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Abstract: Lactiplantibacillus plantarum TWK10, a probiotic strain, has been demonstrated to improve
exercise performance, regulate body composition, and ameliorate age-related declines. Here, we
performed a comparative analysis of viable and heat-killed TWK10 in the regulation of exercise per-
formance, body composition, and gut microbiota in humans. Healthy adults (n = 53) were randomly
divided into three groups: Control, TWK10 (viable TWK10, 3 × 1011 colony forming units/day),
and TWK10-hk (heat-killed TWK10, 3 × 1011 cells/day) groups. After six-week administration, both
the TWK10 and TWK10-hk groups had significantly improved exercise performance and fatigue-
associated features and reduced exercise-induced inflammation, compared with controls. Viable
TWK10 significantly promoted improved body composition, by increasing muscle mass proportion
and reducing fat mass. Gut microbiota analysis demonstrated significantly increasing trends in the
relative abundances of Akkermansiaceae and Prevotellaceae in subjects receiving viable TWK10. Predic-
tive metagenomic profiling revealed that heat-killed TWK10 administration significantly enhanced
the signaling pathways involved in amino acid metabolisms, while glutathione metabolism, and
ubiquinone and other terpenoid-quinone biosynthesis pathways were enriched by viable TWK10.
In conclusion, viable and heat-killed TWK10 had similar effects in improving exercise performance
and attenuating exercise-induced inflammatory responses as probiotics and postbiotics, respectively.
Viable TWK10 was also highly effective in regulating body composition. The differences in efficacy
between viable and heat-killed TWK10 may be due to differential impacts in shaping gut microbiota.

Keywords: probiotics; postbiotics; viable; heat-killed; Lactiplantibacillus plantarum TWK10; exercise
performance; anti-fatigue; microbiota

1. Introduction

Probiotics are defined as “live microorganisms that, when administered in adequate
amounts, confer a health benefit on the host” [1]. There is accumulating evidence support-
ing the health benefits of probiotic consumption, including improvement of gastrointestinal
function, modulation of immune and mental functions, and reduction in the risks of genital
infection, cardiovascular disease, and other metabolic disorders [2–4]. Generally, probiotics
improve the health status of hosts by enhancing intestinal barrier integrity, regulating the
immune system, improving gut microbial composition, competitive exclusion of pathogens,
reducing the intestinal pH, and increasing short-chain fatty acids (SCFAs), mucus, and
bacteriocin production [5,6].

Emerging evidence supports the role of probiotics supplementation in improving the
health status and exercise performance of elite athletes and the general population [7–12].
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Regular exercise has many health benefits, including a reduced risk of cardiovascular dis-
ease, type 2 diabetes, and cancer, as well as lowering the likelihood of early death; however,
contracting skeletal muscles generate free radicals, and prolonged and intense exercise
can trigger oxidative stress accumulation and cause oxidative muscle tissue damage [13].
Exercise functions as a stressor and can cause inflammation. Acute exercise initiates a
complex cascade of inflammatory events, which depend on exercise type, intensity, and
duration. Pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, are released after
sufficient physical activity. Several probiotics are reported to reduce exercise-associated
oxidative stress and inflammatory responses [14–16].

Probiotics exert health benefits through the modulation of gut microbiota [17,18].
The relationship between the composition and metabolic activity of the gut microbiota,
and exercise performance has gradually become a focus of attention [19,20]. In the colon,
dietary fibers are digested by intestinal microbes and fermented into SCFAs, such as
acetate, propionate, and butyrate, which are physiological energy sources and important
modulators of metabolism, gut permeability, inflammatory responses, immune function,
and exercise performance [21–24].

Live probiotic bacteria are affected by various host-specific factors in the gastroin-
testinal tract, and viability control is an issue requiring consideration when live probiotics
are applied in the food and pharmaceutical industries. Inactivated probiotics have ad-
vantages relative to live probiotics; they do not translocate from the gut lumen to the
blood or acquire and transfer antimicrobial resistance genes and are easy to transport
and store for long periods [25–27]. Therefore, numerous studies have been conducted
using inactivated microorganisms designated, “heat-killed probiotics”, “paraprobiotics”,
“non-viable probiotics”, and “tyndallized probiotics”, with the aim of assessing their health
benefits [27–31]. Inactivated (heat-killed) probiotic bacteria also have effects in modulating
gut microbiota [30,32,33]. Comparative studies have demonstrated that non-viable probi-
otic products show similar potential health benefits to viable bacteria [34–36]. Accordingly,
the focus in probiotic supplementation is gradually shifting from viable bacteria towards
non-viable bacteria [37]. Recently, the International Scientific Association of Probiotics and
Prebiotics has proposed the term “postbiotics” which encompasses inactivated microorgan-
isms and stated its definition as “preparation of inanimate microorganisms and/or their
components that confers a health benefit on the host” [38].

We have previously demonstrated that the administration of viable Lactiplantibacillus
plantarum TWK10 (TWK10) exerted health benefits as a probiotic by improving exercise
performance, increasing muscle mass and strength, changing body composition towards a
healthy configuration, and ameliorating age-associated cognitive decline and impairment
in mice and humans [11,12,39–41]. Nevertheless, the impacts of heat-killed TWK10 on
health promotion are unknown. In this study, we investigated the effects of viable and
heat-killed TWK10 in improving exercise performance, reducing fatigue, and modulating
body composition and gut microbiota in humans.

2. Materials and Methods
2.1. Preparation of L. plantarum TWK10

TWK10 was isolated from a traditional Taiwanese pickled cabbage, “Po-tsai” as Lacto-
bacillus plantarum [39], and identified as Lactiplantibacillus plantarum subsp. plantarum, by
whole-genome sequencing [42,43]. TWK10 was cultivated and produced by SYNBIO TECH
INC. (Kaohsiung, Taiwan) in capsule format with indicated doses. Heat-killed TWK10
cells were prepared by heating liquid bacterial culture at 70 ◦C for 60 min, and bacterial
cell pellets were collected by centrifugation and spray-dried for capsule preparation. Each
capsule contained either 1 × 1011 colony-forming units (CFU) of lyophilized TWK10 or
1 × 1011 heat-killed TWK10 cells (corresponding to 1 × 1011 CFU of TWK10) and was
standardized with maltodextrin and microcrystalline cellulose. The ingredients of the
placebo capsule were the same as those in the TWK10 capsule but without the addition of
TWK10. The presence of no viable bacteria in the heat-killed TWK10 and placebo capsules
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was confirmed by cultivation, using de Man, Rogosa and Sharp (MRS; BD Difco, Franklin
Lakes, NJ, USA) agar plates incubated anaerobically at 37 ◦C for 48 h.

2.2. Subjects

A total of 53 healthy subjects (26 men and 27 women; age, 20–30 years old) without
professional athletic training were recruited in this study. Subjects were excluded from this
study if they had smoking or drinking habits; were pregnant or planning pregnancy; or had
any known disorders, including heart/cardiopulmonary disease, diabetes, neuromuscular
disorder, neurological disease, autoimmune disease, peptic ulcers, ulcerative colitis, or other
chronic diseases. All subjects were requested to maintain their usual diet and lifestyle, and
were prohibited from consuming any other nutritional supplements, including probiotics,
prebiotics, fermented products (yogurt or other foods), vitamins, minerals, herbal extracts,
or antibiotics, to avoid interference during supplementation. Subjects who agreed to follow
the study protocol and voluntarily signed informed consent were included in this study.
The study was reviewed and approved by the Institutional Review Board of Landseed
International Hospital (Taoyuan, Taiwan; LSHIRB No. 18-004-A2). The basic demographic
characteristics of the subjects are presented in Table 1.

