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Abstract: ‘Hongyang’ kiwifruit (Actinidia chinensis, cultivar ‘Hongyang’) black spot disease is caused
by the fungal pathogen Didymella glomerata, and is a serious disease, causing considerable losses to
the kiwifruit industry during growth of the fruit. Hence, we aimed to identify a potential biocontrol
agent against D. glomerata. In this study, bacterial isolates from the rhizosphere soil of kiwifruit
were tested for their potential antifungal activity against selected fungal pathogens. Based on a
phylogenetic tree constructed using sequences of 16S rDNA and the gyrA gene, BQ-33 with the
best antifungal activity was identified as Bacillus mojavensis. We evaluated the antagonistic activity
and inhibitory mechanism of BQ-33 against D. glomerata. Confrontation experiments showed that
both BQ-33 suspension and the sterile supernatant (SS) produced by BQ-33 possessed excellent
broad-spectrum antifungal activity. Furthermore, the SS damaged the cell membrane and cell wall of
the mycelia, resulting in the leakage of a large quantity of small ions (Na+, K+), soluble proteins and
nucleic acids. Chitinase and β-1,3-glucanase activities in SS increased in correlation with incubation
time and remained at a high level for several days. An in vivo control efficacy assay indicated that
400 mL L−1 of SS completely inhibited kiwifruit black spot disease caused by D. glomerata. Therefore,
BQ-33 is a potential biocontrol agent against kiwifruit black spot and plant diseases caused by other
fungal pathogens. To our knowledge, this is the first report of the use of a rhizosphere microorganism
as a biocontrol agent against kiwifruit black spot disease caused by D. glomerata.

Keywords: kiwifruit black spot; Didymella glomerata; biocontrol; antifungal activity

1. Introduction

Kiwifruit (Actinidia spp.), such as Chinese kiwifruit, is known as the ‘king of fruits’
due to its richness in vitamin C, potassium, calcium, and carotene [1–3]. China has the
largest area of kiwifruit plantations, accounting for 72% of the total area of world kiwifruit
plantations [4]. With the increase in plantation scale, kiwifruits have become easily affected
by various pathogens during the production process. Black spot disease is a common threat
to kiwifruits during growth, affecting their appearance and quality and seriously reducing
the profitability of kiwifruits in the market. Black spot disease was initially thought to be
specific to ‘Cuixiang’ kiwifruit (Actinidia deliciosa, cultivar ‘Cuixiang’), but gradually, other
kiwifruit varieties were also found to be vulnerable. Kiwifruit black spot can be caused by
different fungal pathogens, including Cladosporium cladosporioides, Diaporthe phaseolorum,
and Trichothecium roseum [5]. In recent years, Didymella glomerata has also been identified
as a causal agent of kiwifruit black spot [6], in addition to infecting other plants, such as
grape, maize, pistachio, Cornus officinalis, and Sophora tonkinensis [7–11].

D. glomerata has been identified as the main pathogen causing black spot on ‘Hongyang’
kiwifruit. It can infect kiwifruits at different stages of fruit growth [6]. Once infected, the
fruit develops slightly sunken black spots on the skin, and the pulp at the lesion area
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becomes solid and black. In production, farmers mainly rely on synthetic fungicides to
reduce the occurrence of kiwifruit black spots and improve fruit quality [12]. Although
some chemical agents can quickly and effectively reduce the severity of this disease, the
extensive and excessive use of fungicides can accelerate the development of fungicide resis-
tance in fungal pathogens [13]. Additionally, extensive use of such agents may cause food
safety concerns and damage to the environment. To address these issues, it is important to
develop safe, effective, and environment-friendly biocontrol agents to manage kiwifruit
black spot caused by D. glomerata [14–16].

In agricultural production, biological control has been proposed as a reasonably safe
way to limit the effect of plant diseases and has great potential for the sustainability of
disease management [17]. Microbial biocontrol agents protect against pathogens through
their metabolites, competition for nutrients and space, and parasitism, thus, preventing
and controlling diseases. Bacillus spp. has attracted wide attention in the field of biological
control because of its ability to produce many broad-spectrum antifungal compounds,
hydrolases and toxins [18,19]. In recent decades, various biocontrol bacteria have been
used to control a variety of plant diseases, including Bacillus velezensis and Bacillus safensis
against foot rot disease in sweet potato, Bacillus subtilis to control wheat spot blotch, and
Bacillus cereus to elicit tomato plant protection against Fusarium oxysporum [20–22].

