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Abstract: Billions of microbes sculpt the gut ecosystem, affecting physiology. Since endurance athletes’
performance is often physiology-limited, understanding the composition and interactions within
athletes’ gut microbiota could improve performance. Individual studies describe differences in the
relative abundance of bacterial taxa in endurance athletes, suggesting the existence of an “endurance
microbiota”, yet the taxa identified are mostly non-overlapping. To narrow down the source of this
variation, we created a bioinformatics workflow and reanalyzed fecal microbiota from four 16S rRNA
gene sequence datasets associated with endurance athletes and controls, examining diversity, relative
abundance, correlations, and association networks. There were no significant differences in alpha
diversity among all datasets and only one out of four datasets showed a significant overall difference
in bacterial community abundance. When bacteria were examined individually, there were no genera
with significantly different relative abundance in all four datasets. Two genera were significantly
different in two datasets (Veillonella and Romboutsia). No changes in correlated abundances were
consistent across datasets. A power analysis using the variance in relative abundance detected in
each dataset indicated that much larger sample sizes will be necessary to detect a modest difference
in relative abundance especially given the multitude of covariates. Our analysis confirms several
challenges when comparing microbiota in general, and indicates that microbes consistently or
universally associated with human endurance remain elusive.

Keywords: 16S gene sequences; barcode; network; Romboutsia; Veillonella; workflow

1. Introduction

Endurance has played an important role in human history from our origins in the
African savannah, through historical times (i.e., the origin of the marathon) to the more
recent fascination with ultra-endurance events. Success in endurance events is assumed
to be a product of training, genetics, and psychological preparation to withstand extreme
mental and physical challenges [1]. Physiologically, the factors limiting performance in
endurance events have traditionally been divided into two broad categories—aerobic
(i.e., VO2 max) and anaerobic (i.e., lactic acid) [2]. However, what if one of the limiting
factors to success in endurance events was not human at all?

We are as microbial as we are human. Bacterial cells associated with the human body
are at least equivalent in number to human cells, if not more abundant [3]. More than
1000 bacterial species may be found in the intestines of each person, and over 70% of
the total human microbiome is contained in the gut [4]. Whereas human cells are slowly
replaced with identical (or nearly identical) copies, the cells of the gut microbiota are
constantly changing due to immigration, emigration and differential rates of division based
on the dynamic gut environment, to which they are much more sensitive and responsive
than human epithelial cells. If our fuel tanks are lined with bacteria, it is not surprising that
gut microbiota may affect performance in fuel-limited sports such as endurance events.
Furthermore, the dichotomy between human physiology and microbial metabolism is
increasingly difficult to disentangle, as more human genotype/microbiome interactions
continue to be discovered [5].
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In some studies, exercise has been associated with increased gut microbial diversity,
increased Bacteroidetes–Firmicutes ratio, and proliferation of bacteria which can modu-
late mucosal immunity and improve barrier functions [6–11]. All of these changes could
contribute to increased performance, decreased inflammation, decreased gastrointesti-
nal (GI) distress, and faster recovery times [6], as well as possible protection against GI
infections [7–11]. However, factors other than intensive exercise could also contribute to
these reported changes in the microbiota of endurance athletes. In fact, numerous factors
have been suggested to affect the composition of the gut microbiota, including (but not
limited to) method of birth, diet, sex, age, antibiotic use, geographic region, stress level,
and disease history [12]. For example, dietary behaviors such as carbohydrate loading, a
traditional prelude to an endurance event, could increase Prevotella independent of physical
exertion [13]. Consumption of probiotics could also affect the microbiota irrespective of
exercise level (for example, see [14]). A recent review found mixed effects of probiotics
on performance, as 17 studies showed no significant results of probiotic consumption and
seven showed an improvement in performance (summarized in [13]). Probiotics may also
protect against some upper respiratory tract infections which in athletes could result in
longer stretches of continuous, intensive training [15]. Interactions among bacteria may be
important, as multi-strain probiotics are more likely than single strains to lead to improved
endurance performance [13]. The mixed results regarding the effects of probiotics on
athletic performance indicate that there may be an interaction between gut bacteria and
endurance, but warrant further study.

The concept of an “endurance microbiome” suggests there are assemblages of gut
bacteria that are more common in athletes compared to sedentary controls, or gut bacteria
that are enriched after an endurance event compared to before the event. The hypothet-
ical endurance microbiota could be characterized by changes at multiple levels such as
(1) increased overall diversity, (2) different levels of abundance, and (3) the emergence of
beneficial bacterial associations. Below, we briefly summarize these three metrics.

To date, studies on the effects of exercise on gut microbiota diversity have exhibited
mixed results. Some investigations describe increased microbial diversity associated with
exercise [6,16–20], while others report no significant change in diversity [21–24]. Lensu
and Pekkala [25] have conducted a recent and thorough literature review of the effect of
exercise on the gut microbiota concluding that exercise has a “beneficial effect on the gut
microbiota” and is associated with “healthy gut microbiota”. However, when the relative
abundance of individual bacterial genera is examined, there is very little consistency among
the studies they reviewed. Deciphering these inconsistent results requires homogenizing
the bioinformatics pipeline and subsequent statistical analyses.

Therefore, we reanalyzed the raw data from three studies (four comparison groups)
that all utilize 16S barcoding data collected on the Illumina platform (at least in part) yet
have come to largely different conclusions regarding the changes in relative abundance
associated with endurance exercise. First, in a comparison of runners before and after the
Boston Marathon, Scheiman et al. [26] found only Veillonella exhibited a significant increase
in abundance after the marathon. The authors then showed that Veillonella improves
endurance performance by metabolizing lactate that has crossed the blood–gut barrier into
short-chain fatty acids that can improve muscle performance (in mice) [26]. Second, when
Zhao et al. [23] examined Chinese half-marathon runners, they found 12 genera whose
abundance increased after the event, not including Veillonella. Third, Peterson et al. [18]
compared competitive cyclists with variable training intensities and found some of the same
genera as Zhao et al. [23], yet identified several new genera with differential abundance
based on 16S and transcriptome data. These studies identified a diversity of candidate
genera that may comprise endurance-associated microbiota, but due to methodological
differences in their bioinformatic workflows, it is difficult to make direct comparisons
among the studies.