Table 1. Characteristics of study subjects.

Group

Control TWK10 TWK10-hk

Male n = 9 n = 8 n = 9
Age (y) 22.4 ± 1.9 22.0 ± 2.3 22.6 ± 3.5

BMI (kg/m2) 24.0 ± 2.4 24.5 ± 3.9 22.7 ± 3.8
VO2max (mL/kg/min) 49.7 ± 7.5 49.0 ± 8.1 49.9 ± 9.8

Energy intake (kcal/day) 2686 ± 199 2649 ± 435 2557 ± 463
Female n = 9 n = 9 n = 9
Age (y) 20.8 ± 1.1 20.7 ± 0.7 20.6 ± 0.7

BMI (kg/m2) 20.1 ± 1.7 22.8 ± 5.4 21.2 ± 3.5
VO2max (mL/kg/min) 44.9 ± 9.1 44.8 ± 10.3 45.0 ± 10.6

Energy intake (kcal/day) 1831 ± 254 1855 ± 180 1760 ± 311
Data are presented as mean ± SD. Statistical differences among groups were analyzed by one-way ANOVA with
Tukey post-hoc test.

2.3. Experimental Design

This was a double-blinded and placebo-controlled trial, with a 2-week wash-out
period and a 6-week intervention period. Eligible subjects were equally assigned to
three groups (8–9 male and 9 female subjects in each group), including Control (placebo,
3 capsules/day), TWK10 (viable TWK10, 3 × 1011 CFU/day), and TWK10-hk (heat-killed
TWK10, 3 × 1011 cells/day), based on individual exercise capacity, determined from the
basal value of maximal oxygen consumption (VO2max). Maximal oxygen consumption and
exercise performance were evaluated using a treadmill (Pulsar, h/p/cosmos, Nussdorf-
Traunstein, Germany) and an auto respiratory analyzer Vmax 29c (Sensor Medics, Yorba
Linda, CA, USA). Running speed on the treadmill started at 7.2 km/h and increased by
1.8 km/h every 2 min until volitional fatigue, according to the Bruce protocol [44]. Oxygen
consumption was considered maximum when the respiratory exchange ratio (volume
ratio of carbon dioxide produced to oxygen consumed; VCO2/VO2) was >1.10 and the
maximum heart rate was achieved (maximum heart rate = 220 − age). VO2max was used as
a reference to adjust individual appropriate exercise intensity for physiological adaptation
(60% VO2max) and exhaustive endurance performance (85% VO2max) tests. Adjustment of
exercise intensity was calculated according to a previously described formula [11]. Sub-
jects were required to avoid any strenuous physical activity for three days before VO2max
assessment and exercise tests. Endurance performance was assessed with a warm-up stage
for 5 min, followed by an exercise test on the treadmill at 85% VO2max workload. Oxygen
consumption, heart rate, and Borg’s rating of perceived exertion scale were monitored every
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5 min during submaximal endurance exercise, to determine achievement of exhaustion.
Sustained exercise duration was recorded as the endurance index.

During the 6-week experimental period, subjects were required to take one capsule
three times daily after meals, and to maintain their regular lifestyles. Information of caloric
intake before and after administration were recorded as reference values. Physiological
adaptation effects were determined before and after administration. Fresh fecal samples
were collected for gut microbiota analysis and SCFA measurement on the last day of the
2-week wash-out period and after 6 weeks of administration.

2.4. Fatigue-Associated Biochemical Indices and Hematology Profiling

For assessment of fatigue-related indices, blood samples were collected at the indicated
time points, just before and immediately after the 6-week experimental period, including
baseline (0), 5 min (E5), 10 min (E10), 15 min (E15), and 30 min (E30) during the 60%
VO2max fixed intensity exercise challenge, and at 20 min (R20), 40 min (R40), 60 min (R60),
and 90 min (R90) after exercise challenge. All biochemical indices were assessed using
a Hitachi 7060 automatic biochemical analyzer (Hitachi, Tokyo, Japan). Complete blood
count (CBC) profiles were determined at 90 min into the recovery phase (R90), using an
automatic analyzer (MindrayBC-2800Vet, Shenzhen, China).

2.5. Body Composition

Body composition was measured by applying the multi-frequency principle with a
bioelectrical impedance analyzer (BIA) on the InBody 770 (In-body, Seoul, Korea). This de-
vice takes 30 impedance measurements with frequencies of 1, 5, 50, 260, 500, and 1000 kHz
for approximately 60 s. Before testing, age, sex, and height were entered for each subject.
Subjects cleaned their hands and feet before contacting the electrodes and were then re-
quested to stand on the center of electrodes and grasp the hand electrodes with their arms
held so that there was no contact between the arms and the torso. The position was held
for the duration of the test. Subjects fasted for at least 8 h prior to the tests.

2.6. DNA Extraction

Freshly collected fecal samples were washed three times with phosphate-buffered
saline and centrifuged at 14,000× g for 5 min for extraction of bacterial genomic DNA.
Fecal pellets were resuspended in 180 µL TE buffer containing lysozyme (final conc.
10 mg/mL), a suspension of glass beads (300 mg, 0.1 mm in diameter; Biospec, Bartesville,
OK, USA) was added, and samples homogenized for 30 s using a FastPrep 24 homogenizer
(MP Biomedicals, USA), to ensure complete disruption of cell walls and release of DNA
molecules into the solution. Bacterial genomic DNA was then extracted using a Genomic
DNA Mini Kit (Geneaid, Taipei, Taiwan), according to the manufacturer’s instructions.
DNA concentrations were determined by spectrophotometry using a BioDrop instrument
(Biochrom, Biochrom Ltd., Cambridge, UK). DNA samples were stored at −20 ◦C until
further processing.

