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1. Detailed methods 

Our synthesis of 16S rRNA amplicon sequencing data associated with Blue Carbon soil microbiomes 

evidenced current gaps that prevent meta-analysis, and hence avert the possibility to direct future 

experiments and novel hypotheses beyond those of any one individual study. This section outlines how we 

discovered such gaps, while providing evidence-based foundation for the methodological constraints further 

elaborated in the manuscript. 

 

1.1 Data collection 

We first surveyed the literature to identify microbiome studies on Blue Carbon ecosystems (BCEs). 

Key-word searches in the Google Scholar, Scopus, and Web of Science databases were performed between 

June and December 2021, and included the following terms: “16S”, “rRNA”, “microbiome”, “microbial”, 

“seagrass”, “mangrove”, “saltmarsh”, “salt marsh”, “tidal marsh”, “wetland”, “sediment”, “rhizosphere”, 

“carbon”, “nutrient”, “Illumina”, and “MiSeq” – see details on Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) in File S1 and Figure S1. Additional studies were identified by 

following references in related microbiome studies on coastal, marine, and estuarine soils not specifically 

associated with the rhizosphere. We included studies with publicly available raw 16S rRNA data (read files in 

FASTQ or FASTA formats), sequenced using the Illumina platforms MiSeq or HiSeq (paired-end reads) with 

primers targeting the V3-V4 hypervariable regions of the 16s rRNA gene (e.g., 515F/806R), and with metadata 

indicating the type of sample (rhizosphere vs. bulk soil), soil biogeochemistry (e.g., bulk density, grain size, 

texture, etc.) or carbon/nitrogen content (e.g., total C, % organic C, dissolved organic C, C:N ratio, etc.). These 

inclusion criteria were chosen based on the recognised higher quality of paired-end MiSeq reads [69], and to 

make the data as comparable as possible while avoiding bias. Biased amplification likely results from 

different primer choices, sequencing platforms, or library preparation protocols [69,70], varying polymerase 

amplification efficiencies [71], and low sequence diversity or unbalanced base composition in template DNA 

sequences [72]. Sequencing reads and corresponding metadata were downloaded from online repositories 

(e.g., read files from SRA or ENA, metadata from PANGAEA or EDI) or links provided in the original 

publications, or were acquired directly from the authors (File S2). Once irrelevant publications were 

excluded, a total of 34 datasets spanning seagrass (12), mangroves (8), and saltmarshes (14) habitats from 21 

countries around the world were compiled for a series of subsetting steps subsequently performed to assess 

different meta-analysis approaches (Figure 2). 

 

1.2 Preliminary in-silico analyses 

Even though we only selected studies with data from the V3-V4 regions of the 16S rRNA gene, primer 

sets varied substantially across datasets. A true comparison would have required data amplified with the 

same primers, which, to the best of our knowledge, did not exist. Therefore, we attempted to trim all reads to 

the same length (515F-785R) for consistency purposes – i.e., all reads would correspond to the V4 region. 

Standardizing the region of the 16S rRNA gene with our trimming strategy was necessary to avoid bias 

introduced due to differential primer affinities that ultimately lead to biased taxonomic profiles. Trimmed 

sequences would have been used as input for the DADA2 pipeline [73]. We ran a series of preliminary in-silico 

tests to assess if trimming to the 515F-785R length would affect general patterns in the data and thus result in 

misleading biological interpretations. 

 

First, we manually trimmed a 515F-806R dataset to a 520F-785R length (a few bases from each end), 

using the trimLeft = c(5,5) and trimRight = c(21,21) parameters in DADA2. This did not cause major changes in 

clustering, ordination, or diversity plots (Figure S2). Second, we trimmed a 341F-785R dataset to a 515F-785R 

length, using CUTADAPT [74] as a treatment step before DADA2. Forward reads were trimmed based on the 

515F primer sequence, while reverse reads were primer-clipped using the 785R primer sequence. This caused 

very slight changes in clustering, ordination, or diversity plots (Figure S3). The third test was intended to 

assess if the same would happen when analysing a 341F-785R and a 515F-806R datasets together (both 

trimmed to a 515F-785R length). Inconsistencies between the reverse reads prevented CUTADAPT to find 

primers sequences and therefore cut at the 785 position. More specifically, primers sequences were not found 
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when reads were checked manually. This reflected the overwhelming effect of slight biases in individual 

primers on the ecological patterns of our data, which were not as robust as we expected. Based on these 

results, we decided to analyse each dataset separately rather than pooling the data after trimming reads to the 

same length – an approach that has been successfully used to find consistent patterns characterising disease-

associated microbiome changes [61]. Methods such as these must be implemented with caution, as the study 

outputs cannot be directly compared (i.e., the data cannot be merged into a single taxonomic table for 

downstream analysis), and only patterns within studies should be used for results interpretation. 

