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Abstract: Effectors are small, secreted molecules that alter host cell structure and function, thereby
facilitating infection or triggering a defense response. Effectoromics studies have focused on effectors
in plant–pathogen interactions, where their contributions to virulence are determined in the plant
host, i.e., whether the effector induces resistance or susceptibility to plant disease. Effector molecules
from plant pathogenic microorganisms such as fungi, oomycetes and bacteria are major disease
determinants. Interestingly, the effectors of non-pathogenic plant organisms such as endophytes
display similar functions but have different outcomes for plant health. Endophyte effectors commonly
aid in the establishment of mutualistic interactions with the plant and contribute to plant health
through the induction of systemic resistance against pathogens, while pathogenic effectors mainly
debilitate the plant’s immune response, resulting in the establishment of disease. Effectors of plant
pathogens as well as plant endophytes are tools to be considered in effectoromics for the development
of novel strategies for disease management. This review aims to present effectors in their roles as
promotors of health or disease for the plant host.

Keywords: microbial effectors; effectoromics; effectors in plant health; effectors in plant disease

1. Introduction

The survival of organisms in their respective environments can be attributed to genome
evolution and natural selection that have propagated and maintained the genes necessary
for them to thrive. An important subset of these genes encodes molecules called effectors.
They are traditionally defined as pathogen proteins that alter host cell structure and phys-
iology, thereby facilitating infection or inducing a defense response [1,2]. Effectors have
since been discovered in non-pathogenic organisms such as mycorrhizae and rhizobacteria,
cementing their place as essential molecules across ecological interactions with the plant
host. We define effectors as secreted or translocated molecules that influence organisms’ in-
teractions with each other, usually to the benefit of the producer organism. These molecules
induce physical and physiological changes in other organisms, and in some cases, in the
said producer organism, influencing their interaction with others. These molecules can
be proteins [3–5], secondary metabolites [6–8] or small RNAs [9–11], but the majority of
characterized effectors are proteins [12,13].

Effector molecules are involved in microbe penetration and proliferation in the host,
suppression of host immune responses and nutrient acquisition [14–17], and though these
genes are encoded in the genome of an organism, the secreted or translocated gene prod-
ucts mainly function in the plant host [4,18]. Effector molecules are integral to plant-
microbe interactions, having been identified in insects [19,20], nematodes [21–23], fungi
and oomycetes [24–26], bacteria [27,28], viruses [29,30] and, surprisingly, in plants [31].
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Effectors allow the pathogen or endophyte to colonize the plant host through vari-
ous mechanisms; these include preventing recognition by the host, regulating host gene
expression, interfering with phytohormone defense pathways and influencing host protein
trafficking [15,32–34]. Common targets of effectors of bacteria, oomycetes and fungi include
host proteases, the ubiquitin-proteasome system, autophagy components, reactive oxygen
species (ROS) homeostasis, immune receptors and phytohormones [13,35,36]. Once the ef-
fector leaves the producer organism, it may target the host apoplast [37,38] or the cytoplasm,
where many effectors target intracellular organelles [39–41]. Fluorescence protein-tagging
coupled with confocal microscopy and protein–protein interaction experiments such as co-
immunoprecipitation and yeast-2-hybrid assays, are techniques that have been commonly
used to identify effector targets in model plants amenable to transformation. Increas-
ing reports show effectors at the helm of pathogen invasions, where they induce disease
susceptibility, although the majority of effector targets remain unknown [18,26].

Many effector targets are associated with plant protection and are positive regulators of
plant immunity, such as the NBS-LRR receptors that are often resistance (R) gene products.
Other targets are associated with susceptibility, plant genes that foster the establishment
of an infection and, as such, are negative regulators of plant immunity [26,42,43]. With
respect to these susceptibility factors, their overexpression in the host results in increased
pathogen growth and their deletion results in a reduction in disease symptomology or
loss of susceptibility [44,45]. We are still understanding the interactions between receptors
and effectors; the interaction between susceptibility factors and effectors is one that is
more challenging to understand [46]. The exploitation of these targets was once heavily
associated with necrotrophic pathogens during host colonization, but recent investiga-
tions have highlighted biotrophic pathogen effectors targeting host susceptibility (S) gene
products [45,47,48].