2.7. 16S rRNA Gene Sequencing and Analysis

The V3–V4 region of the 16S rRNA gene was amplified using specific primers (319F:
5′-CCTACGGGNGGCWGCAG-3′ and 806R: 5′-GACTACHVGGGTATCTAATCC-3′) [45],
according to the 16S Metagenomic Sequencing Library Preparation procedure (Illumina).
Amplicon pools were sequenced on the Illumina MiSeq™ sequencing platform (Illumina,
San Diego, CA, USA). Raw FASTQ files were initially demultiplexed using the q2-demux
plugin and minimally quality filtered with DADA2 [46] (via q2-dada2), using Qiime2-
2020.08 [47], to generate amplicon sequence variants (ASVs). Taxonomy of ASVs was
performed using the q2-feature-classifier [48] and the classify-sklearn naïve Bayes taxonomy
classifier, with the SILVA database (release 138), to identify representative sequences with
99% similarity [49]. Both alpha diversity (Shannon and Richness indices) and beta diversity
were estimated using QIIME2, with a rarefaction of 30,000 sequences. Beta diversity
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analysis was performed using non-metric multidimensional scaling (NMDS) plots, based on
weighted UniFrac or unweighted UniFrac distances. Permutational multivariate analysis of
variance (PERMANOVA)/Adonis tests were conducted using vegan: Community Ecology
Package (R package version 2.5-6; http://CRAN.R-project.org/package=vegan, accessed
on 15 November 2021). Based on the characteristics of the compositional data, networks
of specific families in each group were built using SparCC correlation coefficients [50].
Networks were visualized using Cytoscape (version 3.8.2; https://github.com/cytoscape/
cytoscape/releases/3.8.2/, accessed on 23 November 2021). The Kyoto Encyclopedia of
Genes and Genomes (KEGG; https://www.genome.jp/kegg/, accessed on 6 December
2021) database was used to analyze pathway enrichment, using Phylogenetic Investigation
of Communities by Reconstruction of Unobserved States (PICRUSt2) [51]. Finally, the
influence of each differentially abundant gut microbial component was evaluated by linear
discriminant analysis (LDA) to determine effect size (LEfSe) [52]. Raw sequence files
supporting the findings of this article are deposited in the NCBI Sequence Read Archive
(SRA) database, with project accession number, PRJNA791018.

2.8. SCFA Levels in Feces

Freshly collected fecal samples were mixed with 70% ethanol solution at a ratio of
1 mg of fecal sample: 10 µL 70% ethanol, and then homogenized with appropriate amounts
of glass beads (1.0 mm in diameter; Biospec Products) by vortexing at 3000 rpm for 10 min.
Homogenized samples were centrifuged at 14,000× g for 10 min, and the supernatants
were collected for fatty acid derivatization, according to a previously described method [53].
Derivatized supernatants were filtered using a 0.22-µm polycarbonate syringe filter (Milli-
pore, St. Charles, MO, USA). SCFAs were separated and quantified using high-performance
liquid chromatography (HITACHI, Tokyo, Japan) on a C18 HTec column (NUCLEODUR,
Macherey-Nagel, Düren, Germany), with column temperature 40 ◦C, flow rate 1 mL/min,
and detection wavelength 400 nm.

2.9. Statistical Analysis

Data are expressed as mean ± SD. Statistical analysis was performed using GraphPad
Prism 8.1.1 (GraphPad Software, San Diego, CA). Statistical differences among groups were
analyzed by two-way repeated-measures ANOVA with Tukey post-hoc test. Differences
between before and after administration were analyzed by two-way repeated-measures
ANOVA with Bonferroni post-hoc test. Differences in the changes between before and after
administration in each subject among the three groups were analyzed by Kruskal–Wallis
test with Dunn post-hoc test. Spearman’s correlation coefficient was used for analyses of
correlations between gut microbial abundances and exercise-associated phenotypic features.
P < 0.05 was considered statistically significant.

3. Results
3.1. Both Viable and Heat-Killed TWK10 Improved Exercise Endurance Performance and
Physical Adaptation

In this study, we assessed the effects of viable and heat-killed TWK10 on exercise
endurance performance, which was evaluated by a time-to-exhaustion test with an 85%
VO2max workload. There were no significant differences in the basic demographic charac-
teristics or baseline exhaustion time values of subjects among the three groups (Control,
TWK10, and TWK-hk) (Table 1). At week 0, there were no significant differences in mean
exhaustion time among the three groups; however, after six weeks of administration,
the mean exhaustion times in the TWK10 (17.55 ± 3.98 min; P < 0.001) and TWK10-hk
(16.72 ± 5.91 min; P < 0.01) groups were significantly higher than those in the Control
group (12.23 ± 2.08 min). Within-group comparisons demonstrated that, after 6 weeks
of treatment, mean exhaustion times in the TWK10 and TWK10-hk groups were signifi-
cantly increased by 1.38-fold (P < 0.001) and 1.33-fold (P < 0.001), respectively, whereas
no significant difference was observed in the Control group. These results show that both

http://CRAN.R-project.org/package=vegan
https://github.com/cytoscape/cytoscape/releases/3.8.2/
https://github.com/cytoscape/cytoscape/releases/3.8.2/
https://www.genome.jp/kegg/
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viable and heat-killed TWK10 improved exercise endurance performance, while there was
no significant difference in the level of improvement between the TWK10 and TWK10-hk
groups (Figure 1A).
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Figure 1. Effects of TWK10 on exercise endurance performance and fatigue-associated blood in-
dicators. (A) Endurance performance was evaluated under 85% VO2max exercise intensity before
and after TWK10 administration. Statistical differences among groups were analyzed by two-way
repeated-measures ANOVA with Tukey post-hoc test. The significance of differences between param-
eters before and after administration was analyzed by two-way repeated-measures ANOVA with
Bonferroni post-hoc test. ** P < 0.01, *** P < 0.001. During fixed intensity and period exercise tests,
blood samples were collected for (B) lactate, (C) ammonia, (D) glucose, and (E) CK measurements at
the indicated time points after TWK10 administration. Data are presented as mean ± SD. Statistical
differences among groups were analyzed by one-way ANOVA with Tukey post-hoc test. Different
letters (a, b, c) indicate significant differences among groups at P < 0.05.
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Next, we assessed fatigue-related indices and found that there were no significant
differences in concentrations of lactate, ammonia, glucose, and creatine kinase in plasma
from all three groups during and after exercise challenges just before administration (data
not shown), whereas the concentrations of lactate and ammonia in plasma from all the
three groups immediately after 6-week of administration were increased during exercise
challenge, reaching peak levels after 30 min of exercise stimulation (time point: E30), and
gradually decreased to the basal level during the recovery phase. In the TWK10 and TWK10-
hk groups, lactate and ammonia levels in the exercise phase [for lactose (time points: E10,
E15, and E30); for ammonia (time points: E15 and E30)] and in the recovery phase [for
lactate (time points: R20 and R40); for ammonia (time point: R20)] were significantly lower
than those in the Control group (Figure 1B,C). Lactate concentrations in the TWK10 group
in the exercise phase at time points E15 and E30 were significantly lower (P < 0.05) than
those in the TWK10-hk group (Figure 1B). Further, plasma glucose concentrations in the
TWK10 group at time points E15, E30, and R20 were significantly higher (P < 0.05) than
those in both the TWK10-hk and Control groups. After exercise stimulation, the elevated
glucose level was gradually reduced and returned to basal level at resting state (Figure 1D).
For creatine kinase (CK), no significant differences among the three groups were observed
during the exercise test (Figure 1E).