 

1.3 Data subsetting 

There was a lot of variability across our 34 16S amplicon sequencing datasets, mostly from differences 

in the sample types collected (bulk soil vs. rhizosphere) and the available soil biogeochemical data. 

Experimental designs were also highly variable across studies, making our datasets not directly comparable. 

To address this issue and to investigate the potential existence of “universal” microbial signatures of 

vegetation in BCEs (rather than variable microbial structure shaped by vegetation type), we first focused on 

experimental designs with both unvegetated (i.e., bare) and vegetated (i.e., adjacent to the roots) soils. We 

selected 8 out of the 34 studies (24%) initially compiled for our first meta-analysis, including 4, 1, and 3 

studies from seagrasses, mangroves, and saltmarshes, respectively (Figure 2 and File S2). Random forest 

classifiers are learning algorithms with excellent performance, currently considered one of the strongest 

models for handling large and noisy datasets [75]. Random forest classification with 16S rRNA gene 

amplicons have been proposed as a rapid, sensitive, and accurate solution for identifying host microbial 

signatures [76], and hence seemed like the best method for this dataset. Although sample sizes within each 

study were large enough to achieve high statistical power, the number of studies per habitat type was 

insufficient. Moreover, samples collected by Garcias-Bonet et al. (2020) did not have associated soil 

biogeochemical data. Excluding this study would have reduced even further the statistical power of our meta-

analysis. Indeed, lack of consistent associated metadata was a recurring issue. When reported, differences 

between parameters also challenged the comparability of the data, and therefore subsetting studies by those 

with a minimal set of shared soil biogeochemical metadata (e.g., 7, 8, and 9 studies reporting carbon content 

in seagrass, mangroves, and saltmarshes habitats, respectively; Figure 2) was not an option either. The 

alternative was to subset the data to include only studies with vegetated soils, irrespective of biogeochemical 

data availability. This approach would have resulted in a selection of 26 datasets (76%), including 8, 7, and 11 

studies from seagrasses, mangroves, and saltmarshes, respectively (Figure 2 and File S2). Although these 

studies had large sample sizes and were apparently comparable, these data would have not been suitable for 

meta-analysis because multiple studies could not be combined into a single working dataset due to the issues 

evidenced by our preliminary in-silico analyses. 
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Figure S1. Study selection (PRISMA 2020 flow diagram).  Results of the search and selection process, from the number of 

records initially identified in the search to the number of studies excluded before the meta-analysis was declared 

unsuitable. PRISMA 2020 flow diagram for new systematic reviews for searches of databases and registers only. Adapted 

from: http://www.prisma-statement.org/ [77]. 
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Figure S2. Trimming in-silico analysis (515F-806R dataset to 520F-785R length). To assess if sequencing reads length 

standardisation would lead to misleading biological interpretations, a 515F-806R subset (seagrass samples, n = 4) was 

manually trimmed to a 520F-785R length (a few bases from each end), using the trimLeft = c(5,5) and trimRight = c(21,21) 

parameters in DADA2. Clustering (A), ordination (B), alpha- (C) and beta-diversity (D) plots were compared between 

original (left) and trimmed (right) data. Taxonomic profiles at the class level are shown in D. Genera were collapsed into 

classes to avoid visual clutter and facilitate interpretation. Classes within each phylum are shown in brackets, with the 

number next to each class representing the number of genera. “Rare taxa” represent ASVs with relative abundance < 5% 

within each sample. 
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Figure S3. Trimming in-silico analysis (341F-785R dataset to 515F-785R length). To assess if sequencing reads length 

standardisation would lead to misleading biological interpretations, a 341F-785R subset (mangroves samples, n = 9) was 

trimmed to a 515F-785R length, using CUTADAPT as a treatment step before DADA2. Clustering (A), ordination (B), 

alpha- (C) and beta-diversity (D) plots were compared between original (left) and trimmed (right) data. Taxonomic 

profiles at the class level are shown in D. Genera were collapsed into classes to avoid visual clutter and facilitate 

interpretation. Classes within each phylum are shown in brackets, with the number next to each class representing the 

number of genera. “Rare taxa” represent ASVs with relative abundance < 5% within each sample.  
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2. Standardisation toolbox 