The identification of effectors in phytopathogens has dominated effectoromics. Under-
standing their effectors and their interactions with host targets is important for safeguarding
plant health. Effector-based screening of germplasm containing resistance genes has been
useful for resistance breeding [49,50] and finding novel resistance genes [51,52]. Con-
currently, effector-assisted selection of plants lacking susceptibility genes or selection of
plants with reduced sensitivity to certain susceptibility-targeting effectors is also occur-
ring [53,54]. Likewise, the mutation of these susceptibility genes in plants may confer
a more durable resistance than that which is mediated by resistance genes [55–57], and
successful S gene mutation using CRISPR gene editing was recently documented in rice
for resistance against the bacterial blight causal agent, Xanthomonas oryzae pv. oryzae [58].
Unfortunately, effectors are constantly evolving to outwit their hosts, putting plant health at
risk; effector-triggered defense or R-gene mediated resistance is constantly being overcome
by the crafty pathogens in their pathosystems [59–62]. On the other hand, effectors in
plant beneficial organisms are lesser-studied molecules in effectoromics but represent a
mine of underdeveloped potential for disease management. This review aims to highlight
some of the interesting effectors recently identified in plant-pathogenic and mutualistic
microorganisms and forges a path for better effector identification and implementation in
plant protection

2. Effectors and Plant Defense

In order to better understand how effectors function, the role of effectors in plant
immunity is discussed. Plants have an innate immune system comprised of two levels:
MAMP-triggered immunity (MTI) and effector-triggered immunity (ETI). We only briefly
discuss these concepts here as they have been amply discussed elsewhere [63–67]. In
MTI, microbe-associated molecular patterns, or MAMPs, are defined as broadly conserved
molecules common to various organisms, e.g., fungal chitin and bacterial flagellin. MAMPs
are commonly recognized by transmembrane pattern recognition receptors (PRRs) in
the plant apoplast. Effectors, on the other hand, have conceptually been understood as
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less-conserved molecules (although exceptions exist where effectors are highly conserved
among varying species [68,69]).

Our understanding of effectors, in large part, is owed to the investigation of plant–
pathogen interactions. Effectors were first called ‘avirulence factors’ by the botanist Flor in
the 1940s [70]; these proteins (shortened to ‘Avr’) are recognized in the plant by a cognate
‘R’ or resistance protein, which confers resistance to that particular pathogen. Resistance
proteins are receptors mostly belonging to the family of nucleotide binding (NB) and leucine
rich repeat (LRR) domain (NB-LRR) proteins [71,72]. The recognition of the pathogen Avr
protein by the resistance protein R results in an incompatible interaction, producing an
inhospitable environment for the pathogen which stymies disease progression. This Avr–R
interaction was dubbed the ‘gene-for-gene hypothesis’ and in Flor’s work it was applied
to the fungus Melampsora lini and the plant host, the flax plant, Linum usitatissimum. The
name ‘effectors’ was more aptly adopted later, as the molecule could display virulent or
avirulent activity, depending on whether the host possesses the resistance gene or not and
can therefore have a positive or negative effect on the fitness of the pathogen and its ability
to cause disease [2,73]. Avrs, by definition, are effectors that trigger ETI resulting in the
visible dry necrotic lesions of the hypersensitive response. Resistance genes of the host
are molecular land mines; once they are tripped by the pathogen Avr, the plant launches a
defense response against the invading organism (ETI), which is disadvantageous to the
pathogen. Since the effector is expected to benefit the producer organism, it is suspected
that each Avr protein has a primary function in virulence, but this activity is masked when
the effector is recognized by the dominant resistance protein of the plant [74].

MAMPs and effectors are both elicitors of host defense mechanisms. MTI and ETI are
described as “stages” in a model described for plant immunity called the zig-zig model [63].
In MTI, the MAMPs of the pathogen are recognized by plant receptors resulting in the
deposition of callose, induction of mitogen-activated kinase (MAPK) signaling, induction
of pathogenicity related proteins and the oxidative burst (production of reactive oxygen
species or ROS) in the plant host [75]. MTI culminates with the pathogen being unable to
progress with the infection and the plants remaining healthy. Pathogens release effectors
to hamper this first stage of immunity (MTI) resulting in effector-triggered susceptibility
(ETS). Plants, in turn, have evolved with receptors (resistance proteins) which recognize
these (Avr) effector molecules and trigger effector-triggered immunity or ETI, a hallmark of
the incompatible plant–pathogen interaction previously mentioned. ETI is characterized by
an oxidative burst and the upregulation of defense-related proteins such as phytoalexins
and can culminate in the hypersensitive response (HR) (a type of programmed cell death or
PCD) that ultimately stops pathogen growth at the site of infection. In the last stage of the
zig-zag model, the pathogens outwit the plants once again; they evade recognition by the
plant’s receptors by modifying the effector genes or using other effectors that help suppress
the ETI response in the plant and target plant proteins (Figure 1). Recently, great advances
have been made in the understanding of plant immunity. It is now better appreciated that
MTI and ETI are not static stages in plant defense, but rather an interconnected system
where one relies on the other [66,76].