3.2. Heat-Kill TWK10 Was More Effective on Reducing Exercise-Induced Inflammatory Response

The neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) serve
as markers of systemic inflammatory response in humans [54,55]. Therefore, to evaluate
the effect of TWK10 on the exercise-induced systemic inflammatory response, NLR and
PLR were examined. CBC was determined from blood samples collected at time point R90
(90 min in recovery state after 30-min exercise stimulation at 60% VO2max) and NLR and
PLR were calculated. Before administration, no significant differences in PLR and NLR
values were observed among the three groups. Following administration of heat-killed
TWK10 for 6 weeks, NLR and PLR in the TWK10-hk group were significantly decreased
(P < 0.05 and P < 0.01, respectively), whereas, in subjects who received viable TWK10 for
6 weeks, no significant alteration in NLR was observed; however, a significant reduction in
PLR l (P < 0.05) was detected (Figure 2).
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Figure 2. Effects of TWK10 on pro-inflammatory indicators after exercise challenge. Blood sam-
ples were collected and analyzed at 120 min after fixed intensity and period exercise challenges.
(A) Neutrophil to lymphocyte ratio (NLR), and (B) platelet to lymphocyte ratio (PLR) were examined.
Data are presented as mean ± SD. The significance of differences among groups were analyzed
by two-way repeated-measures ANOVA with Tukey post-hoc test. Differences before and after ad-
ministration were analyzed by two-way repeated-measures ANOVA with Bonferroni post-hoc test.
* P < 0.05, ** P < 0.01.

3.3. Viable TWK10 Was More Effective on the Modulation of Muscle Weight and Body Fat Mass

To assess the impact of viable and heat-killed TWK10 on modulation of body com-
position, muscle weight, body fat mass, and body mass index (BMI) of subjects before
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and after administration were measured using an InBody 770 Body Composition Ana-
lyzer. Considering individual within-group differences, we calculated the changes after
six weeks of treatment, compared with before treatment, for each subject, then compared
these changes among the three groups. After six weeks of administration, there were no
significant differences in mean muscle weight among the Control, TWK10, and TWK10-hk
groups; however, a significant increase (p < 0.001) in muscle weight was observed in the
TWK10 group following treatment. Next, we compared differences in muscle weight
before and after treatment in each subject among the three groups. A significant increase
of mean muscle weight was observed in the TWK10 group after six weeks of treatment,
relative to that in the Control group (p < 0.001). Further, the mean fat mass (%) of subjects
in the TWK10 group after administration was significantly lower (p < 0.001) than that
before administration, and a significant difference (p < 0.001) in the decrease in mean fat
mass after six weeks of administration was observed in the TWK10 group relative to the
Control group. No significant difference in the change in BMI was observed among the
three groups (Table 2).

Table 2. Effects of TWK10 on muscle weight and fat mass.

Group

Control TWK10 TWK10-hk

Muscle weight (kg)
Before administration 27.46 ± 8.56 26.94 ± 6.69 25.12 ± 5.79
After administration 27.31 ± 8.25 27.62 ± 6.67 *** 25.26 ± 5.66

Change –0.15 ± 0.67 a 0.64 ± 0.66 b 0.14 ± 0.51 ab

Fat mass (%)
Before administration 20.89 ± 8.57 24.84 ± 8.46 22.56 ± 8.67
After administration 20.80 ± 8.38 23.30 ± 8.07 *** 22.08 ± 8.74

Change –0.09 ± 1.04 a –1.46 ± 1.52 b –0.48 ± 0.54 ac

BMI (kg/m2)
Before administration 22.06 ± 2.80 23.61 ± 4.69 21.97 ± 3.62
After administration 21.93 ± 2.66 23.36 ± 4.70 21.94 ± 3.49

Change –0.12 ± 0.29 –0.23 ± 0.93 –0.03 ± 0.34
The changes in muscle weight, body fat, and BMI of the indicated groups were calculated as differences before
and after administration. Data are presented as mean ± SD. Statistical differences among groups were analyzed
by two-way repeated-measures ANOVA with Tukey post-hoc test. Statistical differences between values before
and after administration were analyzed by two-way repeated-measures ANOVA with Bonferroni post-hoc test.
*** P < 0.001. Significant differences in the changes between before and after administration in each subject among
the three groups were analyzed by Kruskal–Wallis test with Dunn post-hoc test. Different letters (a, b, c) indicate
significant differences among groups (p < 0.05).

3.4. Viable and Heat-Killed TWK10 May Trigger Distinct Gut Microbial Community Changes

To further understand the impact of TWK10 on gut microbial composition, we an-
alyzed the characteristics of bacterial community composition by high-throughput se-
quencing of the V3–V4 region of the 16S ribosomal RNA gene. To determine how the
overall profile of microbial composition was modulated by administration of viable or
heat-killed TWK10, alpha- and beta-diversity indices were analyzed. Median Shannon
index values for α-diversity in each group ranged from 3.2 to 3.5, and no significant differ-
ences were observed between values before and after administration in each group, nor
among the three groups.

The median observed ASVs ranged from 130 to 170, and no significant differences
were observed between before and after administration in each group, nor among the
three groups (Figure 3A). To evaluate differences in microbial community structures in
each group before and after administration among the three groups, we generated NMDS
ordination plots of unweighted and weighted Unifrac distances for all six experimental
groups. There were no significant differences between before and after administration,
nor among the three groups. After six weeks of administration, the β-diversity profiles
of fecal microbial composition in subjects showed a strong trend toward significant dif-
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ference between the TWK10 and TWK10-hk groups (PERMANOVA, P = 0.063), based on
NMDS analysis with unweighted UniFrac metric (Figure 3B). Box plots of unweighted
UniFrac distances showed that gut communities in the TWK10 group after administra-
tion were significantly different from those of the TWK10-hk group after administration
(p < 0.0001) (Figure 3C). β-diversity profiles in the TWK10 group after administration
showed a marginally significant difference (p = 0.072, by unweighted UniFrac distance) to
those in the Control group after administration (Figure 3C), while those in the TWK10-hk
group differed significantly from those in the Control group (PERMANOVA, P = 0.036,
by NMDS with unweighted UniFrac metric; P = 0.072 by unweighted UniFrac distance)
(Figure 3B,C). β-diversity profiles in the TWK10-hk group differed significantly different
from those before administration (p < 0.0001, by weighted UniFrac distance; P = 0.031, by un-
weighted UniFrac distance), whereas those in the TWK10 group did not differ significantly
before and after administration (Figure 3C).
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Figure 3. Comparisons of bacterial diversity among groups and its changes in response to interven-
tion: (A) Box plots showing differences among the three groups (Control, TWK10, and TWK10-hk) in
α-diversity indices (Shannon index and observed ASVs) before and after administration. Each box
plot illustrates the median, interquartile range, minimum, and maximum values. ASV: Amplicon
Sequence Variants; (B) NMDS plots of bacterial β-diversity based on weighted UniFrac distance
(left panel) and unweighted UniFrac distance (right panel); (C) Distances of bacterial β-diversity
based on the weighted UniFrac distance (left panel) and unweighted UniFrac distance (right panel).
Comparisons of bacterial composition based on the top 10 phyla (D) and top 20 families (E) of bacteria
in all samples. Others, remaining phyla or families with lower relative abundance.