 

2.1 Sequencing data 

Standards for describing marker genes such as 16S rRNA genes were developed by the Genomic 

Standards Consortium (GSC) to capture the “minimum information” required to guide data integration, 

comparative studies, and ultimately knowledge generation [34]. Since its release more than a decade ago, 

several resources have been made available to aid submitting contextual data/metadata to most used data 

repositories (e.g., EBI-ENA and SRA) in compliance with GSC guidelines and its implementations – e.g., 

MetaBar [78]. Within this context, we could extrapolate ideas for metadata submission to other stages of the 

data acquisition process. Here, we propose standardisation tools for the acquisition of amplicon sequencing 

data. 

 

2.1.1 Data collection 

The minimum information about a marker gene sequence (MIMARKS) checklist was developed to 

include further experimental contextual data, such as PCR primers and the target gene, into nucleic acid and 

sequencing metadata [34]. This offered a great solution to the issue of lack of metadata without dealing with 

methods standardization. The resulting sufficient metadata from a wide range of sequencing approaches is 

inconvenient for comparative analyses. To tackle this issue of inconsistent metadata and aiming for 

consensus, we provide a set of preferred amplicon sequencing primers and platforms, based on the methods 

reported in the 34 studies compiled here and their use in global microbiome initiatives (Table S1). This list 

would help Blue Carbon soil microbiome researchers make well-informed decisions on sequencing 

approaches. 

 

2.1.2 Data submission 

There are several guidelines on requirements for the submission of sequencing data to publicly 

available repositories, which often comply with the minimum information about any (x) sequence (MIxS) 

specifications. Checklists and packages with “core metadata” are usually provided in the form of “electronic 

laboratory notebooks” to aid consistent reporting of marking gene investigations [34]. However, essential 

information such as PCR primer sequences or sample IDs that match the (usually shorter) labels used in 

publications are often missing. Moreover, sequencing reads are recurrently submitted in non-optimal formats. 

To solve these issues, submission processes would need to be modified. Taking MIMARKS as an example, we 

propose the modifications below to the existing checklist (Table S2). Other checklists for different types of 

data may need different adjustments. 

 

o To include target_subfragment, pcr_primers, mid, and adapters into sequencing core items. 

o To add seq_type, data_format, read_length, data_status, sample_id_provider, and sample_id_author 

to the checklist and sequencing core items. 

o To enforce submission of core items. 

o To rearrange position of items as they appear in the publication.  

o To enable “export” option for all fields under sequencing core items. 

 

2.1.3 Publication 

The availability and accessibility of all data used in a submitted manuscript could be verified before it 

is accepted for publication by adding a data-check step to the peer-review process. This step would be similar 

to the reference check that takes place during the production process, but with emphasis on compliance with 

the minimum information about any (x) sequence (MIxS) specification. 

 

2.2 Soil metadata and experimental designs 

Similar levels of standardisation should be targeted for Blue Carbon metadata, specifically associated 

with soil biogeochemical parameters. There seems to be a range of resources to choose from when it comes to 

metadata management. However, the applicability of terrestrial soil methods to coastal or marine 
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environments is still uncertain, hence the high variability of approaches that we observed across BCEs 

microbiome studies. Here, we propose standardisation tools for the acquisition of Blue Carbon-related 

metadata for microbiome studies and approaches. 

 

2.2.1 Data collection 

Considering that several parameters can inform on Blue Carbon content, we first need to know what to 

measure and why. “Fine research” investigating cause-effect and correlative relationships between holobionts 

and the environments they occupy has been conducted for many years, elucidating general trends potentially 

relevant to Blue Carbon cycling and the role that microbes play in these processes. Our revision of BCE 

microbiome studies provides hypotheses of relevant standard Blue Carbon metrics. In line with recent 

discussions on Blue Carbon management strategies around soil biogeochemical parameters to establish 

organic carbon stocks – e.g., [79], our recommendation is to report concentration of carbon and depth interval: 

mass of carbon per unit area (mg C cm-2) and the depth range, or mass of carbon per unit volume (mg C cm-3) 

and the depth range when investigating the Blue Carbon soil microbiome. 