Despite the wide use of biocontrols in agricultural production, no studies have re-
ported the biological control of kiwifruit black spot caused by D. glomerata. In this study,
the biocontrol bacterium Bacillus mojavensis strain BQ-33 showed strong activity against D.
glomerata. The SS of BQ-33 was collected to evaluate its inhibitory activity and mechanism
on D. glomerata. In addition, an infection assay was conducted to evaluate the biocontrol
potential of B. mojavensis BQ-33. Overall, this study provides a theoretical basis for the
biological control of D. glomerata using B. mojavensis BQ-33.

2. Materials and Methods
2.1. Fungal Pathogen

D. glomerata, the fungal pathogen of kiwifruit black spot disease, was provided by
Professor Caihong Zhong’s team of the Key Laboratory of Plant Germplasm Enhancement
and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences [6]. It
was routinely cultured on potato dextrose agar (PDA) medium at 28 ◦C.

2.2. Rhizobacteria Isolation and Antifungal Activity Evaluation

Twenty-two rhizosphere soil samples of healthy kiwifruit from Liupanshui, Guizhou,
China, were collected for isolation of biocontrol bacteria [23]. From each sample, 20 g of
dried and ground soil was mixed with 200 mL of sterile water and incubated in a shaker
at 37 ◦C and 150 rpm for 2 h. The mixtures were subsequently placed in a water bath set
at 85 ◦C for 30 min, followed by homogenizing the solutions by shaking. After the soil
had precipitated, 100 µL of the supernatant diluted to 10−3, 10−4, and 10−5 was spread
on nutrient agar (NA) medium and incubated at 30 ◦C for 2 d, using three replicates of
each concentration. Single-colony purification was conducted, and the purified colonies
were propagated in nutrient broth (NB) medium. Glycerol (25%) was added to the culture
systems, and the strains were stored at −80 ◦C.

The confrontation method was used to test the antagonistic activity of the isolated
rhizobacteria [24]. Mycelial plugs (6 mm in diameter) of Didymella glomerata were placed at
the centre of PDA medium plates. Antagonistic bacterial suspensions, incubated overnight,
were applied to sterilised filter paper disks (6 mm in diameter), and four such filter paper
disks were placed around the D. glomerata mycelial plug at a distance of 25 mm. Petri dishes
inoculated only with mycelial plugs were used as controls. The Petri dishes were then
placed in an incubator at 28 ◦C for 4 days. All treatments and controls were analysed in
three replicates. The inhibition ratio was calculated by comparing the diameters of colonies
in the treatment groups with that in the control groups [25].
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2.3. Identification of the BQ-33 Strain

The best candidate was further identified according to 16S rDNA and gyrA sequence.
For molecular identification, the genomic DNA of the antagonistic bacteria was extracted us-
ing the FastPure Bacteria DNA Isolation Kit (Vazyme Biotech Co. Ltd., Nanjing, China), ac-
cording to the manufacturer’s instructions. The 16S rDNA and gyrA gene were amplified us-
ing primer sets 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492R (5′-GGTTACCTTGTT-
ACGACTT-3′), and gyrA-F (5′-CAGTCAGGAAATGCGTACGTCCTT3′) and gyrA-R (5′-
CAAGGTAATGCTCCAGGCATTGCT-3′) [26,27]. The PCR products were sequenced by
SANGON Biotech Co., Ltd. (Shanghai, China). The obtained sequences were compared
with the nucleotide database of the national center for biotechnology information (NCBI),
using the Basic Local Alignment Search Tool (BLAST, https://blast.ncbi.nlm.nih.gov/Blast.
cgi accessed on 21 July 2022). Reference strain sequences were downloaded from the
NCBI database, and a polygene phylogenetic tree was constructed using the maximum
likelihood (ML) method in MEGA 7.0 software with bootstrap values calculated, based on
1000 replications [28].

2.4. Preparation of QB-33 the Sterile Supernatant (SS)

BQ-33 was inoculated into NB and incubated in a shaker incubator (34 ◦C, 180 rpm)
for 48 h, and, when the OD600 reached 0.8, it was added to 600 mL of fresh NB (pH 7.2) at
an inoculum volume of 1:100 (v:v). Then, the solution was incubated in a shaker incubator
at 34 ◦C and 180 rpm for 4 d. The bacterial suspension was, subsequently, centrifuged at
4 ◦C and 12,000× g for 10 min, and the supernatant was filtered twice through a 0.22 µm
sterile syringe filter [29], and the filtered SS was stored at 4 ◦C.

