGE) Inhibition S. aureus and S. agalactiae by
bacteriocin production [62]

L. acidophilus DSM 20079, L.
plantarum ATCC 8014, L. casei ATCC

39392, L. reuteri ATCC 23272

In vitro (Well diffusion
and Co-culture)

Inhibition and antagonistic activity
against S. aureus [63]

L. helveticus In vitro (Well diffusion
and Co-culture)

Antimicrobial activity against S. aureus, S.
haemolyticus, S. simulans, S. vitulinus [64]

B. amyloliquefaciens, B. cereus, B.
licheniformis, B. subtilis ATCC 21332 In vitro (Agar diffusion) Inhibition of Gram-positive bacteria [65]

L. sakei EIR/BG-1 In vitro (Well diffusion)
Antimicrobial and antibiofilm activity against S.
agalactiae, S. dysgalactiae subsp. dysgalactiae, and

methicillin resistant S. aureus
[66]

L. rhamnosus ATCC 7469, L.
plantarum 2/37

In vitro (Culture based
method)

Antimicrobial activity against S. aureus, S.
xylosus, and S. epidermidis by biofilm production [67]

L. plantarum In vitro (Phage mixture) Antimicrobial activity against S. aureus [68]
Enterococcus hirae CRL 1842, E. hirae
B6.1B, Enterococcus hirae CRL 1846,

Enterococcus hirae CRL 1847,
Enterococcus hirae CRL 1848,
Enterococcus hirae CRL 1837,
Enterococcus hirae CRL 1834,
Enterococcus hirae CRL 1835

In vitro (Diffusion plate
technique)

Inhibition of L. innocua, L. monocytogenes, and S.
dysgalactiae by bacteriocin production [69]

L. paracasei, L. plantarum, L. lactis,
L. rhamnosus BTCEC

Adhesion to teat canal epithelial cells and
inhibition of the growth of S. aureus, S.

epidermidis, S. xylosus, S. uberis, S. agalactiae,
and E. coli

[30]

L. perolens, L. lactis subsp. Lactis
CRL 1655 BTCEC

Adhesion to teat canal epithelial cells and
inhibition of the growth of S. dysgalactiae

and S. aureus
[71]

L. casei BL23 bMECs Anti-inflammatory properties and inhibition of
the internalization of S. aureus [73]

L. lactis V7 bMECs Modulation of CXCL8 production and inhibition
of cell invasion by S. aureus and E. coli [74]

L. casei CIRM-BIA 667 bMECs Adhesion to teat canal epithelial cells and
inhibition of the growth of S. aureus [72]

L. brevis 1595, L. brevis 1597, L.
plantarum 1610, L. casei 1542, L. lactis

1596, L. garvieae 1605
bMECs Anti-inflammatory properties (reduction of IL-8)

against E. coli [9]

L. gasseri LA806 bMECs
Reduction of proinflammatory cytokines (IL-8,
IL-6, IL-1α, TNF-α) and prevention of S. aureus

colonization
[13]

P. stilesii HOL36L1, L. lactis
GIRO4S8, W. paramesenteroides

GIR46L4, W. confusa GIR48L1, W.
cibaria GIRO27L2, L. plantarum

GUZ3L2, L. paracasei GIR53L1, S.
lutetiensis HOL36L2

MDA-MB-231 Interference with adhesion and inhibition
of S. aureus [75]

L. lactis LMG 7930 BME-UV1
Reduction of the internalization of S. aureus, S.

agalactiae, S. aureus, S. chromogenes, S. epidermidis,
S. intermedius, and L. cremoris

[51]

L. lactis LL11 BME-UV1 Reduction of TNF-α against mastitis pathogen [76]
L. rhamnosus GR-1 bMECs Ameliorates E. coli induced Inflammation [77]

L. acidophilus CRL2074 BME
Reduction of proinflammatory cytokines and

chemokines (IL-1α, IL-1β, MCP-1, IL-8, CXCL3)
induced by E. coli derived LPS

[3]