2.1. Effectors in Plant–Pathogen Interactions

Although the original discovery of Flor’s gene-for-gene hypothesis was made between
the flax plant and the rust fungus, it has since been demonstrated that effectors are key to all
plant–pathogen interactions. The Avr effector, commonly associated with pathogenesis, is
only one type of effector among various that can influence organisms’ interactions. Effectors
of the major disease-causing organisms that compromise plant health and their roles in the
establishment of plant-pathogen interactions are presented.

2.2. Fungal and Oomycete Effectors

Fungal and oomycete pathogens are the major disease-causing eukaryotic microor-
ganisms [77,78]. They were once believed to be in the same kingdom due to their similar
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morphologies and lifestyles but have since been separated into different kingdoms as fungi
(kingdom: Fungi) are evolutionarily more similar to animals, and the oomycetes (kingdom:
Chromista) to golden-brown algae. These organisms are similar in their vegetative growth
phase, where they both produce thread-like mycelia and form sexual and asexual spores.
They are also similar in their production of haustoria-specialized feeding appendages that
form an interface between them and the plant cell to retrieve plant nutrients and to release
effector molecules [79].
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Conserved molecules, called MAMPs, from both pathogens and mutualists elicit the MTI defense 
response in the host; mutualist MAMPs induce ISR. Endophytic fungi and rhizobacteria as well as 
mycorrhizae promote plant defense through the activation of ISR and the plant becomes “primed” 
to resist infection from incoming pathogens (right). 
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Figure 1. Effectors are major determinants of plant disease. Pathogens secrete effectors that can
induce disease susceptibility through targeting host susceptibility factors and subverting the ETI
defense response resulting in disease, ETS, (left). On the other hand, pathogens can also induce
ETI and systemic acquired resistance (SAR) when hosts have the corresponding resistance proteins
that recognize Avr effectors, producing the HR and stopping the progression of the pathogen (right).
Conserved molecules, called MAMPs, from both pathogens and mutualists elicit the MTI defense
response in the host; mutualist MAMPs induce ISR. Endophytic fungi and rhizobacteria as well as
mycorrhizae promote plant defense through the activation of ISR and the plant becomes “primed” to
resist infection from incoming pathogens (right).

Fungi and oomycetes present three main lifestyles: biotrophy, hemibiotrophy and
necrotrophy. Biotrophic organisms require live hosts to complete their life cycle, and their
effectors allow them to stealthily enter and remain in the host while avoiding recognition
and suppressing the host’s defenses to maintain an optimum environment. Many effectors
prevent MTI from being induced in the plant host such as Foa3 of Fusarium oxysporum [80]
and Rip1 of Ustilago maydis [81]. Some effectors help in the establishment of pathogen
reproductive structures such as BAS2 of Colletotrichum gloeosporioides [82], while others aid
hyphal attachment and proliferation in the host, such as lep1 of Ustilago maydis [83]. This
is just the tip of the iceberg for fungal effector functions, and comprehensive reviews on
fungal and oomycete effector functions can be found elsewhere [18,26,35,84].

While biotrophic effectors often suppress host immunity and generally avoid setting
off alarms in the plant host, necrotrophic fungi such as Sclerotinia sclerotium and Botrytis
cinerea have a more aggressive approach and induce cell death in susceptible hosts with
the help of their effectors. Hemibiotrophic pathogens such as the oomycete Phytophthora
infestans employ both mechanisms; they suppress cell death early in the biotrophic phase,
but, at later stages, cell death-inducing effectors are upregulated. This later induction
produces the necrotic tissue necessary for the pathogen to complete its disease cycle [17,32].
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Hemibiotrophic fungi and oomycetes are estimated to have the largest arsenal of effec-
tors [85]. Necrotrophs, however, have smaller effectoromes that are just as important for
necrotroph pathogenicity [85–87]. Host-specific necrotrophs, such as wheat pathogens
Parastagonospora nodorum and Pyrenophora tritici-repentis, produce effectors that interact
with dominant host proteins encoded by susceptibility (S) genes. This interaction is called
the inverse gene-for-gene interaction because the interaction between necrotrophic host
specific toxins (HST) and the S protein results in susceptibility (disease) instead of resis-
tance to the plant disease (health). The interaction has great similarity to the resistance
protein (R) and Avr interaction, leading to an oxidative burst and programmed cell death
(PCD) [88]. Victorin, a non-ribosomal peptide from Cochliobolus victoriae [89] and SnTox1 of
Parastagonospora nodorum [90], is an example of a necrotrophic effector that induces PCD
upon interaction with the S gene products in their hosts, inducing disease susceptibility.
Examples of functionally characterized avirulence effectors (Avrs) associated with disease
resistance and other effectors that are associated with susceptibility are given in Table 1.

Table 1. Examples of characterized effectors of biotrophic, necrotrophic and hemibiotrophic fungal
and oomycete pathogens that are associated with disease resistance and disease susceptibility.