2.5. Test of Antifungal Activity of BQ-33 and Its SS

Some pathogens on kiwifruit can also infect other crops and cause diseases. In order to
clarify the spectrum of biological control of BQ-33 in agricultural production, the inhibitory
activity of BQ-33 suspension against these fungal pathogens (Table 1) was tested with the
method described in Section 2.2. The inhibitory effect of SS was evaluated according to a
previously described method [30]. The SS was mixed with the PDA medium in a ratio of
1:5 (v:v). Mycelial plugs of the five fungal pathogens were inoculated in the centre of the
PDA medium containing SS with three replicates for each species, which were incubated at
28 ◦C for 4 days. Cells cultured on the PDA medium containing the same amount of NB
were used as controls. The inhibition ratio was calculated as described in Section 2.2.

Table 1. The pathogens used in antifungal activity test.

No. Pathogen Host Plant Disease Type

1 Didymella glomerata Kiwifriut Black spot [6]
2 Botryosphaeria dothidea Apple Ring rot [31]
3 Alternaria alternata Prunus salicina Leaf spot [32]
4 Fusarium oxysporum Gastrodia elata Tuber rot [33]
5 Phomopsis cauloides Kiwifriut Soft rot [34]

2.6. Chitinase and β-1,3-Glucanase Activity Assays

Chitinase activity was determined according to method described in a previous
study [35]. Briefly, 50 µL of the supernatant was mixed with 500 µL of colloidal chitin
(0.5%), and 450 µL of sodium acetate buffer (0.05 M, pH 5.0) was added to the mixture.
The mixture was incubated at 37 ◦C for 1 h, and 200 µL of NaOH (1 M) was then added
to terminate the reaction. Subsequently, the reaction mixture was centrifuged at 4 ◦C and
10,000× g for 5 min. Next, 750 µL of the supernatant was collected and supplemented with
1 mL of Schales’ reagent (0.5 M sodium carbonate and 0.5 g L−1 potassium ferricyanide in
water). The mixture was then diluted with the addition of 250 µL of deionized distilled
water and incubated in boiling water for 15 min. Finally, the OD420 value of the treatment
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solution was determined in three replicates using a microplate reader. The unit of chiti-
nase activity is the amount of enzyme that decomposes chitinase to produce 1 µmol of
N-acetylglucosamine per hour per 1 mL of the supernatant at 37 ◦C, which was expressed
as U mL−1.

A previously described method was modified to determine the β-1,3-glucanase activity
of the BQ-33 supernatant [36]. A total of 50 µL laminarin (10 mg mL−1), and 400 µL sodium
acetate buffer (0.05 M, pH 5.0), were added to 50 µL of the supernatant. The solution was
incubated at 37 ◦C for 1 h, and then supplemented with 1.5 mL of 3,5-dinitrosalicylic acid
(DNS) to terminate the reaction. The OD550 value of the treatment solution was determined
in three replicates using a microplate. The unit of β-1,3-glucanase activity was defined as
the amount of enzyme that decomposed β-1,3-glucanase to produce 1 µmol of glucose per
hour per 1 mL of the supernatant at 37 ◦C, which was expressed as U mL−1.

2.7. Changes in Cell Permeability

Three 6-mm mycelial disks of D. glomerata were transferred to 100 mL potato dextrose
broth (PDB) and placed on a constant temperature shaker (150 rpm at 28 ◦C). After incu-
bation for 3 days, three layers of sterile gauze were used to filter and collect the mycelia,
and the collected mycelia were washed three times with sterile water. Then, 1 g of fresh
mycelia were suspended in 50 mL PDB medium containing 100 mL L−1, 200 mL L−1, and
400 mL L−1 SS, which were incubated in a shaker at 28 ◦C and 150 rpm. In the control,
mycelia were incubated in PDB without SS. The supernatant was collected after 0, 12, 24,
36, 48, 60 and 72 h of incubation, the relative conductivity was calculated according to
the method of Mo et al. [37]. The soluble protein was detected with the Soluble Protein
Extraction Kit (SanGon Biotech, Shanghai, China). The degree of nucleic acid leakage was
detected at the wavelength of 260 nm absorbance [38]. There were three replicates for
each test.