Abbreviations: bovine mammary epithelial cells (BME, BME-UV1, bMEC, bMECs); bovine teat canal epithelial
cells (BTCEC).
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Considering that E. coli infection in the bovine mammary gland often results in clinical
mastitis, which is characterized by acute symptoms of inflammation [79], and that Gram-
negative bacteria induce inflammatory responses through lipopolysaccharide (LPS) [80],
some studies focused in the TLR4 signaling pathway in the MG epithelium. It was re-
ported that the challenge of primary bovine mammary epithelial cells with E. coli induce
a remarkable inflammatory response characterized by the increased expression of TLR4,
NOD1, NOD2, pyrin domain-containing protein 3 (NLRP3), and the serine protease caspase
1 [77]. These changes were associated with the up regulation of TNF-α, IL-1β, IL-6, IL-8,
and IL-18. Of note, the treatment of MG cells with L. rhamnosus GR-1 significantly reduced
the expression of all inflammatory genes. Furthermore, the authors reported an improved
expression of IL-10 in bMECs treated with the GR-1 strain. Our group developed a bovine
mammary epithelial cell line (BME cells) for the evaluation of probiotics/immunobiotics in
terms of their capacity to modulate pro- and anti-inflammatory responses against pathogen
invasion (2002). We demonstrated that TLR4 is strongly expressed in BME cells and that
LPS stimulation induces a remarkable transcriptomic response characterized by the up
regulation of inflammatory genes [27]. In our experience, TLR4 activation in BME cells
resulted in the expression of IL-1α, IL-1β, MCP-1, CXCL2, CXCL3, CXCL5, CXCL8, CXCL9,
and C6, inflammatory genes that were not significantly modified after the activation of
the TLR2 signaling pathway [27]. Our results showed that the in vitro BME cell system
could be of value for the evaluation of immunomodulatory treatments aimed at bene-
ficially modulating inflammation in the bovine mammary gland. Also, the findings of
Rose et al. (2017) [81] corroborate to our study. In this regard, using several LAB strains
isolated from the feedlot cattle environment [82], we studied the capacity of potential
immunobiotic strains to modulate TLR4-mediated inflammation in BME cells. We found
a strain dependent capacity of LAB to modulate the innate immune response in bovine
mammary epithelial cells when BME cells were treated with lactobacilli before challenge
with LPS. L. acidophilus CRL2074 decreased the expression of IL-1α, IL-1β, MCP-1, IL-8,
and CXCL3, while L. rhamnosus CRL2084 diminished the expression of IL-1β, MCP-1, and
IL-8 in BME cells challenged with E. coli derived LPS [3]. Of note, our study was the first
in demonstrating that immunomodulatory lactobacilli may exert their beneficial effects
on LPS-induced inflammation by differentially modulating the expression of negative
regulators of the TLR4-signaling pathway in bovine mammary epithelial cells. In fact, L.
acidophilus CRL2074 was able to upregulate A20, SIGIRR, and Tollip expression, whereas L.
rhamnosus CRL2084 only upregulated the expression of Tollip, which was consistent with its
lower capacity to modulate inflammatory genes in BME cells [3]. The information obtained
in our in vitro studies allows us to propose a potential mechanism of action to explain
the immunomodulatory effect of LAB strains such as L. acidophilus CRL2074 (Figure 2).
Immunobiotic lactobacilli would interact with BME cells and be recognized by immune
receptors such as TLR2, inducing the up regulation of negative regulators of TLR-signaling.
The subsequent challenge of BME cells with LPS or Gram-negative pathogens such as E. coli
would occur in the presence of the transcriptomic changes already induced by lactobacilli,
which would differentially regulate TLR4-MyD88-NF-kB signaling cascade, reducing the
secretion of inflammatory cytokines and chemokines. Further studies are necessary to find
the precise bacterial molecules and immune receptors involved in the induction of TLR
negative regulators in the MG epithelium by immunobiotic bacteria, which would also
explain the differences between the strains.

6. Possible Routes for Probiotics to Control the Bovine Mastitis

In practical terms, probiotics can be applied to bovine hosts through different routes,
including intramammary, topical, or orally.

6.1. Local Administration of Probiotics

The intramammary administration of probiotics would have the benefit to act at
different levels, as follows: (a) induce the colonization of probiotic strains that would
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locally produce substances with the capacity to inhibit the growth of pathogens as well as
interfere with their adhesion, and/or (b) modulate the local mucosal immune response,
impacting both innate and adaptive immunity (Figure 2). Innate immune mechanisms
predominate in the early stage of infection in the MG, and they are mediated not only by
epithelial cells but also by local immune cells such as macrophages. These phagocytes are
in the alveoli and can rapidly recognize and phagocytize bacteria that enter the MG cistern.
In response, activated macrophages release pro-inflammatory cytokines and chemokines
that induce the recruitment and activation of immune cells, including neutrophils and
natural killer cells (NK) that help to control the infection [3,20,27]. In vitro models based
on macrophages from bovine MG are not available and therefore it is not possible to assess
the impact of intramammary administered probiotics on the ability of these immune cells
to respond to pathogens. The development of in vitro models based on macrophages from
the bovine mammary mucosa would be of great value, not only to predict the impact of
probiotics on the local innate immune responses but also on adaptive immunity, considering
that the activated macrophages can modulate the responses mediated by B and T cells
through their membrane molecules and the production of biological mediators.