Endurance-associated microbiota could also manifest in associations among bacteria,
or groups of bacteria. For example, several studies have highlighted a putative trade-off
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between two common groups of gut bacteria implicated in endurance athletes—Prevotella
and Bacteroides [27,28]. Other investigations have found strong correlations among bacterial
lineages and in response to environmental stresses [29]. Many exercise-related studies have
looked for inter-bacterial associations. Prevotella has been implicated in athletic performance
and associated with Streptococcus, Enterococcus, Desulfovibrio, Lachnospiraceae, Succinivibrio,
Oscillospira, Xylanibacter, and Butyrivibrio [20]. Nevertheless, Gorvitovskaia et al. [28] report
no consistent bacterial correlations among the four studies they reviewed. Potentially,
bacterial interactions associated with endurance are broader than pairwise correlations,
perhaps represented better as a connectivity network of the entire microbiota community.
Active people who exercise regularly have been reported to have more complex gut bacterial
networks than sedentary controls [17]; however, the connectivity networks underlying
endurance-associated microbiota are largely unexplored [30], and no meta-analysis has
compared networks using the same methodology across datasets.

We hypothesize that if a “universal” endurance-associated assemblage of microbes
exists, it should manifest regardless of geographic location, type of sport, or specific
endurance event. Our goal is to reanalyze several relevant studies using a single bioinfor-
matics pipeline and consistent downstream statistical analyses to determine whether there
are repeated changes in diversity, relative abundance, or associations between genera in
response to intensive endurance exercise. The variance in bacterial abundances were used
in a power analysis to determine the necessary sample sizes to detect a modest difference.

2. Materials and Methods
2.1. Datasets

After searching the literature for relevant studies (Table S1), we selected and rean-
alyzed four gut microbiota datasets involving endurance athletes from three previously
published studies (Table 1). All studies utilized Illumina sequencing of the V3-V4 region
of the 16S rRNA gene (amplicon sequencing) [18,23,26]. Below is a brief description of
each dataset.

Table 1. Datasets used in this work and number of microbial genera detected in our bioinformat-
ics pipeline.

Event and Location Treatment Group Sample Size Sampling
Frequency Reference No. of Genera

Detected

Boston Marathon, Boston,
MA, USA Runners Before 15

Multiple samples
taken before the

event
[26] 221

Boston Marathon, Boston,
MA, USA Runners After 15 (paired with

above)
Multiple samples

taken after the event [26] 233

Boston Marathon, Boston,
MA, USA Sedentary Controls 10 Multiple samples

taken from controls [26] 228

Chongqing International Half
Marathon, Chongqing, China Runners Before 20 runners 1 Once before the event [23] 194

Chongqing International Half
Marathon, Chongqing, China Runners After 20 (paired with

above) Once after the event [23] 197

Competitive Cyclists, USA 2 Low (6–10 h/wk) 8 One time point [18] 115

Competitive Cyclists, USA 2 Medium (11–15 h/wk) 17 One time point [18] 133

Competitive Cyclists, USA 2 High (16–20+ h/wk) 8 One time point [18] 115

1 One before-event sample (BEF09) could not be used because it had an inconsistently formatted fastq file
(Zhao attempted personal communication, unrequited). 2 Petersen et al. [18] reports very high consistency in
relative abundances estimated from both 16S amplicon sequencing and whole-genome shotgun sequencing. We
reanalyzed the 16S results for direct comparison with other endurance datasets.
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2.1.1. Boston Marathon Study

Scheiman et al. [26] recruited 15 elite athletes running in the 2015 Boston Marathon,
along with 10 sedentary controls. They conducted amplicon sequencing on 209 fecal
samples taken daily from participants up to one week before to one week after the marathon
using Earth Microbiome Project primers targeting the v4 region of the 16S rRNA gene [using
primers 515F (Caporaso) and 806R (Caporaso); https://earthmicrobiome.org/protocols-
and-standards/16s/ (accessed on 4 July 2022)]. Amplicons of approximately 292 bp (based
on E. coli 16S rRNA REFSEQ NR_024570) were sequenced using 150 bp Illumina paired-end
reads and were processed with the DADA2 pipeline and phyloseq. Generalized linear
mixed-effect models and leave-one-out cross validation were used to determine significant
associations. According to their supplemental data, some samples were “rerun” on the
Illumina sequencer. In these cases, we only used the data from the reruns (i.e., SG10
and SG27).

2.1.2. Chongqing Half-Marathon Study

Zhao and colleagues [23] recruited 20 amateur athletes who were running in the 2016
Chongqing International Half Marathon. A total of 40 fecal samples were collected—each
runner was sampled the morning before the race and again after the race. Zhao et al. used
very similar reverse primers to Scheiman et al.; however, they added CC to the 3′ end and
used T instead of the ambiguity W nine base pairs from the 3′ end. Their forward primer
lands 176 bp further upstream than the Scheiman et al. primers generating a ~465 bp
amplicon (based on E. coli 16S rRNA REFSEQ NR_024570). Because of the larger amplicon
length, they collected 250 bp paired-end reads generated on an Illumina HiSeq. Two
samples from runner nine were eliminated from our reanalysis because of ambiguous
labeling of the data. Each participant was given the same kind of food during the period
between the first and second sample collection.

2.1.3. Competitive Cyclist Study

Petersen et al. [18] studied 33 competitive cyclists categorized into four non-overlapping
training groups based on their average training time per week: 6–10 h, 11–15 h, 16–20 h and
20+ h per week. A total of 33 samples were collected, one from each cyclist. They collected
both whole-genome shotgun sequence data and 16S rRNA gene amplicon sequence data.
We reanalyzed the latter to compare to the two studies (Petersen et al. 2017, Additional File
1). Petersen et al. used 150 bp paired-end Illumina reads from 16S rRNA amplicons of the
v4 hypervariable region with primers comparable to Scheiman et al. [24]. We grouped the
cyclists into low (6–10 h/wk; n = 8), medium (11–15 h/wk; n = 17), and high (16–20+ h/wk;
n = 8) categories for diversity analyses, then focused on the two most extreme training
groups (with balanced sample sizes) when searching for a universal endurance microbiota
(e.g., “low” vs. “high” training).