2.8. Effects of SS on Cell Structures of Fungal Pathogens
2.8.1. Effects on Cell Walls

Calcofluor white (CFW) was used to detect changes in the integrity of cell walls of D.
glomerata [39]. Three mycelial plugs of D. glomerata were inoculated into 150 mL of PDB
medium. After 3 days of incubation in a shaker at 28 ◦C and 150 rpm, the mycelia were
collected by filtering through gauze, and a portion of the mycelia was placed into 50 mL
of PDB medium containing 200 mL L−1 of SS, using three replicates, and incubated in a
shaker at 28 ◦C and 150 rpm for 12 h. Mycelia incubated in PDB without SS were used
as controls. A small quantity of mycelia was stained with 5 µL of CFW in the dark for
10 min and then washed three times with a washing solution. The integrity of the cell wall
was observed and photographed using a confocal laser scanning microscope (NE 910-FL,
Ningbo Yongxin Optics Co., Ltd., Ningbo, China) at 355–400 nm.

2.8.2. Effects on Cell Membranes

Propidium iodide (PI) was used to detect the integrity of the cell membrane [40]. A part
of the mycelia was placed in 50 mL of PDB medium containing 100 mL L−1, 200 mL L−1,
and 400 mL L−1 SS, using three replicates, which were incubated in a shaker at 28 ◦C and
150 rpm for 12 h. Again, mycelia incubated in PDB without SS were used as a control group.
The mycelia were collected by centrifugation at 4 ◦C and 10,000× g for 5 min. First, the
treated mycelia were washed three times with PBS (0.02 M, pH 7.0). After washing, 5 µL PI
was added and the solution was left to stain in the dark for 20 min, after which the mycelia
were washed again with PBS (0.02 M, pH 7.0). CLSM was used to observe the fluorescence
effect at wavelengths of 536–617 nm to determine the integrity of the cell membrane.

2.9. In Vivo Control Effect of SS

Healthy kiwifruit (90 days after fruit setting), with consistent maturity, were collected.
The surfaces of the healthy kiwifruit were cleaned with sterile water, soaked in 75% ethanol
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for 1 min, and then cleaned again with sterile water three times. A syringe needle was
used to create four puncture wounds with a depth of 2 mm within a circular area (diameter
5 mm). The mycelial plugs of D. glomerata were inoculated onto the stabbed circular area of
kiwifruit, which were placed in a sterile fresh-keeping box. Each box was filled with six
kiwifruits, and these kiwifruits were then sprayed with SS solutions at concentrations of
400 mL L−1, 200 mL L−1, and 100 mL L−1. Each treatment was repeated three times. In the
control group, spraying was performed with sterile water. The fresh-keeping boxes were
placed in an artificial climate chamber adjusted to maintain a temperature of 28 ◦C, a humid-
ity of 75%, and a 14 h/10 h light–dark photoperiod. Disease progression was observed after
six days, and the sizes of the lesions were measured to calculate the control efficacy [41].

2.10. Statistical Analyses

All the collected data were analysed with ANOVA. All the figures were drawn using
Origin 2021 software. Data obtained from the replicates of each experiment are represented
in the graphs as the mean ± standard error (SE).

3. Results
3.1. Screening of Biocontrol Bacteria

A total of 78 bacterial strains were isolated from 22 kiwifruit rhizosphere soil samples,
of which 36 displayed inhibition ratios > 50% against D. glomerata (Table S1). These included
11 strains with inhibition ratios of 50–60%, 16 strains with inhibition ratios of 60–70%, and
9 strains with inhibition ratios > 70%, among which B. mojavensis BQ-33 showed the highest
antifungal activity against D. glomerata (81.62%). Therefore, BQ-33 was selected for further
analysis and identification. The optimal growth of BQ-33 was achieved at a temperature of
34 ◦C, using an NB fermentation medium and a fermentation pH of 7.2.

3.2. Identification of Strain BQ-33

To identify the bacterial strain BQ-33 at the species level, the 16S rDNA and gyrA gene
sequences were amplified using PCR and Sanger sequencing produced two nucleotide
sequences with lengths of approximately 1435 bp and 985 bp. The sequences of 16S
rDNA (ON231801) and gyrA (ON245037) were uploaded to the GenBank database. BLAST
analysis showed that the 16S rDNA and gyrA sequences of BQ-33 shared a high degree
of homology with B. mojavensis UCMB5075 (accession number: CP051464), with 98.96%
similarity between 16S rDNA sequences and 98.69% similarity between gyrA sequences.
A phylogenetic tree was constructed using 16S rDNA and gyrA gene sequences of BQ-33,
along with a few reference isolates obtained from GenBank (Table S2). Phylogenetic analysis
further confirmed that BQ-33 clustered monophyletically with a strain of B. mojavensis
UCMB5075 (Figure 1). Based on these results, the isolated strain BQ-33 was identified as
B. mojavensis.