Effector
Classification Organism Type Organism Effector Name

and Uniprot ID Function References

Resistance or
Defense

Associated
Effectors

Biotrophic
fungus

Cladosporium
fulvum Avr4

Induces ETI when
recognized by host

resistance protein Cf-4;
protects fungal cell walls

against hydrolysis by
plant chitinases

[91,92]

Biotrophic
fungus

Cladosporium
fulvum Avr4E

Induces ETI; recognized
by resistance protein

Hcr9-4E
[93]

Biotrophic
fungus

Cladosporium
fulvum Ecp6

Induces ETI when
recognized by resistance

protein Cf-ECP6; binds to
fungal chitin to prevent

chitin-triggered immunity
in host

[94,95]

Biotrophic
fungus Melamspora lini AvrM

Induces ETI in host;
recognized by resistance

protein M
[96]

Hemibiotrophic
fungus Magnaporthe oryzae AvrPia (B9WZW9)

Induces ETI in host;
recognized by resistance

protein RGA5
[97]

Hemibiotrophic
fungus Magnaporthe oryzae AVR-Pik

(C4B8B8)

Induces ETI in host;
recognized by resistance

protein Pik
[98]

Hemibiotrophic
fungus Magnaporthe oryzae PWT3 Recognized by host

resistance protein Rwt3 [99]

Hemibiotrophic
oomycete

Phytophthora
infestans AVRamr3

Recognized by host
resistance protein

Rpi-amr3
[100]

Hemibiotrophic
fungus Ascochyta lentis AlAvr1 Unidentified resistance

gene; ETI induced in host [101]

Biotrophic
fungus Puccinia polysora AvrRppC Recognized by host

resistance protein RppC [102]
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Table 1. Cont.

Effector
Classification Organism Type Organism Effector Name

and Uniprot ID Function References

Bacteria Ralstonia
solanacearum RipB Recognized by host

resistance protein Roq1 [103]

Bacteria Ralstonia
solanacearum RipJ Unidentified resistance

gene; ETI induced in host [104]

Bacteria Ralstonia
solanacearum RipAZ1 Unidentified resistance

gene; ETI induced in host [105]

Bacteria
Pseudomonas
syringae pv.

syringae strain 61
HopA1Pss61

Recognized by RPS6
resistance protein; ETI

induced
[106]

Susceptibility
Associated
Effectors

Biotrophic
fungus Ustilago maydis Umrip1

Targets susceptibility
factor ZmLox3, ZmLox3

represses ROS burst
[81]

Hemibiotrophic
oomycete

Phytophthora
infestans Pi02860

Targets susceptibility
factor NRL1. NLR1

promotes degradation of
positive regulator of
immunity, StSWAP70

[107,108]

Hemibiotrophic
oomycete

Phytophthora
infestans Pi04314/RD24

Targets PP1 catalytic
subunits

causing their
re-localization from the

nucleolus to the
nucleoplasm;
Pi04314-PP1c

holoenzymes negatively
regulate salicylic acid and
jasmonic acid pathways

[109]

Hemibiotrophic
oomycete Phytophthora sojae PsAvh52

Targets susceptibility
factor GmTAP1, causing

relocation from the
cytoplasm to the nucleus.
GmTAP1 promotes H3K9

acetylation to promote
disease susceptibility

[110]

Hemibiotrophic
oomycete

Phytophthora
infestans PiAvr2

Interacts with
BRI1-SUPPRESSOR1-like

(BSL) BSL1, BSL2, and
BSL3; BSL1 and BSL3

suppress INF1-triggered
cell death (PTI)

[111,112]

Necrotrophic
fungus

Pyrenophora
tritici-repentis

ToxA
(Host-selective

toxin)

Targets Tsn1, susceptibility
factor involved in

ToxA-triggered cell death
which favors necrotrophy

[113,114]

Necrotrophic
fungus

Parastagonospora
nodorum

SnTox1
(Host-selective

toxin)

Targets Snn1,
susceptibility factor

involved in
SnTox1-triggered cell
death which favors

necrotrophy; protects
fungus from host

chitinases

[90,115]



Microorganisms 2022, 10, 1980 7 of 23

Table 1. Cont.