2.1.4. Sample Collection, Storage and DNA Extraction

Fecal sample collection and storage and affect the estimates of relative abundance
from 16S amplicon sequencing [31]. Fecal samples from all three studies reanalyzed herein
were self-collected; however, Scheiman et al. [24] and Zhao et al. [23] used polypropylene
tubes for collection and stored samples at 4 C short-term, while Petersen et al. [18] used
polyethylene tubes and stored samples with “frozen freezer packs” short-term. All three
studies −80 ◦C for long-term sample storage. Although different DNA extraction methods
were used across all three studies, Rintala et al. demonstrate that the impact of different
DNA extraction methods on relative abundance estimates from 16S amplicon sequencing
is relatively minor [31].

https://earthmicrobiome.org/protocols-and-standards/16s/
https://earthmicrobiome.org/protocols-and-standards/16s/
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2.2. Target Genera

Among the Boston Marathon, Chongqing half marathon, and competitive cyclist
studies, there were 1, 12, and 6 bacterial genera identified as having significantly different
abundances between treatment groups, respectively (Table S2). Of these, no single genus
was identified in all three studies and only three genera were found in two of these studies.
We used the 16 unique genera from all three studies as our “target genera” in a hypothesis-
testing framework (using alpha < 0.05 as a cutoff). Subsequently, we expanded our analyses
to all remaining genera, and corrected for multiple tests, since the comparisons were not
based on a priori hypotheses (i.e., using the Benjamini–Hochberg false-discovery-rate
correction—see below for details).

The target “genera” from Zhao et al. [23] included both individual species (e.g., Pre-
votella corporis which we treated as Prevotella) and genera. The authors emphasized the
significantly differential abundance in the family Coriobacteriaceae before and after the
half marathon, but we only included Collinsella since we assume this genus was driving the
significant result based on their Figure 2B. We did not include “unclassified Porphyromon-
adaceae”. Finally, they report “Phaseolus vulgaris” in their Figure 2 results [23], but they
discuss Romboutsia later in their findings. We assume this is a technical mistake (Phasaeolus
vulgaris is a species of legume, not a bacteria). Phaseolus sensu Zhao et al. [23] is hereafter
treated as Romboutsia.

2.3. Microbiome Assembly (Bioinformatics Pipeline)

Although there are many published tools for measuring bacterial abundance from 16S
rRNA gene amplicon sequencing using the Illumina platform (e.g., QIIME [32];
MOTHUR [33]; DADA2 [34]), we developed a simple workflow in Geneious Prime
2021.2.2 by adapting their Amplicon Metagenomics tutorial [(https://www.geneious.com/
tutorials/metagenomic-analysis/ (accessed on 1 May 2020)]. Raw data from published
studies was downloaded from usegalaxy.org in the form of fastq files and imported into
Geneious Prime. We used Illumina paired-end, inward pointing reads with sequences inter-
laced within each fastq file. The minimum quality (q) cutoff was empirically determined to
be 13 in a pilot study, and the merge rate was set at “very high” to maximize reads mapped,
while reducing incorrectly mapped reads. After using BLAST to Genbank (Release 242)
for OTU clustering to construct a reduced 16S rRNA sequence database per dataset, we
mapped reads back onto the reduced database to classify the reads to genus based on
90% minimum overlap identity per Geneious’ Amplicon Metagenomics tutorial and their
Sequence Classifier tutorial. Although 95% 16S rRNA gene sequence identity has often been
used as a cut-off for bacterial genus-level operational taxonomic units [35–38], our more
liberal cut-off was intended to maximize the number of classified reads while accounting
for the sequence variation within genera. Using this cutoff, we were not trying to detect
bacterial species, only genera for consistency in making comparisons across studies. All
subsequent analyses were based on the relative abundance which is the proportion of reads
mapped to a genus compared to total reads mapped per sample (per Gloor et al. [39]). Clas-
sifications were pruned to genus, with all higher taxonomic-level BLAST results removed.
Our Geneious workflow is available from FigShare (DOI: 10.6084/m9.figshare.c.6036347).

2.4. Diversity

We measured the alpha diversity for each dataset and each treatment group as the
number of unique genera identified. We then used Simpson and Shannon indices to
compare diversity considering each genus’ relative abundance in the vegan package (v.
2.6-2) in R Studio (2022.02.3). For the competitive-cyclist study [18], diversity measures
among the three independent treatment groups were compared using an ANOVA in R. All
other diversity comparisons for the Boston marathon and Chongqing half-marathoners
were carried out using t-tests on independent samples (athletes vs. controls) or paired
samples (before vs. after) in R.

https://www.geneious.com/tutorials/metagenomic-analysis/
https://www.geneious.com/tutorials/metagenomic-analysis/
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2.5. Relative Abundance Comparisons
2.5.1. Normality Testing

The relative abundance of each bacterial genus in each dataset was assessed for
normality using the Shapiro–Wilk test. Mean kurtosis and mean skewness, two descriptors
of the relative abundance distributions, were also recorded. After finding most bacterial
genera had relative abundance distributions significantly different from normal and were
outside the recommend range of normal kurtosis and skewness values (−2 to +2), the
relative abundances were square-root-transformed and reassessed for normality, kurtosis
and skewness. Again, most genera failed to meet the assumptions of normality, so we used
non-parametric statistical tests of the untransformed relative abundance data henceforth.

2.5.2. Overall Microbiota Community Comparisons

Differences in the relative abundances of the entire bacterial communities within and
between treatment groups were evaluated using Euclidean distances in ANOSIM for each
of the four datasets. To determine if the bacterial communities were significantly different
between treatment groups (overall), we performed 9999 permutations. Distances within and
between microbiota communities were visualized using MDS with the maximum number
of tries set to 500 to improve convergence. Goodness-of-fit was determined based on the
stress values (all have stress << 0.15 indicting a “good fit” or reasonable representation of
the data). ANOSIM and MDS were conducted using the vegan package (v. 2.6-2) in R.

2.5.3. Hypothesis-Driven Approach

For each dataset, relative abundances for target genera were compared using the
Wilcoxon test with continuity correction in R (alpha = 0.05). Since the Boston marathon
study [26] had multiple samples collected before and after the event, the average relative
abundance before and after was used, as well as averages for the multiple samples taken
from the sedentary controls. By using relative abundance, we standardize for sequencing
depth which varies per sample (i.e., accounting for the compositional nature of the data).
Although analyzing changes in relative abundance (“deltas”) corrects for differences in
magnitude, thereby facilitating comparisons across taxa with different abundances, to
statistically assess changes in relative abundance, we used the relative abundance data
directly to avoid the additional data transformation step.