The overall microbiota structures of subjects in the three groups before and after
administration at the phylum level are presented in Figure 3D. The predominant phyla
detected in subjects were Firmicutes, Bacteroidota, Actinobacteriota, Proteobacteria, and Ver-
rucomicrobiota. After six weeks of administration, a weak increasing trend in the relative
abundance of Verrucomicrobiota in the TWK10 group (P = 0.114), and significant increases in
the relative abundances of Proteobacteria in the Control (P = 0.011) and TWK10-hk (P = 0.030)
groups were observed, relative to those before administration (Figure S1A). At the family
level, the top 10 predominant bacteria in fecal samples from subjects were Lachnospiraceae,
Bacteroidaceae, Ruminococcaceae, Bifidobacteriaceae, Prevotellaceae, Selenomonadaceae, Coriobacte-
riaceae, Veillonellaceae, Acidaminococcaceae, and Streptococcaceae (Figure 3E). After 6 weeks
of administration in the TWK10 group, significant decreasing trends in the abundance
of Ruminococcaceae (P = 0.109) and Eggerthellaceae (P = 0.053), a significant increase in the
abundance of Lactobacillaceae (P = 0.039), and significant increasing trends in the relative
abundances of Prevotellaceae (P = 0.109) and Akkermansiaceae (P = 0.114) were observed, rela-
tive to those before administration. In the TWK10-hk group after 6 weeks of administration,
a significant increasing trend (P = 0.072) in the abundance of Enterobacteriaceae, a significant
decrease (P = 0.030) in the abundance of Peptostreptococcaceae, a significant decreasing trend
(P = 0.107) in the abundance of Lachnospireaceae, and an increasing trend (P = 0.148) in
the abundance of Atopobiaceae were observed as compared with before administration
(Figure S1B). In the TWK10 group after six weeks of administration, genus-level analysis
revealed a significant decrease in Lachnospira abundance (P = 0.022), a decreasing trend in
Faecalibacterium abundance (P = 0.077), and a significant increasing trend in Akkermansia
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abundance (P = 0.114), compared with before administration. Meanwhile, after six weeks
of administration in the TWK10-hk group, we detected significant increases in the abun-
dances of Lactococcus (P = 0.046) and Escherichia-Shigella (P = 0.038), decreasing trends in
the abundances of Roseburia (P = 0.110) and Lachnospira (P = 0.064), and a marginal increase
in the abundance of Oscillibacter (P = 0.184), relative to before administration (Figure S2).

3.5. Viable and Heat-Killed TWK10 Showed Different Imapcts on Gut Microbial
Co-Occurrence Networks

As intra-microbiota bacterial interactions play roles in shaping the gut microbiota
community [56], we further investigated alterations in bacteria–bacteria interactions after
viable or heat-killed TWK10 administration using bacterial co-occurrence networks analy-
sis. Among the ASVs obtained in the study, 16S rRNA read counts were >50 in 233 and
258 ASVs before administration in the TWK10 and TWK10-hk groups, respectively. SparCC
correlation coefficients >|0.6| and P < 0.05 were considered indicative of a connection be-
tween bacterial groups. Gut bacteria co-occurred more frequently before administration
than after administration in both the TWK10 and TWK10-hk groups. Specifically, in the
TWK10 and TWK10-hk groups, 37 and 30 nodes, respectively, were observed before admin-
istration, whereas 28 and 25 respective nodes were observed after administration. These
decreases reflected dramatic changes in bacterial network structures in response to the
administration of viable TWK10 (Figure 4A,B). In the TWK10 group before administration,
Lachnospiraceae was positively correlated with Butyricicoccaceae, Carnobacteriaceae, and Sut-
terellaceae, whereas it was negatively correlated with Anaerovoracaceae and Christensenellaceae;
Ruminococcaceae was positively correlated with Bacteroidaceae, Butyricicoccaceae, Carnobacteri-
aceae, and Desulfovibrionaceae; and Bifidobacteriaceae was positively correlated with Veillonel-
laceae (Figure 4A). Meanwhile, in the TWK10 group after administration, Lachnospiraceae
was positively correlated with Actinomycetaceae, Butyricicoccaceae, Carnobacteriaceae, and
Streptococcaceae; and Bifidobacteriaceae was positive correlated with Bacteroidaceae and Enter-
obacteriaceae, and negatively correlated with Eubacterium coprostanoligenes group, Marinifi-
laceae, and Oscillospiraceae. In addition, a firm network among the families, Anaerovoracaceae,
Christensenellaceae, Coriobacteriales incertae sedis, E. coprostanoligenes group, Marinifilaceae,
Oscillospiraceae, and Rikenellaceae was observed (Figure 4B). In the TWK10-hk group before
administration, Lachnospiraceae was positively correlated with Butyricicoccaceae, whereas
it was negatively correlated with Christensenellaceae, Coriobacteriales incertae sedis, and Ox-
alobacteraceae; a positively correlated network among Carnobacteriaceae, Eggerthellaceae,
and Streptococcaceae was observed; and Prevotellaceae was negatively correlated with Bac-
teroidaceae, Bifidobacteriaceae, and Monoglobaceae (Figure 4C). However, heat-killed TWK10
administration altered the topology of the co-occurrence network, with the number of con-
nections among gut bacteria reduced. Specifically, Lachnospiraceae was positively correlated
with Eggerthellaceae and Sutterellaceae, and negatively correlated with Christensenellaceae;
Ruminococcaceae was positively correlated with Bifidobacteriaceae and Butyricicoccaceae, and
negatively correlated with Erysipelotrichaceae; and Anaerovoracaceae, Desulfovibrionaceae,
Marinifilaceae, and Rikenellaceae formed a positively correlated network (Figure 4D).

3.6. Viable and Heat-Killed TWK10 Showed Differenet Impacts on Predicted Gut Microbial
Community Functional Profiles

Functional profiles of bacterial communities of the three groups (Control, TWK10,
and TWK10-hk) were predicted using PICRUSt2. LEfSe analysis was then performed to
explore level 3 KEGG pathways with significant differences in abundance before and after
administration. Butanoate metabolism, glutathione metabolism, and ubiquinone and other
terpenoid-quinone biosynthesis pathways were over-represented (α = 0.1, LDA score > 2.0)
following TWK10 administration (Figure 5A). In the TWK10-hk group, RNA polymerase,
pentose phosphate pathway, sulfur relay system, galactose metabolism, beta_lactam re-
sistance, and starch and sucrose metabolism were over-represented in the microbiota of
subjects before administration, whereas phenylalanine metabolism, tryptophan metabolism,
butanoate metabolism, and taurine and hypo-taurine metabolism were significantly en-
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riched (α = 0.1, LDA score > 2.0) following administration (Figure 5B). These results
demonstrate that viable and heat-killed TWK10 induced different alterations in the overall
predicted functional features of gut microbiota.
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Figure 4. Co-occurrence network analysis of the gut microbiota. Bacterial networks were generated
using SparCC correlation coefficients, based on relative abundances at the family level: (A) In the
TWK10 group before administration (TWK10_before), there were 37 nodes, and correlation coefficients
ranged from |0.60| to |0.92|; (B) In the TWK10 group after administration (TWK10_after), there
were 28 nodes, and correlation coefficients ranged from |0.60| to |0.74|; (C) In the TWK10-hk
group before administration (TWK10-hk_before), there were 30 nodes, and the correlation coefficients
ranged from |0.61| to |1.00|; (D) In the TWK10-hk group after administration (TWK10-hk_after),
there were 25 nodes, and correlation coefficients range from |0.60| to |0.85|. Nodes represent
bacteria families; grey and orange color edges represent negative and positive correlation coefficients,
respectively. The size and the degree of the green color of nodes in the network represent the relative
abundance of each taxon in each group.
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Figure 5. LEfSe analysis of metabolic function profiles using PICRUSt in subjects receiving viable
or heat-killed TWK10. Linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed
significant differences in functional profiles between before (negative score) and after (positive
score) administration in the (A) TWK10 and (B) TWK10-hk groups. LDA scores (log10) > 2.0 and
P < 0.1 are shown.