Effector
Classification Organism Type Organism Effector Name

and Uniprot ID Function References

Necrotophic
fungus

Pyrenophora
tritici-repentis

PtrToxB
(Host-selective

toxin)

Targets Tsc2, susceptibility
factor involved in PtrToxB
triggered cell death which

favors necrotrophy

[116,117]

Hemibiotrophic
fungus Phytophthora sp. PSR2

Inhibits secondary siRNA
(PPR-siRNAs) production
in Arabidopsis to promote

disease susceptibility

[118]

Biotrophic
oomycete

Hyaloperonospora
arabidopsidis HaRxL21

Responsible for
transcriptional repression

via interaction with
TPL/TPR1 Arabidopsis

proteins

[119]

Necrotrophic
fungus

Sclerotinia
sclerotiorum SsITL

Inhibits SA accumulation
through interaction with

CAS receptor in
chloroplast

[120,121]

Biotrophic fungus Puccinia striiformis
f. sp. tritici Pst_12806

Reduces photosynthesis
and ROS accumulation;
interacts with TaISP, a

subunit of Cyt b6/f in the
chloroplast

[122]

Biotrophic fungus Puccinia striiformis
f. sp. tritici PstGSRE1

Disrupts nuclear
localization of a ROS

associated transcription
factor TaLOL2 to suppress
ROS-mediated cell death

[123]

Biotrophic fungus Puccinia striiformis
f. sp. tritici PstGSRE4

Inhibits the enzyme
activity of wheat copper

zinc superoxide dismutase
TaCZSOD2 reducing

H2O2 accumulation and
HR

[124]

Biotrophic fungus Puccinia striiformis
f. sp. tritici Pst18363

Pst18363 stabilizes
TaNUDX23, which

suppresses ROS
accumulation inducing

susceptibility

[48]

Biotrophic fungus Ustilaginoidea
virens SCRE6

Interacts with and
dephosphorylates the
target OsMPK6 for its

stabilization, suppressing
plant immunity

[125]

Bacteria
Xanthomonas
translucens pv.

undulosa
Tal8

Upregulates expression of
the host gene

9-cis-epoxycarotenoid
dioxygenase

(TaNCED-5BS) involved in
the biosynthesis of abscisic
acid; decreases ex-pression
of defense gene TaNPR1

[126]
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Table 1. Cont.

Effector
Classification Organism Type Organism Effector Name

and Uniprot ID Function References

Bacteria Xanthomonas oryzae
pv. oryzae PthXo3JXOV

Upregulates expression of
the susceptibility gene
OsSWEET14 to trigger

sugar release; effector also
inhibits HR and callose

deposition

[127]

Bacteria Ralstonia
solanacearum RipAL

Putative lipase that
catalyzes the release of

linoleic acid from
chloroplast lipids; induces

JA production and
suppresses SA signaling

[128]

ROS, reactive oxygen species; JA, jasmonic acid; SA, salicylic acid.

2.3. Bacterial Effectors

In bacteria, effectors are commonly secreted through type III, IV and VI systems,
with the type III effectors (T3Es) being the most common effector type studied [129,130];
bacteria employ a nanosyringe forming a conduit for the direct delivery of proteins to the
host [131]. The roles of bacterial effectors in plant disease have been better understood
thanks to functional genomics studies in the hemibiotrophic model organism, Pseudomonas
syringae [132,133]. Many T3Es display functional redundancy which complicates studying
their contribution to pathogen virulence in P. syringae [134].

Regarding effector types, some are defense-related avirulence effectors that induce ETI
in the presence of a resistance protein, e.g., RipB [103] and RipJ [104], while other bacterial
T3Es can suppress ETI and PTI-associated cell death caused by other effectors and elicitors.
For example, AvrRpt2 suppresses ETI cell death caused by the effector HopA1, and HopF2
suppresses flagellin-induced PTI [135]. Similarly, RipAC suppresses ETI induced by the Avr
effector RipAA [136]. The effector AvrPtoB is both a cell death inducer and suppressor. This
effector can promote cell death in tomato plants which carry the Pto resistance protein but
is a general cell death suppressor in N. benthamiana of the Cf9-mediated and Bax-mediated
cell death responses as well as Pto-AvrPto-mediated cell death [134,137,138].

Host defense suppression is the main function associated with bacterial T3Es, although
they also function in nutrient acquisition [139,140] and bacterial colonization and dissem-
ination within the host [141,142]. The molecular mechanisms of these effectors include
interfering with signal transduction, transcription, and host secretory pathways [13,143,144].
Perhaps one of the most fascinating classes of T3SS effectors is the transcription activator-
like effectors (TALEs) found in Xanthomonas sp. These effectors act like transcription
factors, binding to sequences in or near promoter regions of host genes and activating
their transcription in the host nucleus. Targets of TALEs in the plant host include nutrient
transporters [142,145] as well as various plant transcription factors involved in promoting
disease susceptibility [146,147]. Predictive tools are now available for the identification of
bacterial effectors in the three types of secretion systems; type III secreted effectors [148],
type IV secreted effectors [149], type VI secreted effectors [150] and the improved ability to
predict new effectors is driving bacterial effectoromics research.