2.5.4. Data Exploration

To explore previously unreported differences in bacterial abundance among these
datasets, relative abundances between treatment groups were examined for all remaining
genera detected in the gut microbiota (implemented in R). We applied the Benjamini–
Hochberg for controlling the false-discovery rate since the Bonferroni correction is overly
conservative (missing significant correlations when they exist or elevated Type 1 error) espe-
cially when a large number of tests are conducted and the hypotheses are highly correlated
(e.g., microbiota community relative abundance data). The more powerful Benjamini–
Hochberg method provides an appropriate balance between discovery of statistically
significant results while limiting false positives (Type 2 error). Boston marathon control
vs. athletes = 282 tests; Boston marathon “athletes before” vs. “athletes after” = 282 tests;
Chongqing half marathon = 198 tests; and competitive cyclists = 148 tests.
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2.6. Changes in Bacterial Associations
2.6.1. Correlated Abundances and Changes Therein

Correlations in relative abundance between bacterial genera were tested for each
treatment group individually. The analyses were restricted to the genera detected in at least
75% of all samples to avoid spurious correlations caused by large amounts of missing data
(i.e., genera with no reads mapped). Spearman’s rank correlation coefficients, p-values and
Benjamini–Hochberg false-discovery-rate correction were calculated in R Studio (2022.07.2).
Boston marathon “athletes before”, “athletes after” and controls = 1596 tests; Chongqing
half marathon “athletes before” and “athletes after” = 3081 tests; and competitive cyclists
“low”, “medium” and “high” = 861 tests.

2.6.2. Networks of Bacterial Associations (NetCoMi)

Potential microbe–microbe association networks underlying the gut microbiota of
endurance athletes were explored using NetCoMi [30]. We looked for predictable changes
in the connectivity of microbial association networks among treatment groups using quan-
titative comparisons across networks. Differences in the hierarchical clustering of bacterial
interactions were examined between controls vs. athletes, athletes before vs. after and
cyclists involved in differing levels of training. Raw read counts from the Geneious bioin-
formatics pipeline were pruned to genera, then filtered for samples with 1000 reads or
more and limited to the 100 genera with the highest number of reads [30]. We constructed
the network with SparCC [40] which accounts for the compositional nature of the data by
applying a centered log-ratio transformation (clr) [41,42]. Furthermore, SparCC is less likely
to identify spurious correlations compared to Pearson correlations [43]. Singular nodes
were removed when present in one network and when comparing multiple networks.

A t-test was applied (alpha = 0.001 for Boston marathon samples [26]; alpha = 0.1
for Chongqing half-marathon samples [23] and for the cycling study [18]) to reduce the
network to a tractable size with a local false discovery adjustment [44] to select which
edges to include in the network (“sparsification” [42]). To analyze the network, we ap-
plied the fast greedy modularity optimization algorithm for finding community structure
(“cluster_fast_greedy” [45]) with hubs defined based on their eigenvalue (degree of con-
nectedness to other nodes with high connectedness). A high eigenvector of centrality score
means that a node is connected to many nodes who themselves have high eigenvector
scores [46].

For each treatment group individually, we compared the relative size of the largest con-
nected component of the resulting network (LCC = the connected component with highest
number of nodes), betweenness centrality (the degree to which a node lies on paths between
other nodes), closeness centrality (distance between a node and all other nodes), and degree
centrality (# of edges = measure of co-occurrence) [47]. We also assessed dissimilarity
(1—edge weight) and average path length for each of the three treatment groups.

When comparing networks, the layout represents the optimal “union” of each pair of
networks (athletes before vs. after; controls vs. athletes after; and low- vs. high-training
groups). Node size represents the centered log-ratio transformation of the number of reads
per genus and node color distinguishes different clusters.

To compare two networks at a time (e.g., “athletes before vs. after” and “controls vs.
athletes”), we examined network size (LCC), positive edge percentage (positively biased),
hub taxa, adjusted Rand index [41], and the top 10 taxa showing the largest differences in
three centrality measures (degree, betweenness and closeness).

We conducted several statistical comparisons for these pairs of networks (“athletes
before” vs. “athletes after” and controls vs. “athletes after”) using CompareNet in Net-
CoMi [30]. To test whether the two similarity matrices were significantly different from one
another, we examined Jaccard indices for degree, betweenness, closeness, eigenvector, and
hub taxa. A Jaccard index equal to zero indicates completely different matrices. In addition,
we used the adjusted Rand index (ARI) which measures the similarity between clusterings
(ARI = 0 means random clusterings in the two networks being compared; ARI = 1 means
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perfect agreement between clusterings in the two networks being compared) [48]. For Rand
index, a p-value below 0.05 means that ARI is significantly higher than expected for two
random clusterings based on 1000 permutations. We also used permutation tests (n = 1000)
to determine if any genera showed significant differences in their degree, betweenness and
closeness when comparing networks. Briefly, to generate a null distribution, the treatment
group labels were randomly reassigned to the samples keeping the group sizes constant.
The network metrics are then re-estimated for each permutation. We applied the local
false-discovery-rate correction (lfdr) to correct for multiple testing.

We identified differences between the networks using Diffnet in NetCoMi [30]. To
assess significantly different associations in the network, we applied Fisher’s Z-test after
adjusting the p-value using the local false-discovery rate. Occasionally, this produced an
empty network (e.g., Scheiman “athletes before” vs. “athletes after”), in which case, we
loosened the filter in NetConstruct to ensure enough overlapping bacterial genera were
able to be compared in the Diffnet analysis.

R scripts for all data analyses are available from FigShare (DOI: 10.6084/m9.figshare.c.
6036347).

3. Results

The bioinformatics pipeline assembled and mapped most of the raw reads. For the
Boston marathon and competitive cyclist samples, ~60% of reads mapped to a bacterial
genus. The remaining 40% did not meet the 90% identity threshold for known genera and
were removed. For the half-marathoners, ~80% of reads mapped, reflecting the longer read
lengths and thus increased likelihood of accurately mapping to a single genus.

3.1. Diversity

Overall diversity was measured as the total number of genera detected (richness) and
Simpson and Shannon’s diversity indices. Variation in the number of genera detected was
much higher among datasets than between treatment groups within each dataset (Table 1).
We found 280 genera among the three Boston marathon treatment groups, 197 genera
between the two Chongqing half-marathon treatment groups, and 148 genera among
the three cyclist training groups, similar to what these studies reported previously (143,
317 and 200, respectively) (Scheiman et al. [26] Supplemental Table S2; Zhao et al. [23];
Petersen et al. [18] Additional File 1). In all datasets, a small number of genera make up
the bulk of the microbiota (Figure 1). Several genera had high abundance in all datasets.
For example, Faecalibacterium was consistently one of three to five genera that together
comprised greater than 50% of the microbiota in treatment groups across datasets. In
addition, Bacteroides and Blautia are very abundant in most treatment groups. However,
there were also numerous differences. For example, Prevotella exhibited a very large increase
in relative abundance in the medium and high cyclist training groups (Figure 1G,H) in
comparison to the low-training group (Figure 1F).