3.7. Both Viable and Heat-Killed TWK10 Increased Gut SCFA Levels

Acetate, propionate, and butyrate are the main SCFAs metabolized by gut microorgan-
isms. Therefore, we collected fecal samples from subjects before and after administration to
examine whether TWK10 could influence SCFA production. As shown in Table 3, subjects
receiving both viable and heat-killed TWK10 had significantly higher acetate concentra-
tions in feces relative to before administration (P < 0.05). Further, a significantly increasing
trend in propionate was detected in feces of subjects treated with heat-killed TWK10
(P = 0.0857), and in butyrate in feces of subjects treated with viable TWK10 (P = 0.0744).
In the Control group, no significant alterations of any of the three tested SCFAs were
observed after administration.

Table 3. Effects of TWK10 on SCFAs in feces.

Group

Control TWK10 TWK10-hk

Acetate (mM)
Before administration 7.17 ± 2.53 5.30 ± 1.96 6.48 ± 2.14
After administration 9.67 ± 5.25 8.56 ± 3.37 * 10.63 ± 6.17 *

Propionate (mM)
Before administration 2.20 ± 0.44 2.00 ± 1.27 2.12 ± 0.88
After administration 2.67 ± 1.11 2.51 ± 2.16 3.80 ± 3.81 §

Butyrate (mM)
Before administration 0.96 ± 0.69 0.76 ± 0.56 1.11 ± 0.71
After administration 1.45 ± 0.86 1.15 ± 0.64 # 1.33 ± 0.77

Data are presented as mean ± SD. The significance of differences among groups were analyzed by Kruskal–Wallis
test with Dunn’s post-hoc test. Differences between values before and after administration were analyzed by
Mann–Whitney U test. * P < 0.05, § P = 0.0857, # P = 0.0744.
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3.8. Correlation between Gut Microbial Composition and TWK10-Mediated Health Benefits

Correlations between the relative abundances of gut bacterial families and TWK10-
mediated phenotypic features related to host health benefits were assessed by Spearman’s
correlation analysis. For exercise endurance performance, the effects on exhaustion time
mediated by administration of heat-killed TWK10 were significantly and positively cor-
related with the Veillonellaceae population, and significantly negatively correlated with
E. coprostanoligenes group, Erysipelatoclostridiaceae, and Lachnospiraceae populations. In sub-
jects receiving viable TWK10, exhaustion time was significantly positively correlated with
the Coriobacteriaceae population. The correlation coefficients between Veillonellaceae and the
exhaustion time in subjects administered viable and heat-killed TWK10 were strengthened
from −0.35 to 0.06, and from 0.51 to 0.65, respectively, following administration. Changes
in body fat mass (%) mediated by heat-killed TWK10 administration were significantly
positively correlated with the presence of Erysipelatoclostridiaceae and Erysipelotrichaceae,
and significantly negatively correlated with the Veillonellaceae population. In subjects ad-
ministered viable TWK10, the abundances of Bacteroidaceae, Oscillospiraceae, Rikenellaceae,
and Ruminococcaceae were negatively correlated with muscle weight. In pro-inflammatory
responses detected following the administration of heat-killed TWK10, a strong positive
correlation was observed between the abundance of Enterobacteriaceae and PLR, whereas
Akkermansiaceae abundance was strongly negatively correlated with NLR (Figure 6).
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Figure 6. Heatmap of Spearman’s correlation analysis between gut microbiota and functional param-
eters in subjects who received viable or heat-killed TWK10 administration. Spearman’s correlation
values were calculated between the abundances of the top 20 most abundant bacterial families and
phenotypic changes following administration of viable or heat-killed TWK10. Red squares, positive
correlations; blue squares, negative correlations. * P < 0.05, ** P < 0.01, *** P < 0.001.
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4. Discussion

Viable TWK10 has been previously elucidated to have potential probiotic effects in
enhancing exercise performance, increasing muscle mass and strength, improving body
conformation, and ameliorating age-associated cognitive decline and impairments in mice
and humans [11,12,39–41]; however, the impacts of heat-killed TWK10 on health promotion
have yet to be confirmed. Therefore, in the current study, we applied the treadmill method
to evaluate exercise performance before and after administration of viable or heat-killed
TWK10 by assessing changes in individual VO2max. Six weeks of administration of both
viable and heat-killed TWK10 significantly improved exercise performance, consistent
with our previous findings in humans, where administration of viable TWK10 significantly
increased exercise performance relative to the placebo group [11,12].

Blood glucose and glycogen stored in muscle are established as the major energy
sources during exercise. Exercise can spike blood glucose, most commonly via the release
of the stress hormone, adrenaline. Key actions of adrenaline include increasing heart
rate and blood pressure, expanding the lung air passages, enlarging the pupils in the
eye, redistributing blood to the muscles, and altering metabolism in response to acute
stress [57]. Generally, exercise induces an increase in gluconeogenesis and raises blood
glucose, to provide fuel for muscles in response to exercise demand. After exercising, the
body adjusts the blood glucose by secreting insulin, to lower the excess sugar in circulation
that is no longer needed by the muscles. In this study, we observed a significant elevation
in circulating glucose during exercise in subjects who received viable TWK10, reflected
in an improvement in exercise endurance performance (Figure 1D). These results are
consistent with our previous findings [11,12]. In contrast, no significant elevation of plasma
glucose was observed in subjects who received the heat-killed form of TWK10; therefore,
we speculate that viable TWK10 can accelerate cross-talk between the gut and brain, to
efficiently trigger adrenaline release, boost energy supplies, and consequently prolong
exercise duration. However, further investigations are needed to elucidate the role of
TWK10 in adrenaline signaling and improved exercise performance.

In addition to the exercise-induced boost in blood glucose, significantly reduced
lactate production in circulation was also observed in subjects who received viable TWK10
(Figure 1B). Muscle contraction depends on the breakdown of adenosine triphosphate (ATP)
and the concomitant release of free energy. Anaerobic glycolysis is the major metabolic
pathway used when oxygen supply is limited during exercise, such as high-intensity,
sustained, isometric muscle activity. Glycolysis produces pyruvate from glucose, which
is then reduced to lactate-by-lactate dehydrogenase, without oxygen consumption [58].
In groups administered both viable and heat-killed TWK10, exercise endurance (time to
exhaustion) was improved and less plasma lactate was produced during exercise, indicating
that subjects receiving TWK10 were less likely to obtain energy for exercise demand
through anaerobic glycolysis. Sufficient oxygen supply in exercising muscle promotes
aerobic glucose breakdown, resulting in the conversion of pyruvate to acetyl-CoA, which is
subsequently metabolized in the TCA cycle to produce ATP for exercise demand. Enhanced
TCA cycle activity results in reduced lactate production. In KEGG analysis, we detected
an increasing trend in TCA cycle enrichment (P = 0.069) in subjects receiving heat-killed
TWK10, relative to the baseline value (data not shown). Another possible reason for
the observation of reduced levels of lactate during exercise is an alteration of energy
supply. Ketosis decreases muscle glycolysis and plasma lactate levels, while increasing
intramuscular triacylglycerol oxidation during exercise, providing an alternative substrate
for oxidative phosphorylation [59]. Further investigations are necessary to understand the
effects of both viable and heat-killed TWK10 on energy metabolism during exercise.