2.4. Effectors in Plant-Beneficial Microbe Interactions

Two decades ago, a mycorrhizae-plant interaction first produced evidence of effectors
secreted by beneficial organisms [151]. Beneficial organisms (or mutualists), as the name
suggests, provide benefits to the plant host, usually by increasing nutrient availability
for plant roots and inducing disease resistance. In exchange, plants provide protection
and photosynthates [152]. Mutualists, such as pathogens, need to reprogram the plant’s
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immune system to prevent their detection by the plant. While colonizing plant roots,
mutualist MAMPs are recognized as foreign molecules to the plant, setting off alarms and
triggering a plant defense response. In response, beneficial microbes such as mycorrhizae
and rhizobacteria have developed effectors to suppress the defense mechanisms of the
plant during their colonization of plant roots. Initially, these organisms trigger MTI which
is weaker in comparison with the plant’s response to true pathogens [153]. The plant
later reaps the benefits of systemic resistance against a wide range of incoming pathogens
(induced systemic resistance, ISR) after the symbiosis with the beneficial organism is
established [154]. Beneficial organisms that are inducers of ISR include plant growth-
bacteria of the genus Pseudomonas spp. and Rhizobium spp., among others, and fungi in the
genus Trichoderma sp. and Serendipita indica [155,156]. Examples of their effectors and how
they influence interactions with the plant host can be found in Table 2.

Many of the effectors discovered in beneficial organisms appear to target hormone
signaling pathways in the plant host. The effector, SP7, of the endomycorrhiza Glomus
intraradices, interacts with the transcription factor ERF19 involved in ethylene signaling. The
effector alters the production of this phytohormone, which regulates the transcription of
many defense-related genes [157]. MiSSP7, of the ectomycorrhiza Laccaria bicolor, interacts
with plant repressor proteins PtJAZ5 and PtJAZ6 and prevents their degradation, which
would otherwise result in the transcription of jasmonate acid (JA)-controlled genes that
act in the plant’s defense [158]. Other effectors directly aid in the establishment of the
mutualistic interaction such as RiCRN1, a Crinkler effector of Rhizophagus irregularis that
aids in the formation of the interaction structures of the fungi called arbuscules [159].
Another R. irregularis effector, RiNLE1, promotes colonization by interacting with a host
histone protein (H2B), preventing its ubiquitination and leading to the downregulation of
defense-related genes [160].

Effectors are also key in the establishment of plant endophytic microbial commu-
nities and the interactions between endophytes and plants. Endophytes colonize plant
tissues of the phyllosphere or rhizosphere, without causing apparent harm to their host
and both plant and endophyte benefit from the association [161]. Mutualistic mycor-
rhizae are not characterized as endophytes, being phylogenetically distinct from most
other endophytes [162]; root endophytes also do not commonly establish nutrient transfer
interfaces like mycorrhizae do [163]. Like their mycorrhizal counterparts, endophytic
organisms produce effectors that manipulate host defense, especially MTI, in order to
establish the endophyte–host symbiosis; for example, the endophytic fungus Pestalotiopsis
sp. secretes an effector with chitin deacetylase activity that hydrolyzes elicitors and chitin
oligomers to prevent chitin-triggered immunity in the rice host [164]. The effector FGBI of
the endophytic fungus Piriformospora indica is another suppressor of MTI, which prevents
β-glucan-triggered immunity in the host, through its binding to β-glucans in the fungal
cell wall [165].

In the best of times, endophytes are defenders of plant health in the face of biotic and
abiotic stress. Endophyte-mediated resistance against plant pathogens is generated in plant
hosts as a result of endophyte antagonism against pathogens [166–168], increased nutrient
availability to the host [169,170], endophyte-produced antimicrobial compounds [171,172]
and the induction of plant-produced defense compounds through effectors that modu-
late phytohormone pathways involved in ISR [173–175]. Interestingly, some endophytic
effectors induce the expression of defense genes conferring protection to plants against
pathogens [176] or regulate the expression of pathogen effectors to the benefit of the
host [177]. Endophyte effectors associated with ISR are listed in Table 2, along with other
common endophyte effector functions in plant interactions.

Endophytes are integral components of plant microbiomes, and microbial commu-
nities are indeed influenced by the endophyte-secreted molecules. Bacteria of the genera
Variovorax and Acidovorax, among others, identified from the root-associated microbiome of
Arabidopsis thaliana, were shown to protect A. thaliana from pathogenic fungi and oomycetes
while maintaining the microbiome’s equilibrium and, in turn, plant health [178]. Interest-
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ingly, another study identified Hyde1 proteins from Acidovorax bacteria that were shown
to have antibacterial properties against E. coli as well as other bacterial isolates [179], an
indication that these proteins are probable effectors associated with microbial competi-
tion. A glycoside hydrolase 25 family member with lysozyme activity is another potential
effector associated with microbial antagonism; this protein was found to be a major con-
tributing factor to the antagonism of the oomycete Albugo laibachii by the commensal yeast
Moesziomyces bullatus ex Albugo in the A. thaliana phyllosphere [180]. Taken together, the ev-
idence shows that microbial incompatibility is mediated by effector molecules. Additional
examples of effectors associated with microbial antagonism can be found for pathogens in
competition with other microbes [181–183] and mycoparasites/biological control agents
against pathogens [184,185].