3.3. Antifungal Spectrum of BQ-33 Regarding Kiwifruit Diseases

Evaluation of the inhibitory effect towards fungal pathogens showed that both BQ-33
suspension and SS displayed excellent bioactivity against the main fungal pathogens of
the fruits, leaves, and branches of kiwifruit plants. The growth of the five pathogens was
significantly inhibited by BQ-33 suspension, resulting in significantly reduced mycelial
growth (Figure 2A) and inhibition ratios of 70.11–81.26% (Table 2). Compared with the
control, 200 mL L−1 SS also had a good inhibitory effect on the growth of fungal pathogens
(Figure 2B). The inhibitory effect of SS on D. glomerata was the highest, with an inhibition
ratio of 83.43% (Table 2).
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Table 2. Inhibitory ratio of QB-33 and its SS against fungal pathogens.

Pathogen Inhibition Ratio by BQ-33 Suspension (%) Inhibition Ratio by SS (%)

Didymella glomerata 81.26 ± 0.47 a 83.43 ± 0.35 a
Botryosphaeria dothidea 73.62 ± 1.43 c 74.19 ± 0.59 c

Alternaria alternata 77.45 ± 1.18 b 78.86 ± 0.55 b
Fusarium oxysporum 70.11 ± 0.92 d 72.63 ± 0.56 c
Phomopsis cauloides 75.73 ± 0.78 bc 77.13 ± 0.67 b

Numerical values were expressed as mean± standard error (SE) of triplicates. Different lowercase letters represent
a significant difference of the same columns (p < 0.05, n = 3).

3.4. Enzymatic Activities of BQ-33 SS

The chitinase and β-1,3-glucanase activities of BQ-33 SS were monitored for 12 d. The
hydrolase activities of SS rapidly increased during the first two days and stayed relatively
consistent over the next 10 days. The activities of chitinase and β-1,3-glucanase increased
significantly from 0 to 3 days (Figure 3). From day 3 to 8, chitinase activity increase was
generally slow, peaking on day 8 (Figure 3A). The β-1,3-glucanase activity maintained an
increasing trend until day 4 and reached a plateau on days 6–8 (Figure 3B).
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3.5. Effect of SS on the Permeability of D. glomerata Cells

In order to clarify the inhibition mechanism of BQ-33 SS on D. glomerata, the changes
of relative conductivity, nucleic acid and soluble protein content in D. glomerata culture
medium after SS treatment were determined. The results indicated that SS affected the
permeability of D. glomerata cells. With the increase of SS concentration, the relative
conductivity gradually increased, and the leakage of nucleic acid and soluble protein also
increased in a similar pattern (Figure 4), which caused the D. glomerata mycelia to be unable
to grow normally.
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3.6. BQ-33 SS Influence on Fungal Cells

Fluorescence of the cell wall was observed after treatment with CFW. The control group
displayed strong fluorescence, which was consistent with the fact that the mycelial cell
wall was intact. However, the fluorescence of a part of the mycelia in the treatment group
was weak or completely missing (Figure 5), indicating that the cell wall of D. glomerata
mycelia was seriously damaged by the treatment with 200 mL L−1 of SS. PI could enter
the cell through the damaged cell membranes and combine with nucleic acids to produce
red fluorescence. The mycelia in the control group showed almost no fluorescence upon PI
staining (Figure 6). Under treatments with three different concentrations of SS, the mycelia
of D. glomerata showed red fluorescence with different intensities and the fluorescence
intensity of mycelia increased in correlation with increasing SS concentration.
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3.7. Biocontrol Efficacy of BQ-33 SS towards Kiwifruit Black Spot Disease

To evaluate the biocontrol efficacy of BQ-33 SS towards black spot disease of kiwifruit
fruits, different concentrations of SS were tested on kiwifruit inoculated with D. glomerata.
After five days of incubation under the same storage condition, large black spots appeared
on the skin of the water-treated kiwifruits (Figure 7). The symptoms of kiwifruit black
spots were relieved by SS treatments, and the fruits treated with 400 mL L−1 of SS did not
develop any symptoms, displaying 100% control efficacy (Table 3). After treatments with
200 mL L−1 and 100 mL L−1 of SS, black spots of varying severities appeared on the fruits,
and the control efficacies were 74.75% and 47.52%, respectively.
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Table 3. Control efficacy of different concentrations of SS on kiwifruit black spot.