There is good evidence that inactivated microbial cells exhibit health-promoting effects
through immune system modulation, prevention of pathogenic infection, and reduction
in oxidative stress [60–62]. Heat-killed Lactobacillus brevis SBC8803 downregulates the
expression of pro-inflammatory cytokines and enhances intestinal barrier function under
oxidative stress [63]. Likewise, heat-killed Bacillus coagulans GBI-30 promoted immune



Microorganisms 2022, 10, 2181 16 of 24

responses and modulated inflammatory cytokine expression in cell-base assays [64]. It is
established that both viable or heat-killed bacteria can exhibit anti-inflammatory effects;
however, which form of bacteria is more effective depends on the strain. In this study,
subjects receiving both viable and heat-killed TWK10 showed significant reduction in
PLR post-exercise challenge, whereas significantly reduced NLR was observed only in
subjects who received heat-killed TWK10 (Figure 2), indicating that heat-killed TWK10
has the potential to reduce damage or increase recovery rate after exercise. Exercise-
induced production of muscle damage indicators and inflammatory biomarkers can lead
to a temporary reduction in muscular force [65] and decreased physical performance [66].
These findings suggested that the improvement of exercise performance mediated by
viable and heat-killed TWK10 may be achieved in a different manner. Therefore, further
investigations are needed to further elucidate the differences in underlying mechanisms.

Total daily energy expenditure is determined by basal metabolic rate (BMR), food-
induced thermogenesis, and energy required for physical activity. Generally, the BMR
accounts for 65–75% of total energy expenditure and is considered to be proportional to
fat-free mass [67]. As Huang et al. previously reported [68], viable TWK10 upregulates
BMR in gnotobiotic mice, accompanied by a reduction in fat mass, without altering dietary
intake. In addition, the proteomic analysis demonstrated that peroxisomal acyl-coenzyme
A oxidase 2 and very long-chain acyl-CoA synthetase were significantly upregulated in the
liver of mice administered viable TWK10, indicating that lipid metabolism is enhanced by
TWK10 [69]. In this study, viable TWK10 significantly promoted the development of body
composition toward an improved configuration by increasing muscle mass proportion
and reducing fat mass in humans (Table 2), consistent with our previous findings [12].
These results suggest that the increase in muscle mass mediated by viable TWK10 may
contribute to the upregulation of energy expenditure while promoting lipid metabolism and
further reducing body fat accumulation. In addition, there is evidence that gut microbiota
are directly involved in regulating energy metabolism; thus, changes in the composition
and abundance of gut bacteria may modify energy consumption and expenditure [70].
To better understand the mechanisms underlying the regulation of body composition
by viable and heat-killed TWK10, further investigation of energy metabolism and gut
microbiota is needed.

Although the relationships between diet, gut microbiota, host immunity, and host
metabolism are becoming more evident [71–73], that between microbiota and exercise has
not been fully investigated. Many studies have shown that the consumption of probi-
otics has the potential to positively modify gut microbiota community structures, which
may be important to increase exercise performance in physical activity practitioners and
athletes [74–77]; however, the potential mechanisms by which probiotic strains may modu-
late gut microbiota profiles to improve exercise performance remain unclear. Ecological
diversity of microbiota is important for promoting health stability and exercise perfor-
mance. Microbiota alpha-diversity has been linked to human health, with loss of diversity
associated with several conditions, including autism, gastrointestinal diseases, and obesity-
associated inflammatory characteristics [78]. In this study, no differences in alpha-diversity
of the gut microbiota were observed before and after six weeks of administration in any of
the three groups; however, the number of gut microbial taxa (mean observed ASVs) tended
to be higher in the TWK10-hk group after administration than that in the Control group
(Figure 3A), strongly suggesting that the significant difference (P = 0.036) in beta-diversity,
based on NMDS with unweighted UniFrac metric, in the TWK10-hk group after administra-
tion, relative to that in the Control group, was due to an increase in ASVs in the TWK10-hk
group. Together with detection of a highly significant (P < 0.0001, by unweighted UniFrac)
difference in beta-diversity distance in the TWK10-hk group after administration relative
to the TWK10 group, these findings indicate that six-week administration of heat-killed
TWK10 has a stronger effect in rearranging microbial community structures than viable
TWK10 (Figure 3B,C).
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At the bacterial phylum level, no obvious alterations in predominant gut micro-
biota, except for Verrucomicrobiota and Proteobacteria, were detected following six-week
administration of viable or heat-killed TWK10. Relative abundance of the phylum, Ver-
rucomicrobiota, a mucin-degrading bacteria that resides in the mucus layer and represents
1%–4% of fecal microbiota in healthy humans [79], was weakly significantly (P = 0.114)
increased by administration of viable TWK10. Further, the administration of heat-killed
TWK10 led to a significant (P = 0.030) increase in the relative abundance of the phylum,
Proteobacteria, which mainly comprised the family Enterobacteriaceae. Nevertheless, the
gut microbiota in both the viable and heat-killed TWK10 administration groups were
more complex and apparently divergent from the Control group at the bacterial family
and genus levels, representing differences in microbial profiles and well-characterized
structures. Verrucomicrobiota was mostly comprised of the single genus, Akkermansia (family
Akkermansiaceae), which showed a weak significant (P = 0.114) increase in the TWK10 group
after administration (Figures S1 and S2). Akkermansia muciniphila is a mucin-degrading
bacteria and its abundance is inversely correlated with obesity and associated metabolic
disorders [80,81]. The proportions of the genus, Akkermansia, in athletes are significantly
higher in those with low BMI [76], which is generally considered a healthier metabolic
profile [82]; however, although we detected a significant increase in the relative abundance
of Akkermansia, no significant reduction in BMI was observed in the TWK10 group after ad-
ministration. Further, we detected a weakly significant (P = 0.109) increase of Prevotellaceae,
predominantly comprising the genus, Prevotella, following the administration of viable
TWK10. Prevotella has been identified as more universal in populations with plant-rich
diets, abundant in carbohydrates and fiber [83], and Prevotella and Akkermansia produce
acetate via the Wood-Ljungdahl and acetyl-CoA pathways [84,85].