It must be acknowledged that plant immunity is a function of innate immunity
mechanisms against incoming pathogens, as well as, microbiota-mediated disease resis-
tance [186,187]. Effectors are important determinants which shape microbial communities,
determining their lifestyle, level of host specialization as well as their compatibility with
other microorganisms [188]. Synergistic interactions in the plant microbiome are major con-
tributors to plant resistance. The design and inoculation of synthetic microbial communities
(SynComs) derived from native plant populations is a promising avenue for plant health
promotion [178,186,189–191]. A noteworthy example of microbial synergism is displayed
by the root endophyte Serendipita vermifera, which works with bacterial microbiota to confer
protection against the soil-borne fungal pathogen, Bipolaris sorokiniana in Arabidopsis thaliana
and barley; modulation of effector expression was observed for both the pathogenic and
the endophytic fungus [192]. A. thaliana actively recruits and promotes the colonization
of three bacterial species against infection by the pathogen, Hyaloperonospora arabidopsidis.
In this tripartite interaction, the combination of bacteria, not any single species, signifi-
cantly impacted plant protection by inducing systemic resistance in the primary plants and
conferring protection to their offspring as well [193]. The plant microbiome and plant im-
munity are influenced by each other and are also each affected by environmental and host
factors [194]; the reciprocal interplay between these components is displayed in Figure 2.
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Figure 2. The health and disease triangle. Disease resistance or susceptibility is determined by the
host plant, its microbiome and the environment. The composition of the plant microbiome is also
influenced by the host plant and environmental factors. Effectors of endophytes and pathogens (left
corner, represented by small circles and stars) play a major role in plant health; disease susceptibility
or resistance are mediated by these molecules. Effectors are also determinants of the endophyte-
pathogen lifestyle continuum and help regulate the composition of the plant microbiome. Lastly,
plants regulate the environment through photosynthesis and respiration; microbes are also key
components that regulate climate homeostasis.
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Table 2. Examples of effectors from beneficial microorganisms and their associated functions.

Beneficial Organism Effector Associated Plant Function References

Mycorrhizae

Laccaria bicolor MiSSP7
Populus trichocarpa
Populus tremula ×

Populus alba

Interacts with host plant JA signaling
repressors to suppress JA-related host

defense signaling
[158]

Laccaria bicolor MiSSP7.6 Populus tremula x
Populus alba

Interacts with two host transcription factors:
PtTrihelix1 and PtTrihelix2; involved in the

establishment of Hartig net
[195]

Laccaria bicolor MiSSP8 Populus tremula x
Populus alba

Involved in mantle formation and Hartig
net development for the establishment of

symbiosis with host
[196]

Glomus intraradices SP7 Medicago truncatula
Interacts with the host transcription factor

ERF19 involved in ethylene-related defense
signaling to suppress host defense

[157]

Rhizophagus irregularis RiCRN1 Medicago truncatula Localizes to plant nucleus; involved in
arbuscule development [159]

Rhizophagus irregularis RiSLM Medicago truncatula

Binds chitin and protects against hydrolysis
by chitinases. Interferes with host

chitin-triggered immunity to suppress
defense response

[197]

Pisolithus albus PaMiSSP10b Eucalyptus grandis

Interacts with an S-adenosyl methionine
decarboxylase (AdoMetDC) in the

polyamine pathway; alters polyamine
biosynthesis to aid colonization

[198]

Rhizophagus irregularis RiNLE1 Medicago truncatula

Interacts with the host histone 2B protein
(H2B) impairing its mono-ubiquitination

which suppresses host defense-related gene
expression

[160]

Endophytes

Bradryhizobium elkanii
USDA61 Bel2-5 Glycine max Cysteine protease; involved in root

nodulation [199]

Rhizobium sp. NGR234 NopM Lablab purpureus E3 ubiquitin ligase; promotes root
nodulation [200]

Rhizobium sp. NGR234 NopE

Glycine
max, Macroptilium
atropurpureum and

Vigna radiata

Calcium binding protein; regulates host
root nodulation [201]

Serendipita indica FGB1
Hordeum vulgare,

Nicotiana benthamiana,
Arabidopsis thaliana

β-glucan binding lectin; alters fungal cell
wall composition and suppresses
β-glucan-triggered plant immunity

[165]

Serendipita indica Dld1 Hordeum vulgare
Fungal metal ion homeostasis and

micronutrient acquisition; antioxidant;
enhances host root colonization

[202]

Trichoderma asperellum
TasXyn29.4

and
TasXyn24.2

Populus davidiana × P.
alba var. pyramidalis

Xylanases; induced Me-JA accumulation.
ISR against A. alternata, R. solani, and F.

oxysporum
[203]

T. harzianum Th22 Thph1 and
Thph2

Maize (Inbred line
Huangzao 4)

Cellulases; triggered production of (ROS)
and induced genes related to the

jasmonate/ethylene signaling pathway. ISR
against C. lunata.