To statistically compare overall diversity, we tested for differences between treatment
groups using Simpson’s and Shannon’s indices (Table S3). Among the four treatment group
comparisons, none were significantly different for neither Simpson’s nor Shannon’s indices
(p > 0.05).
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Figure 1. Average proportions of bacterial genera in the eight comparison groups. Data are from
Boston Marathoners (A–C); Chongqing Half-Marathoners (D,E); competitive cyclists (F–H). The top
10 most abundant genera for the highest performing treatment group are indicated in the legend for
each dataset.

3.2. Relative Abundance
3.2.1. Normality Testing

Relative abundance data failed Shapiro–Wilk tests for normality in all but two genera
among the three previously published datasets (Shapiro–Wilk Test, p < 0.05; Table S4;
Figures S1–S3). For the untransformed data, all datasets had mean kurtosis and skewness
were outside the recommended bounds for normality (−2 < x < +2). Following square
root transformation, ~25x more tests passed the Shapiro–Wilk test for normality, but still
less than 50% of the genera tested. Following square root transformation, skewness data
from all three studies were within the bounds of normality, but mean kurtosis was within
the recommended range for normality for only one out of three study datasets. Since the
square-root-transformed data still failed to meet the assumptions of normality for most
genera in all three study datasets, we chose non-parametric tests when performing statistics
with relative abundance data.

3.2.2. Overall Microbiota Community Comparisons

When comparing the overall microbiota communities between treatment groups using
non-parametric statistics, only one of the four datasets detected a significant difference
(cyclists low- vs. high-training groups) (Table 2; ANOSIM, r-value = 0.5173, p = 0.0012).
Multidimensional scaling (MDS) clearly shows substantial overlap among the samples
of the two treatment groups in three out of the four datasets (Figure 2). MDS stress
values < 0.15 indicate a good fit of the data (Table 2).
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Table 2. ANOSIM results comparing overall differences between treatment groups for four datasets.

Event Treatment Group Number of
Individuals

Number of
Bacterial Genera R-Value p-Value MDS Stress

Boston
Marathon Athletes Before vs. Athletes After 15 (paired) 282 −0.021 0.6556 0.093

Boston
Marathon Controls vs. Athletes After 10 vs. 15 282 0.093 0.0998 0.074

Half Marathon Athletes Before vs. Athletes After 19 (paired) 198 0.002 0.3603 0.104
Professional
Cyclists

Low- vs. High-Intensity-Training
Group 8 vs. 8 148 0.517 0.0012 0.060
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3.2.3. Hypothesis-Driven Approach

Prior results from the three datasets identified 16 bacterial genera with significant
differences in relative abundance in the endurance-associated microbiota (Table S2). When
we examined the relative abundance for these 16 target genera using our bioinformat-
ics pipeline, some were not even detected in all four datasets. For example, Ezakiella
was not identified in any of the datasets (no reads mapped; Figures S4–S7), although
it was confirmed to be present in the BLAST database used to classify sequences in the
Geneious workflow. Ruminiclostridium and Actinobacillus were missing from the Chongqing
half marathon and competitive cyclist datasets. Methanobrevibacter and Pseudobutyrivibrio
were not found in the cyclist dataset and Akkermansia was not detected in the Boston
marathon dataset.
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Among the ten target genera detected in all three datasets, none exhibited significant
differential abundance in all four treatment group comparisons (Table 3). Only two genera
had significantly different relative abundances in more than one of the treatment group
comparisons (Romboutsia in the half-marathoners and cyclists, and Veillonella in the half-
marathoners and marathoners control vs. “athletes after” comparison) (Figure 3). The
following sections report results for each dataset individually.

Table 3. Relative abundance statistical results. p-values from Wilcoxon rank sum tests with continuity
correction for the relative abundance comparisons among 16 target genera across the four treatment
group comparisons. No correction for multiple testing was applied to the target genera since these
target genera were predicted to be significant a priori. A plus sign (+) following the p-values indicates
that the abundance in the endurance treatment group was greater than the control group. A minus
sign (−) indicates that the abundance in the endurance group was less than the control group.

Genera

Boston Marathon
Chongqing Half

Marathon
USA Competitive

Cyclists 3“Athletes Before” vs.
“Athletes After”

“Athletes After” vs.
Controls

Actinobacillus NS 1 NS NA NA
Akkermansia NA 2 NA 0.038 (+) NS
Bacteroides 0.07 0.09 NS 0.0070 (−)
Clostridium 0.04 (+) NS NS 0.065
Collinsella NS NS 0.0005 (+) NS

Coprococcus NS NS 0.0003 (+) NS
Eubacterium 0.07 NS 0.023 (+) NS

Ezakiella NA NA NA NA
Methanobrevibacter NS NS 0.09 NA

Mitsuokella NS NS 0.0046 (+) NS
Prevotella NS NS 0.07 0.00031 (+)

Pseudobutyrivibrio NS NS NS NA
Romboutsia NS NS 0.0002 (−) 0.0047 (+)

Ruminiclostridium NS NS NA NA
Ruminococcus NS NS 0.001 (+) NS

Veillonella NS 0.0019 (+) 0.0004 (+) NS
1 NS indicates the relative abundance was not significantly different at alpha < 0.05); 2 NA indicates this genus
was not detected in our analysis; 3 Low- vs. High-training group comparison.

In the Boston marathon dataset, there were two treatment group comparisons, and
each had one target genus (out of the fourteen target genera detected) that exhibited
significant differences in relative abundance (Figures 3, S4 and S5, Table 3). In comparing
“athletes after” to sedentary controls, the average proportion of Veillonella in “athletes after”
is 22.5-fold larger than in controls (Figure 3, Tables 3 and S5, Wilcoxon Test, W = 129,
p = 0.002). When comparing “athletes before” vs. “athletes after”, the average proportion
of Clostridium was 3.6-fold larger in “athletes after” than in “athletes before” (Figure S4,
Tables 3 and S5, Wilcoxon Test, V = 24, p = 0.041).