Based on gut microbial co-occurrence network analysis, we found that the number
of bacteria–bacteria interactions decreased in response to the administration of viable
and heat-killed TWK10 (Figure 4). Following the administration of viable TWK10, three
butyrate-producing bacterial families, Lachnospiraceae, Butyricicoccaceae, and Actinomyc-
etaceae, were strongly and positively correlated with one another. In addition, the fami-
lies, Christensenellaceae, Eubacterium coprostanoligenes, and Oscillospiraceae, of the phylum
Firmicutes, and Coriobacteriales incertae sedis, of the phylum Actinobacteria, which are re-
garded as potentially beneficial bacteria [86–89], showed a strong positive correlation with
one another. Meanwhile, following administration of heat-killed TWK10, acetate- and
butyrate-producing bacteria, such as Bifidobacteriaceae (acetate), Butyricicoccaceae (butyrate),
and Ruminococcaceae (butyrate), showed strong positive correlations with one another.
Further, two butyrate-producing and potentially probiotic families, Lachnospiraceae and
Eggerthellaceae, were positively correlated with one another. These findings demonstrate
differences in the influence on the co-occurrence of gut microbial components between
viable and heat-killed TWK10; however, both viable and heat-killed TWK10 were able to
rearrange gut microbial community structures. In addition, it has been confirmed that the
administration of probiotics increased the production of SCFAs by modulation of the gut
microbiota [41,90,91]. Alterations in gut microbiota can stimulate differential production of
SCFAs (e.g., butyrate and acetate), which play important roles in the maintenance of gut
and metabolic health [92,93].

Spearman’s correlation analysis revealed that exercise-associated host phenotypic
features were positively or negatively correlated with specific microbiota, and that those
correlations differed between viable and heat-killed TWK10; that is, exhaustion time
was positively correlated with Veillonellaceae in subjects administered heat-killed TWK10,
and with Coriobacteriaceae in subjects administered viable TWK10. Relative abundance
of Veillonellaceae, which produces propionate from lactate [94], was increased in athletes
after running a marathon, and oral administration of the Veillonella strain significantly
increased exhaustion time in mice [77]. In the current study, trends toward strengthened
correlation between Veillonellaceae and exhaustion time were also observed in subjects
administered both viable and heat-killed TWK10, relative to basal state. Body fat mass
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was positively correlated with the butyrate-producing bacteria, Erysipelatoclostridiaceae and
Erysipelotrichaceae, in subjects administered heat-killed TWK10. Further, the significant
reduction in NLR values in subjects administered heat-killed TWK10 was negatively
correlated with a trend toward an increased relative abundance of Akkermansiaceae, which is
regarded as an intestinal mucin-degrader [95] and effective in reducing inflammation [96].
Accordingly, to clarify the differences in effects on exercise performance between viable
and heat-killed TWK10, it will be necessary to comprehensively analyze more samples to
determine the effects of each TWK10 state (viable and heat-killed) on correlations between
exercise-associated host phenotypic features and microbial structures.

Various studies have investigated the effects of the gut microbiome on exercise perfor-
mance [77,97,98]. Exercise performance was improved in mice adapted with individual
bacterial taxa, relative to their germ-free counterparts, indicating that increased microbial
diversity has a beneficial effect on exercise. Recent studies have also shown that gut micro-
biota may be critical for skeletal muscle metabolism and host function [21,99]. Additionally,
natural reseeding of the gut microbiota or infusion of acetate reversed the loss of endurance
capacity and muscle contractile function in antibiotic-treated mice [21]. Further, the probi-
otics, Streptococcus thermophilus FP4 and Bifidobacterium breve BR03, attenuated performance
decrements and muscle tension in the days following muscle-damaging exercise [100].
Nevertheless, while these studies showed that probiotics can modulate gut microbiota and
improve exercise capacity, their effects on performance remain unclear.

To reveal the putative mechanisms underlying the probiotic effects of TWK10 in
improving exercise performance, functional profiling was performed using PICRUSt2,
based on gut microbial taxa. LEfSe analysis, based on differential functional abundances
identified through KEGG pathway mapping, revealed that several metabolic pathways
were significantly upregulated in subjects administered with viable or heat-killed TWK10
(Figure 5). Butanoate metabolism was elevated in groups treated with both viable and
heat-killed TWK10. Increased butanoate metabolism results in butyric acid formation,
which is a major SCFA that reduces inflammation and promotes gut health [101–104]. The
upregulation of pathways, such as glutathione metabolism, ubiquinone and other forms
of terpenoid-quinone biosynthesis, suggests that viable TWK10 can increase antioxidant
defense and detoxification reactions, which protect the body from oxidative stress and
have benefits on exercise. Increased metabolism of the non-enzymatic antioxidants, glu-
tathione and ubiquinone (coenzyme Q10), leads to increased resistance to exercise-induced
oxidative challenges [105,106]. In addition, glutathione supplementation induces aerobic
metabolism and improves an acidic environment in skeletal muscle, which in turn prevents
exercise-induced fatigue [107]. Meanwhile, KEGG pathway analysis of the heat-killed
TWK10-administered group indicated the elevation of different metabolic pathways, in-
cluding phenylalanine metabolism, tryptophan metabolism, and taurine and hypo-taurine
metabolism. Phenylalanine is an essential gluconeogenic amino acid as well as a gluco-
neogenic and ketogenic, which becomes trans-aminated into different intermediates of
the gluconeogenic pathway [108]. Phenylalanine supplementation can increase plasma
glucagon concentrations during exercise. Glucagon is a key hormone involved in fat
catabolism during exercise, suggesting that increased phenylalanine metabolism can stimu-
late fat oxidation through glucagon secretion [109]. Tryptophan is an essential amino acid
which is metabolized through the kynurenine pathway to generate a number of bioactive
substances, thereby modulating health and disease states, ranging from intestinal condi-
tions to inflammation and cancer progression [110,111]. Kynurenine and its metabolites
can mediate the effects of exercise, mood, and neuronal excitability and, ultimately, com-
municate with microbiota. Taurine is an amino acid that can regulate the gut micro-ecology
and has the potential to enhance gut-resistance to pathogenic bacteria [112]. The results
obtained in our study demonstrate that administration of viable and heat-killed TWK10
can influence the gut microbiota, which has emerged as an important driving force in
modulating metabolic activities, although the magnitude, features, and strength of viable
and heat-killed TWK10 were inconsistent.
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The gut microbiota regulates multiple functions related to host physical health, and
mental health through the gut-brain axis which is the two-way communication pathway
between the enteric and central nervous systems [113]. Through these pathways, produced
SCFAs, bile acids, and tryptophan by the gut microbiota interact with enteroendocrine
cells and activate the vagus nerve which serves a critical role in communication between
the gut microbiota and the brain [114,115]. Metabolomics is an emerging technology that
could simultaneously quantify multiple types of small molecules, such as amino acids, fatty
acids, carbohydrates, or other products of cellular metabolic functions [116]. Metabolome
response closely associates with physical activity and biological functions [117,118]. There-
fore, to determine the metabolome associations with TWK10-mediated phenotypic features
could provide greater insights into the understanding of the underlying the different
mechanisms of viable and heat-killed TWK10.

5. Conclusions

In the present study, we present, for the first time, evidence of the effects of TWK10
from a clinical trial using both viable and heat-killed TWK10, demonstrating that both
exert sufficient probiotic and postbiotic effects, respectively, in improving exercise per-
formance and fatigue-associated features, and mitigate responses to exercise-induced
inflammation. Further, we detected differences in the regulation of body composition and
anti-inflammation responses between viable and heat-killed TWK10. These differences
may be due to differential impacts in shaping gut microbiota. Further studies are needed
to clarify the differences in the efficacy of the two states of TWK10 in promoting exercise
performance in clinical trials with more subjects.
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