Another interesting line of research that has been raised in recent years is the topical
administration of probiotics and the use of bacterial colonizers at the teat apex of MG. As
mentioned earlier, the port of entry for most MG pathogens is the teat canal. The function
of the teat sphincter muscle is to keep the orifice closed and thereby isolate the interior
of the MG. This means that any damage to this structure is related to an increase in the
incidence of mastitis. The teat canal is lined with keratin, which provides an additional
physical barrier, preventing bacterial migration towards the MG cistern [83,84]. Esterified
and non-esterified fatty acids (myristic, palmitoleic, and linoleic) function as bacteriostatics
and are associated with keratin. Moreover, certain cationic proteins associated with keratin
can bind to pathogens, increasing their susceptibility to osmolarity changes [83,85].

Of note, the teat skin, particularly the teat apex proximal to the entrance of the teat
canal, and the teat canal itself are colonized by microbiota. Recent research has begun to
determine the composition of this microbial population and evaluate its impact on the
resistance to infections. It was shown that one member of the microbiota is Corynebacterium
bovis. This species of bacterium was considered a minor mastitis pathogen with limited
clinical significance [86], while more recent studies have suggested that it is part of the udder
core microbiota, with a potential protective role against dysbiosis [87]. C. bovis has become
of interest because quarters harboring this bacterium are less likely to become infected
with other more severe pathogens. Compared to uninfected mammary quarters, those that
had shed C. bovis were more resistant to an experimental intramammary challenge with
S. aureus. However, they were more sensitive to a challenge with S. agalactiae [88]. It was
also shown that bacteriocins produced by certain Corynebacterium species colonizing the
teat canals may inhibit the growth of major mastitis pathogens [89]. Thus, the colonization
of cattle teats with the members of teat skin microbiota might be a potential tool for the
prevention of bovine mastitis. A similar approach is being explored with members of
the respiratory commensal microbiota, including strains of the species Corynebacterium
pseudodiphtheriticum [90,91] and Dolosigranulum pigrum [92], which are used to effectively
improve resistance against the bacterial and viral pathogens of the respiratory tract. Further
studies are needed to step forward in the positioning of certain strains of the local microbiota
as next-generation probiotics for MG.

6.2. Oral Administration of Probiotics

As mentioned before, the oral ingestion of probiotics has the potential to offer benefi-
cial effects beyond intestinal health, positively impacting bovine MG. Few studies have
evaluated the effect of orally administered probiotics on the BM (Table 1). In addition to
those studies, it was shown that the oral administration of L. casei Zhang and L. plantarum
P-8 significantly reduced SCC and augmented the production of milk as well as the concen-
trations of milk IgG, lactoferrin, and lysozyme [93]. Although pathogens associated with
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mastitis or parameters that evaluate the local inflammatory response were not studied in
this work, the results gave indirect evidence of the beneficial effect of orally administered
probiotics on MG. The mechanisms involved in the beneficial effects induced by orally
administered probiotics/immunobiotics in the bovine host remains largely unknown. Some
studies carried out in humans and mice could give clues to these mechanisms. Two hy-
potheses, not mutually exclusive, have been proposed to explain the effect in MG induced
by orally administered probiotics: (a) entero-mammary bacterial migration, and (b) the
modulation of the common mucosal immune system.

The concept of entero-mammary bacterial translocation involves the transport of live
bacteria from the gut to the MG [94], and studies have suggested that antigen presenting
cells (dendritic cells and macrophages) play an important role in this process [95]. It was
demonstrated that the intestinal microbiota obtained from cows with mastitis transferred
to Germ-free mice via the fecal microbiome transplantation method induced the develop-
ment of mastitis in recipient mice [96]. Microbiota from cows with mastitis enhanced the
expression of several inflammatory markers in murine mammary glands, including NF-κB,
MAPK-ERK, MAPK-p38, MAPK-JNK, and STAT3, and the production of IL-6 and TNF-α.
Of note, this effect was not observed when the intestinal microbiota were obtained from
healthy cows. Interestingly, when L. casei Zhang was used as a supplement in the intestinal
microbiota from cows with mastitis, the induction of mastitis in mice and the inflammatory
response were significantly reduced [96]. Similarly, other recent works demonstrated the
capacity of the fecal transfer of the intestinal microbiota from cows with mastitis to induce
MG disease in Germ-free mice [97]. The studies suggest that intestinal microorganisms, in-
cluding orally administered probiotics, could be transported to the MG. However, whether
or not the two ecological niches are inter-related to undergo constant microbial exchanges
still need to experimentally proven.