In the Chongqing half-marathon dataset, eight of the thirteen target genera detected
showed significantly different abundances when comparing before and after the half
marathon (Figures 3 and S6, Table 3). The four most significant results stand out from the
rest (Table S5). Three of these four genera showed increased abundance after the event
(Coprococcus, Veillonella, and Collinsella) ranging from 1.97 to 2.67-fold higher (Figures 3
and S6, Table S5). In particular, Veillonella had 2.67-fold higher abundance after the event
compared to before the event (Tables 3 and S5; Paired Wilcoxon Test, V = 14, p = 0.0004).
The fourth significantly different genus, Romboutsia, decreased approximately two-fold
after the event (Figure 3, Tables 3 and S5; Paired Wilcoxon Test, V = 179, p = 0.0002).
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Figure 3. Relative abundance for three selected bacterial genera comparing Boston Marathoners
before vs. after (1st row), sedentary controls vs. athletes after (2nd row), Chongqing Half-Marathoners
before vs. after (3rd row), and competitive cyclists in the low-volume vs. high-volume-training
groups (4th row). Lines connect paired samples of the same individual (before vs. after), whereas
points compare samples taken from different individuals (controls vs. athletes or low- vs. high-
training groups). Significant differences between treatment groups are indicated with boxes with
dotted borders.

Comparing athletes between the low (n = 8) vs. high (n = 8) training groups from the
competitive cyclist dataset, we found three target genera with significantly different relative
abundances (Figures 3 and S7, Table 3). Prevotella had 700-fold higher abundance in the high-
training group compared to the low-training group (Figure 3, Tables 3 and S5; Wilcoxon
test, W = 1, p = 0.0003) and Romboutsia had approximately 8-fold higher abundance in
the high-training group compared to the low-training group (Figure 3, Tables 3 and S5;
Wilcoxon test, W = 6, p = 0.005). In contrast, Bacteroides showed a 39% decreased abundance
in the high-training group compared to the low-training group (Tables 3 and S5, Figure S7;
Wilcoxon test, W = 57, p = 0.007).
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3.2.4. Data Exploration (All Pairwise Comparisons)

After expanding our analyses to compare all genera detected in all four treatment
group comparisons, only one genus had significantly different relative abundance after
Benjamini–Hochberg correction (Table S5). Romboutsia (one of our 16 target genera) from
the Chongqing half-marathon dataset (see Hypothesis-Driven Approach section above)
was ~2x lower after the event compared to before the event (Table 3).

3.3. Changes in Bacterial Associations

To determine if potential endurance-associated microbiota have distinct associations
among bacteria, we first tested for all pairwise correlations in relative abundances between
bacterial genera detected across datasets. Second, we used hierarchical clustering to identify
networks of bacterial associations to determine whether there are any significant differences
among treatment groups.

3.3.1. Correlated Abundances

Among the sixteen target genera, there were only three significant correlations in rela-
tive abundance across all treatment group comparisons (Figure 4). Coprococcus-Ruminococcus
was positively correlated in the Boston Marathon Control dataset, whereas significant neg-
ative correlations were detected between Clostridium-Eubacterium and Prevotella-Bacteroides
in the half-marathon dataset. There were no consistently significant correlations emerging
(or disappearing) in the endurance treatment group across these datasets (Figure 4).

Although we did not detect any consistent, significant endurance-associated changes
in pairwise bacterial associations across the datasets, we were able to reconstruct the nega-
tive correlation between relative abundance of Prevotella and Bacteroides (Figure 4B,D,F,H)
previously reported by numerous authors [10,16,18,20,28,49,50]. The negative correlation
between these two cosmopolitan genera provides an internal control for our methodology
since it has been reported in a range of studies outside of endurance athletes e.g., [20].

After expanding the Spearman’s rank correlations to all pairwise comparisons, only
the half-marathon dataset showed significant correlations emerging after the event. There
were 28 significant correlations after the half marathon that were not correlated before the
half marathon (Table S6).

3.3.2. Networks of Bacterial Associations (NetCoMi)

The bacterial association networks are statistically similar between treatment groups
within a dataset and very different across datasets (Figures S8–S11). First, comparing
treatment groups within each dataset, the Rand index (which measures the similarity of
two networks by randomly permuting the labels) was always positive and ranged from
0.121 to 0.507. In all cases, Rand was significantly different from zero indicating that the
networks within a dataset were more like each other than randomly shuffled networks [48].
Additionally, the number of hub taxa was significantly different between treatment groups.
However, the variation across datasets made the networks largely incomparable and
no consistent patterns emerged in neither standard network metrics when comparing
across networks (Table S7) nor upon visual inspection of associations among target genera.
Detailed descriptions of the network results for each of the individual studies can be found
associated with Table S7.
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Figure 4. Pairwise Spearman’s rank correlations for target genera. The direction of the correlation
(r) is indicated with the color of the circle (red = negative correlation; blue = positive correlation).
Stronger correlations are indicated with greater color intensity and larger diameter of the circle.
Significant correlations are boxed in black (p < 0.05 after Benjamini–Hochberg correction). Question
marks represent taxa that were not detected in each dataset. Athletes before (A) and after (B) the
Boston Marathon; controls (C) versus athletes after (D) the Boston Marathon; before (E) and after
(F) the Chongqing Half Marathon; high (G) and low (H) training groups of USA competitive cyclists.
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4. Discussion

We analyzed the raw data from three gut microbiota datasets of endurance athletes
in search of bacterial species or genera consistently associated with extensive, intensive
physical exertion or training. By controlling for the bioinformatics workflow and down-
stream statistical analyses across datasets, we were able to determine if there is a universal
endurance microbiome. Overall, we did not detect any hallmarks of a subset of the gut
microbiota universally associated with endurance events among these datasets. However
there were limitations of the approach (see below). Similar conclusions have recently
been reached in a literature review by Sato and Suzuki [46] (p. 4) who summarized their
findings with, “Collectively, our findings suggest that intestinal microbiota diversity is
more likely to vary among individuals than to be affected by ultramarathon.” We interpret
our diversity, relative abundance and interactions results considering the original studies
and the broader literature.

4.1. Diversity

Alpha diversity can be measured several ways (richness, Simpson’s index, Shannon’s
index, etc.). In our analyses, there were no consistent differences in alpha diversity among
the four treatment group comparisons. In comparison to the results previously reported
from these datasets, Scheiman et al. did not report any diversity statistics [26], Zhao
et al. [23] reported no significant differences in alpha diversity after finishing the half
marathon, but did detect a change in diversity using taxonomic profiling [23], and Petersen
et al. [18] detected higher diversity in a subset of their data (“Cluster Three”), but not a
universal change in bacterial diversity associated with increased training duration [18].
More generally, several other studies have reported increased microbial diversity after an
endurance event [6,16,19,20,51–53] (only when using Simpson’s index for cross country
skiers in [20], though). However, there are also numerous investigations that found no
change in microbial diversity in endurance athletes [10,20,22,54,55] (only when using
Simpson’s index for marathon runners in [20]). Our results and the mixed results from
the literature cited above clearly indicate that endurance training does not universally
(nor even consistently) increase measures of bacterial diversity in the gut microbiota of
endurance athletes.