 

2.2.2 Data format and accessibility 

Secure metadata repositories like those available for genomic data are open to the scientific community 

with the purpose of archiving, publishing, and distributing high-quality data and metadata to advance the 

knowledge gained from synthesis research. Examples of these repositories include PANGAEA and the 

Environmental Data Initiative (EDI) data portal, both cited in our mined studies. PANGAEA is an 

information system focused on georeferenced data from earth system research (https://www.pangaea.de/), 

whereas the EDI data portal is a broader repository for environmental data in any digital format 

(https://environmentaldatainitiative.org/). While submission guidelines, platforms, and resources are 

accessible, and both organisations already hold thousands of datasets, there is not such a “culture of use” [80]. 

Consequently, summarised metadata from most of Blue Carbon studies is made available through figures and 

tables in published manuscripts, without the submission of the corresponding raw metadata to any of the 

available repositories. Taking EDI as an example, we propose an additional section to the existing metadata 

template (File S3), which is based on the machine readable Ecological Metadata Language – EML [81]. 

Namely, the “Blue Carbon metadata table” section, specifically targeted to seawater (or porewater, if feasible) 

physicochemical parameters and carbon content (i.e., mass levels) associated with rhizobiome or bulk soil 

samples that were also analysed through amplicon sequencing approaches. The suggested changes are 

consistent with metadata recording suggestions in the Blue Carbon Manual – see “Protocols” below [30]. We 

hope these changes would act as the equivalent of the minimum information about any (x) sequence (MIxS) 

specifications for Blue Carbon metadata, thus facilitating the standardization of the archiving process for 

further re-use. Please note that the proposed changes only apply for metadata associated with BCEs amplicon 

sequencing data. 

 

2.2.3 Collaboration 

The success of these strategies relies heavily on a collaborative approach, involving scientists from 

multiple disciplines who agree on standard methods for data collection, archival, and sharing. This will 

support further developments of platforms alike, ultimately facilitating future synthesis research. This paper 

is an invitation for everyone to contribute collaboratively to the creation of a culture of use. 

 

2.3 Protocols 

The Blue Carbon Manual was published as a part of the Blue Carbon Initiative in 2014 to standardise 

methods for measuring, assessing, and analysing carbon stocks and emissions factors in mangroves, tidal 

saltmarshes, and seagrass meadows [30]. This practical tool provides detailed protocols for sampling 

methods, laboratory measurements, and analysis of Blue Carbon stocks and fluxes, and can be used as the 

standard operational procedure (SOP) for collection, processing, and analysis of Blue Carbon soil microbiome 

samples. The manual included a Data Recording Worksheet for Soil Samples with guidelines on field and 

laboratory work. Based on this worksheet, dry bulk density and organic carbon content corrected for 
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inorganic portion are the two parameters that best inform on carbon mass levels. We propose a series of 

factors to keep constant formats and units, and the ideal ranges or limits for variable parameters (File S4). 

Ideal methods would allow for pairing microbiome samples to soil metadata in terms of depth and spatial 

resolution (i.e., using Blue Carbon data to help explain variability in microbiome structure and function). 

Alternatively, characterising Blue Carbon parameters at site-level (i.e., using Blue Carbon metadata to 

characterise overall site microbiome structure and to, more broadly, make comparisons across sites), if pairing 

is not feasible. This will provide scientists with reference values to coordinate global research and promote 

the production of robust, reusable Blue Carbon soil microbiome data. Different reference values may suit 

research interests other than comparative analyses between amplicon sequencing datasets. Therefore, 

standard methods and reference values may be shared with researchers around the world to encourage their 

application in the field. This would require further development of specialised shared data bases and 

platforms to expand on data entries related to carbon measurements in the rhizosphere. The ideal scenario, 

however, would be a single, centralised shared data base for established standard methods, protocols, and 

reference values. The Global Coastal Carbon Data Archive (https://www.thebluecarboninitiative.org/), the 

Coastal Carbon Research Coordination Network (CCRCN, https://serc.si.edu/coastalcarbon), and the Ocean 

Carbon and Acidification Data System (OCADS, https://www.ncei.noaa.gov/access/ocean-carbon-data-

system/) are examples of  local carbon data management systems currently available. 
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Table S1. Preferred sequencing approach. Preferred amplicon sequencing platforms (A) and primer sets (B) are shown in 

order of preference, based on a higher number of associated datasets and their reported use in large-scale projects or 

global initiatives. 