On the other hand, it was demonstrated that intestinal microbiota and orally adminis-
tered probiotics can regulate the so called “common mucosal immune system”, exerting
beneficial effects not only in the intestinal mucosa, but also in distal mucosal sites [98]. Of
note, most scientific works investigating the capacity of orally administered probiotics to
modulate immune responses in distal mucosal sites have focused mainly on the respiratory
tract [98,99]. Research work demonstrated that probiotics could induce the mobilization
of B and T cells from the intestinal mucosa to the respiratory tract. These immune cells
homed in the respiratory mucosa produce immune factors such as IgA and cytokines, in-
cluding IFN-γ and IL-10, which regulate the local population of immune and non-immune
cells, enhancing their ability to respond to pathogens and protecting against inflammatory
damage [100]. It is speculated that probiotics could exert a similar effect on MG immunity.
It was demonstrated that B cells from the maternal gut can migrate to the MG during late
pregnancy and lactation [101]. The mobilized B cells produce IgA in the MG mucosa, help-
ing to improve the protection not only locally but in addition to the nursing child. Pioneer
studies by Ahlstedt et al. (1975) [102] suggested that the IgA-secreting B cells homed in the
MG originated in the gastrointestinal tract. Furthermore, it was shown that orally adminis-
tered non-pathogenic E. coli to pregnant women resulted in a significant enhancement of
IgA-secreting B cells specific against E. coli antigens in the colostrum [103]. The treatment
of rats with L. fermentum CECT5716 during pregnancy and lactation improved the milk
composition and the levels of IgA [104]. Similarly, it was found that the oral administration
of the probiotic strain L. casei CRL431 to mice increased the levels of IgA-producing B
cells in MG, but it did not affect the numbers of CD4+ or CD8+ T cells [105]. It has also
been postulated that the modulation of systemic immune responses by orally administered
probiotics could impact MG immunity. The oral administration of the CRL431 strain to
mice differentially modulate the production of inflammatory and regulatory cytokines,
improving the immune response to breast cancer cells [106]. In line with these studies,
we postulated that orally administered B. subtilis C-3102 to cows activates blood dendritic
cells, which then migrate into the MG where they can help to regulate inflammation via
the induction of Treg cells [59]. These studies indicate that the modulation of the common
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mucosal immune system by probiotics has the potential to beneficially modulate immunity
in MG, although further research should explore the effects and mechanisms in details in
the bovine host.

The few studies conducted so far with orally administered probiotics postulate two
mechanisms to explain the beneficial effects as mentioned above. Both the stimulation
of the common mucosal immune system and the transport of bacteria from the intestine
to the MG involve an interaction of microorganisms with cells of the immune system,
giving the latter a relevant role in the effect of probiotics. Further cellular and molecular
studies focused on the interaction between probiotics and bovine intestinal immune cells,
and the impact of this interaction on the immunobiology of the MG, are of fundamental
importance, not only to elucidate the mechanisms of action but also to improve the selection
and implementation of probiotic feeds intended to increase resistance to BM.

7. Conclusions

In the present review, we provided a general overview of the research works demon-
strating the capacity of probiotics to improve the resistance to mastitis in the bovine host.
Probiotic microorganisms may influence susceptibility to MG infection through differ-
ent mechanisms, including microbe–microbe interactions and modulation of immune
responses. We highlight the potential of immunobiotic strains with the capacity to mod-
ulate the immune responses in bovine mammary epithelial cells as a safe and effective
alternative to combat BM. Research papers provide strong evidence for the benefits of
local application (intramammary or topical) of probiotics, while effects mediated by orally
administered beneficial microorganisms need further investigation. Immunobiotic LAB
can be used as an efficient immunobiotechnological tool to help in controlling AMR, which
ultimately will lead to the development of the drug-independent healthy production of
dairy cows.
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