4.2. Differences in Relative Abundance

In our analyses, none of the 16 target genera exhibited consistent and significant
changes in relative abundance between treatment groups across all four comparison groups.
The most encouraging results were from two genera that were significantly different in two
of the four treatment group comparisons (Romboutsia and Veillonella). Nine of our sixteen
target genera (56%) were significant in only one of the four treatment group comparisons
and seven target genera (43%) were undetected in one or more of the datasets. In fact, one
target genus (Ezakiella) was not detected in any of the three datasets. (These do not add to
16 since some genera were missing in one dataset and significant in another dataset, such
as Akkermansia.)

The genera identified in two treatment group comparisons were from Boston marathon-
ers “Athletes After” vs. Control and Chongqing half marathoners (Veillonella) and Chongqing
half marathoners and competitive cyclists (Romboutsia), but both findings were curious.
First, although we detected significantly higher abundance of Veillonella in “Athletes After”
the Boston Marathon vs. sedentary Controls, Scheiman et al. reported Veillonella as the sole
bacterial taxon differentiating “athletes before” vs. “athletes after”. (It was not significant
in their “athletes after” vs. controls, but they did note that it was “more prevalent among
runners than non-runners”). In both our analysis (Figure 3) and the original report [26]
(their Figure 1B,C) Veillonella abundance was highly variable among individuals in the
“athletes after” treatment group, even though our non-parametric statistical approach
(Wilcoxon Rank Sum Test) should have accommodated these outliers (as was implemented
in [26]). Unlike Scheiman et al., we averaged all samples from “athletes before” and “ath-
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letes after”. In contrast, Scheiman et al. performed regression against time before and after
the marathon—suggesting pre-event host behaviors may have stimulated microbial growth
(see Figure 1C in [26]). A separate study specifically investigated changes in Veillonella
atypica using qPCR following six weeks of “endurance training” and found no significant
differences between athletes vs. controls, which highlights the variable results among
endurance studies [56].

For the second genus detected in two datasets, Zhao et al. [23] discuss Romboutsia in
their text, but in their main figure, Romboutsia appears to have been replaced with “Phaseolus
sativus”, a flowering plant in the pea family. Assuming this legume is truly Romboutsia in
disguise, both our analysis and that of Zhao et al. show it decreases in relative abundance
after the half marathon. However, Romboutsia abundance increased in the high-training
group of Petersen et al. (2017) and in our reanalysis thereof. Unless the effects of Romboutsia
are opposite in cyclists vs. half-marathoners, it appears that even the strongest candidates
for endurance-associated species are inconsistent at best.

Outside of these four treatment group comparisons, several studies have compared rel-
ative abundance of bacterial taxa potentially associated with endurance (recently reviewed
in [57,58]). Each study reports a different number and identity of the bacterial genera with
differential abundance [10,16,19,20,22,46,51,54,59–64]; (also see Table S1). Miranda-Comas’
review of athletes’ gut microbiota reports, “Although there is great variation in studies,
Faecalibacterium prausnitzii, Roseburia hominis, Akkermansia muciniphila, and Prevotella species
are some of the most commonly referenced as healthy or health-promoting gut species” [65]
(p. 3). The inconsistencies in the number and identity of the bacterial genera associated
with endurance from a wealth of independent studies question the existence of universal
components.

4.3. Changes in Associations

Potentially, the universality of endurance-associated microbiota is not based on
changes in abundances, but instead more subtle (yet consistent) changes in associations
among bacterial taxa due to the unique gut environment of endurance athletes. However,
after examining all pairwise correlations and network connectivity analyses, we conclude
there are no consistent constitutive microbial associations, nor any induced by endurance
events (except the previously described negative correlation between Prevotella and Bac-
teroides). We must be cautious when interpreting these association and network results as
not all interactions represent true ecological relationships [41,66].

These largely inconsistent results among datasets could be caused by different starting
points among individuals’ gut microbiota. For example, we wondered “Are all bacteria
present in all individuals, just waiting for the right environment to grow, or is the microbiota
constrained by bacterial colonization?” Restated, “Are endurance-associated microbiota
growth-limited or colonization-limited?” Addressing this requires better understanding the
sensitivity and limits of detection of current approaches to microbiota analysis. Scheiman
et al. [26] (p. 1109) blur the boundaries between the two hypotheses in writing that “An
important question is how this performance-facilitating organism first came to be more
prevalent among athletes. We propose that the high-lactate environment of the athlete
provides a selective advantage for colonization by lactate-metabolizing organisms such
as Veillonella.” Some degree of colonization limitation could logically encourage the use
of probiotics (e.g., “Nella”). Our lack of consistent correlations among datasets using
non-parametric Spearman rank correlations and the network approaches, and repeated
references to the large inter-individual variation in gut microbiota throughout the literature,
also suggests that gut microbiota of endurance athletes are largely colonization-limited, and
that most bacteria are not omnipresent in the gut awaiting the right environmental cues.
Whether introducing target taxa such as Veillonella or Romboutsia into endurance athletes’
gut microbiota will influence their metabolism will require much broader sampling (but
see Scheiman et al., 2019 additional evidence in germ-free mice).



Microorganisms 2022, 10, 2213 17 of 22

One of the few consistent results we found in searching for bacterial associations was
the excess of positive correlations compared to negative correlations. This was detected in
all datasets yet is likely a technical limitation—and more evidence that our methodology
is sound [67,68]. Although one might be tempted to infer a higher frequency of commen-
sal relationships (producing positive associations) compared to competitive interactions
(producing negative associations), Badri et al. explains that “the positive skewness may
also be due to technical limitations in the data generation process and shortcomings in
current statistical estimation. For instance, truncation to zero effects for low sequencing
read counts likely obstructs unbiased estimation of negative correlations” [39] (p. 11).

4.4. Limitations

Early gut microbiota studies classified most samples into one of a few narrow en-
terotypes, especially with regard to the ratio of Firmicutes to Bacteroidetes. However,
thorough meta-analyses clearly showed that these enterotypes were not reflective of the
true complexities of the microbiota [28,69]. Our reanalysis of existing datasets similarly
suggests that there is no unique association of endurance-related gut microbes shared by
all endurance athletes, at least as measured by 16S rRNA gene amplicon sequencing.