A     

Sequencing platform 

Single vs. Paired –end 

reads Read length (bp) 

Associated 

data sets 

Global 

initiatives 

Illumina MiSeq Paired – end 2 x 250  32 

EMP, BASE, 

AusMic 

     

B     

Primer set Sequence Fw (5'-3') Sequence Rv (5'-3') 

Associated 

data sets 

Global 

initiatives 

515F (Parada) – 806R 

(Apprill) versions 

GTGYCAGCMGCCGC

GGTAA 

GGACTACNVGGGTW

TCTAAT 16 EMP 
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Table S2. Modified MIMARKS checklist. Proposed changes to the original version of the checklist [34] are highlighted in grey fonts. Struc Com Name = structured comment 

name: name of a checklist item as it will appear in GenBank structured comments, MIMARKS survey and MIMARKS specimen = information about whether an item is 

mandatory (M), conditional mandatory (C), optional (X), environment-dependent (E) or not applicable (-) for a given checklist type, Occ = occurrence: indicates whether a 

given item can be used only once (1), multiple times (m), or none (0)), Pos = position: position of item as it appears in the publication. Seq = Sequencing. 

 

Struc Com Name Item Definition Example 
Expected 

value 
Section 

MIMARKS 

survey 

MIMARKS 

specimen 
Value syntax Occ Pos 

seq_meth 
sequencing 

method 

Sequencing method used; 

e.g., Sanger, 

pyrosequencing, ABI-solid 

Sanger 

dideoxyseque

ncing, 

pyrosequencin

g, polony 

sequencing 

method 
Seq M M {text} 1 31 

seq_type 
sequencing 

type 

Sequencing type used; e.g., 

single-read sequencing, 

paired-end sequencing 

single-read 

sequencing, 

paired-end 

sequencing 

sequencing 

type 
Seq M M {text} 1 32 

target_gene target gene 

Targeted gene or locus 

name for marker gene 

studies 

16S rRNA, 18S 

rRNA, nif, 

amoA, rpo 

gene name Seq M M {text} 1 33 

target_subfragment 
target 

subfragment 

Name of subfragment of a 

gene or locus. Important to 

e.g., identify special 

regions on marker genes 

like V6 on 16S rRNA 

V6, V9, ITS 

gene 

fragment 

name 

Seq M M {text} 1 34 

pcr_primers pcr primers 

PCR primers that were 

used to amplify the 

sequence of the targeted 

gene, locus or 

subfragment. This field 

should contain all the 

primers used for a single 

PCR reaction if multiple 

forward or reverse primers 

are present in a single PCR 

reaction. The primer 

sequence should be 

reported in uppercase 

letters 

- 

FWD: 

forward 

primer 

sequence 

REV:reverse 

primer 

sequence 

Seq M M 
FWD:{dna} 

REV:{dna} 
1 35 
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Struc Com Name Item Definition Example 
Expected 

value 
Section 

MIMARKS 

survey 

MIMARKS 

specimen 
Value syntax Occ Pos 

mid 
multiplex 

identifiers 

Molecular barcodes, called 

Multiplex Identifiers 

(MIDs), that are used to 

specifically tag unique 

samples in a sequencing 

run. Sequence should be 

reported in uppercase 

letters 

- 

multiplex 

identifier 

sequence 

Seq M M {dna} 1 36 

adapters adapters 

Adapters provide priming 

sequences for both 

amplification and 

sequencing of the sample-

library fragments. Both 

adapters should be 

reported; in uppercase 

letters 

- 

adapter A 

and B 

sequence 

Seq M M {dna},{dna} 1 37 

data_format data format Format of sequencing files fasta, fastq data format Seq M M {text} 1 38 

read_length read length 

Read length for the 

sequencing run; i.e. the 

number of base pairs (bp) 

sequenced from a DNA 

fragment 

250 bp, 300 bp 

number of 

base pairs 

(bp) 

Seq M M {number} 1 39 

data_status data status 

Processing level of data; i.e. 

how much of the analysis 

has been done to the raw 

reads by the sequencing 

provider or the author (s) 

demultiplexed

, joined, 

truncated 

data status Seq M M {text} 1 40 

sample_id_provider 
sample id 

provider 

Sample ID used by the 

sequencing provider 

P6_cim_0101...

P6_cim_0315 

(from 

Moncada et 

al., 2019) 

sample id 

provider 
Seq M M {text} 1 41 

sample_id_author 
sample id 

author 

Sample ID used by the 

author (s) 

S1_I_C1…S3_

PW_C5 

sample id 

author 
Seq M M {text} 1 42 