Treatment Lesion Diameter (mm) Control Efficacy (%)

Control 20.62 ± 0.66 a -
100 mL L−1 10.62 ± 0.29 b 47.52 ± 0.02 c
200 mL L−1 5.12 ± 0.13 c 74.75 ± 0.01 b
400 mL L−1 0 ± 0 d 100 ± 0 a

Numerical values were expressed as mean ± SE of triplicates. Different lowercase letters represent a significant
difference of the same columns (p < 0.05, n = 3).

4. Discussion

Kiwifruit is rich in nutrients, making it susceptible to infection by various pathogens
during growth, storage, and transportation. As a result, the appearance and taste of the
fruits are seriously affected, and the reduction in fruit quality can lead to huge economic
losses [42]. With improved quality of life, consumers are paying more attention to food
safety. Guizhou is one of the main production areas of kiwifruit in China, and it is highly
important to develop friendly and safe kiwifruit disease control methods to meet the
increasing demand for high-quality pollution-free kiwifruit products. Bacillus spp. have
been widely recognized for their excellent performance in biological control of various
plant diseases [43,44].

Previous studies have shown that B. mojavensis had inhibitory effects on a variety of
pathogens. Galitskaya et al. [45] reported that B. mojavensis P1709 could protect postharvest
cherry tomatoes from fungal pathogens, and Bacon et al. [46] reported that Bacillus mojaven-
sis could reduce stalk lesions in maize seedlings. In this study, B. mojavensis BQ-33 had
an inhibitory activity on D. glomerata, Botryosphaeria dothidea, Alternaria alternata, Fusarium
oxysporum and Phomopsis cauloides. The in vivo experiment showed that SS with 400 mL L−1

had the best control effect on kiwifruit black spot disease, with a control efficacy of 100%.
These results indicated that B. mojavensis is a promising biocontrol agent in agriculture.

It has been shown that chitinase and β-1,3-glucanase secreted by microorganisms
may be key players in inhibiting the growth of fungal pathogens [47]. In this study, the
high activities of chitinase and β-1,3-glucanases, which are the key hydrolase enzymes for
lysing the cell wall of fungal pathogens, were detected in SS of BQ-33 [48,49]. Chitinase can
hydrolyze β-1,4-glycosidic bond in chitin, causing the degradation of the fungal cell wall,
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while β-1,3-glucanases can catalyze the cleavage of β-1,3-linkages of β-1,3-glucan and show
antifungal activity [50,51]. Therefore, BQ-33 may destroy the cell wall of fungal pathogens
by producing these two enzymes, thus, inhibiting the growth of fungal pathogens. In the
study of Bacon et al. [52], a surfactin was found in the metabolites of B. mojavensis, which
also had a good antifungal activity. It is plausible that surfactin also has a role in inhibiting
pathogens in SS of BQ-33, but this should be further verified.

The cell membrane is a double-layer structure of phospholipids surrounding the
cytoplasm. Its main components are lipids and protein molecules, which can provide
a protective barrier for small ions (Na+, K+), macromolecular substances and other cell
contents [53,54]. The mycelia of D. glomerata treated with SS produced red fluorescence
by PI staining, which indicated that SS may damage the integrity of the mycelial cell
membrane. Previous studies have shown that when the cell membrane is damaged, it leads
to the increase of relative conductivity and the leakage of a large number of intracellular
substances [55,56]. In this experiment, the relative conductivity of mycelium medium
treated with SS increased significantly, and the leakage of soluble protein and nucleic acid
also showed an abnormal upward trend, which was consistent with the above conclusions.
These results indicated that SS produced by BQ-33 may also destroy the cell membrane of
D. glomerata.

The SS produced by BQ-33 displayed greater antagonistic activity against D. glomer-
ata, both in vivo and in vitro, which was manifested by the inhibition of colony growth,
destruction of cell integrity, and the reduction of disease morbidity of the fruit. Overall,
this study shows that the B. mojavensis strain, BQ-33, isolated from the rhizosphere soil of
kiwifruit plant, displays excellent antifungal activity against fungal pathogens of kiwifruit
and has a high potential for use as a biocontrol agent.
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