Our results have several limitations, some of which are technical, and others biological.
One disconcerting practical limitation was that many of the published datasets we sought
to reanalyze did not have publicly available 16S rRNA gene sequence data for reanalysis
(Table S1). For datasets we could access, we sought to compare similar studies, but this
was challenging. For example, Scheiman et al. [26] and Petersen et al. [18] use 150 bp reads
and Zhao et al. [23] used 250 bp reads. In hopes that any universal patterns describing
endurance-associated microbiota would be agnostic to the length of the reads and the
primers used for amplification thereof, we chose to compare these datasets (however, see
the discussion below on 16S primer-bias that may have limited our ability to detect universal
endurance-associated microbiota in comparing these studies). Additional concerns not
addressed here are methods of fecal collection (time of day, type of tube, and storage
temperature), some of which may affect the relative abundances estimated from 16S rRNA
amplicon sequencing [31,70].

Another technical limitation surrounds the use of putatively “universal” primers for
the 16S rRNA gene. Several authors have pointed out that, although the use of 16S data
for determining microbial composition of the gut is powerful [71], the standard primers
may not amplify all bacteria in equal proportions to their starting population sizes [31,72].
However, the three studies and datasets that we reanalyzed used the same or similar
primers targeting the v4 region, so any PCR bias should have affected all datasets similarly.
This issue is, therefore, unlikely to explain our failure to detect a universal endurance-
associated microbiota. However, because we narrowed our focus to genera for which more
than 75% of samples had reads mapped, it is possible that microbes whose rRNA sequences
are poorly amplified by these universal primers could have been neglected.

A more biological limitation of our study is the limited taxonomic granularity we
were able to apply. We narrowed our master taxa list to include only taxa with genus-
level taxon identifications based on our 95% threshold [35–39], but it is well known that
different microbial species within a genus may have distinct impacts on human metabolism
and physiology (e.g., Clostridium) and may be responding differently to endurance. We
may therefore have missed species-level or even within species (strain-level) changes or
interactions relevant or unique to endurance athletes. More broadly, a 16S rRNA profiling
approach will be largely blind to changes in microbial populations related to mobile genetic
elements such as plasmids, which can significantly impact microbial physiology [73].

Functional redundancy—in this case, distinct microbial species capable of the same
metabolic functions—could explain a lack of consistent endurance-associated species in
these datasets. Moya and Ferrera (2016) invoked functional redundancy to potentially
explain both the diversity of microbiota across individuals, and the relative stability of
microbial communities within individuals to perturbation. Applying this principle to
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endurance-associated microbiota, although Veilonella atypica was identified as being en-
riched in a sample of Boston marathoners post-race, it could plausibly be substituted in
diverse human samples by other gut microbes also expressing a pathway for converting lac-
tate to propionate. Indeed, various authors (e.g., Carey and Montag, 2021) have proposed
that microbial production of short-chain fatty acids such as propionate could be a key to
microbiota-associated performance improvements in athletes. It would be useful to extend
compositional studies of gut microbiota through metagenomic tools such as PICRUSt2
(Douglas et al., 2020) to look for other metabolic pathways shared in microbes potentially
responsive to endurance training or activities.

Generally, because there are so many factors that can affect the gut microbiota, any
comparison must be sufficiently controlled and have adequate sample size to account for
these factors. Diet, which can be highly variable and is often not well-controlled in human
research studies, is undoubtedly one of the largest factors affecting the gut microbiota.
Challenges related to diet were clearly evident in the studies we reanalyzed. The study
of Chinese half-marathoners examined here showed a response in the microbiota in just
one day to the chemistry of the dietary intake. Clarke et al. found that athletes had higher
protein intake, which may have affected microbial diversity in athletes’ gut microbiota,
regardless of their endurance-induced physiological differences [16]. Indeed, life-long
effects of early diet on the gut microbiota have been repeatedly reported [28,74], that could
constrain future exercise-induced changes. In addition to diet, there are dozens of other
environmental factors that strongly impact the composition of the gut microbiota. A rule of
thumb for a logistic regression is 10–20 samples per parameter being estimated [75] which
suggests on the order of 100–200 samples to account for the numerous covariates affecting
the gut microbiota. The number of covariates can be reduced (but not eliminated) by using
a paired sampling scheme (i.e., the same athlete before vs. after); however, this approach
fails to detect long-term changes in gut microbiota that differentiate endurance athletes
from sedentary controls.

Finally, we conducted a power analysis to estimate the sample size necessary to detect
significantly different abundances between treatment groups. We used the empirically
determined “d” based on the ability to detect a 10% difference in the average abundance
per genus and calculated the pooled standard deviation among all samples per genus. We
applied a power of 0.8 (an 80% chance of concluding there’s a real effect) and a Bonferroni-
corrected alpha based on the number of genera detected per dataset assuming that many
tests will be conducted. Our power analysis suggests that all four treatment group compar-
isons require substantially larger sample sizes than those in the published studies, ranging
from ~150-fold more samples (Chongqing half marathon) to ~800-fold more samples being
necessary (Boston marathon Athletes After vs. Controls) (Table S8). Even using the largest
“d” value among all genera detected per study, the sample sizes in these three studies are
still 10-fold to 150-fold smaller than necessary. Only after thoroughly controlled studies are
conducted on substantially larger sample sizes will investigators be able to reliably assess
whether intensive exercise affects the gut microbiota amidst a background of covariates.

4.5. Future Research

Rather than “universal” endurance-associated microbiota, it must be considered that
different types of athletic activity may place different demands on the anatomy and physi-
ology of participants, which may differentially influence the gut microbiota. Tabone et al.
write that “Exercise frequency, intensity, performing time, type of exercise, exercise vol-
ume and progression are all factors that influence physiological responses and exercise
adaptations, and will need to be considered in future studies investigating the beneficial
effect of exercise on the gut microbiota” [22] (p. 8). Due to inter-individual variation,
improved control could be gained by comparing the same individual sampled repeatedly
before and after endurance events, then pooling across studies. Sedentary control groups
could be thoroughly sampled, under diet-controlled conditions, then trained to become
an endurance population and sampled during the process. Pugh et al. recently reviewed
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the differences between the gastrointestinal health of female endurance athletes remarking,
“The links between female microbiome, estrogen, and systemic physiological and biological
processes are yet to be fully elucidated” and that “Many of the male-female differences
seen (e.g., in immune function) may be, at least in part, influenced by such GI related
differences” [76] (p. 755). Given these complexities, our search for the existence of a univer-
sal endurance-associated gut microbiota may be destined to mirror the mixed results of
probiotic use in sports [13]—elusive at best, and potentially not a universal phenomenon.
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