[173]
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Table 2. Cont.

Beneficial Organism Effector Associated Plant Function References

Endophytes

T. atroviride IMI 206040 Epl1 Solanum lycopersicum
Ceratoplatanin family protein; induced the
expression of a host peroxidase. ISR against

A. solani and B. cinerea
[204]

T. virens Gv29-8 Sm1 Gossypium hirsutum

Ceratoplatanin family protein; triggered
production of ROS and induces the

expression of host defense-related genes.
ISR against Colletotrichum sp.

[205]

The endophyte–plant relationship is usually asymptomatic but sometimes endophytic
microorganisms can become pathogenic due to changes in light/environment, host gene
expression, nutrient balance/availability, type of host [188,206] or even an infection; a
mycovirus that infected Sclerotinia slerotorium caused the pathogen to become an endophyte
through the regulation of the expression of its pathogenicity genes [207]. The molecules
which determine this continuum or the transition from one lifestyle to the other remain to
be uncovered, but it is likely that effectors play a major role here. For example, in Fusarium
oxysporum, secreted in xylem (SIX) effector profiles were different among the endophytic
and pathogenic isolates assessed in the study [208]. Furthermore, a greater number of
effector gene candidates and host-specific effectors were associated with pathogenicity in F.
oxysporum compared to endophytic strains [209]. It is truly fascinating how effectors can
play similar roles in pathogenic and beneficial microorganisms, but the outcomes of their
interactions are contrasting. Further interactomics analyses are required to unravel these
intriguing processes.

2.5. The New Age of Effector Identification and Characterization

The omics sciences, coupled with various bioinformatics tools, have supported inves-
tigations into the complete effector content or effectoromes of organisms. As such, effector
identification is somewhat becoming less challenging as certain criteria have been estab-
lished to identify canonical protein effector candidates. These are based on their small
size (less than 400 amino acids), cysteine richness (at least 4 Cys residues, characteristic
of fungal apoplastic effectors), the presence of a secretory signal peptide, the absence of
transmembrane domains, overexpression data in host interactions and limited homology to
proteins in other organisms [35,85,210,211]. Additionally, N-terminal effector motifs such
as RXLR have been particularly important for oomycete effector identification [212,213].

Initially, it was common for researchers to establish in-house effector identification
pipelines that required the use of many separate tools to determine effector candidature
of a given protein. More recently, the EffHunter algorithm [85] and machine learning
(ML) tools trained to predict effectors based on shared physiochemical protein properties
are facilitating easier high-throughput effector identification from pathogen genomes.
EffectorP versions 1, 2 and 3 (http://effectorp.csiro.au/; [214–216], ApoplastP v. 1.0
(http://apoplastp.csiro.au/; [217] and FunEffector-Pred (http://lab.malab.cn/~wangchao/
softwares/software.html; [218] are available tools for fungi, and EffectorO for oomycetes
(https://bremia.ucdavis.edu/effectorO.php; [212]; while Effectidor (https://effectidor.tau.
ac.il/; [219], is a recent example of a ML predictor for T3SS effectors of bacteria.

Caution is required in the interpretation of in silico effector predictions for plant-
beneficial organisms. As it becomes increasingly more evident that beneficial microor-
ganisms also possess effectors and use their effectors in similar ways as plant pathogens,
improved effector predictors should include effectors of these non-pathogenic microbes
in their positive training sets to reduce the false negative rate in non-pathogenic effec-
tor identification. Saprophytes, organisms that obtain nutrients from dead or decaying
organic matter, are often excluded from the effector narrative as they are considered

http://effectorp.csiro.au/
http://apoplastp.csiro.au/
http://lab.malab.cn/~wangchao/softwares/software.html
http://lab.malab.cn/~wangchao/softwares/software.html
https://bremia.ucdavis.edu/effectorO.php
https://effectidor.tau.ac.il/
https://effectidor.tau.ac.il/
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depleted in effector molecules [214]. The possibility exists that true effectors, particu-
larly of species in the genus Trichoderma sp., (well-known saprophytes that can engage
in mutualistic plant interactions and in antagonism against other fungi) are being rel-
egated to negative datasets. Predector (https://github.com/ccdmb/predector; [220],
FunEffectorPred (https://github.com/ccdmb/predector, [218]) and EffectorP 3.0 (https:
//github.com/JanaSperschneider/EffectorP-3.0 [214]) all use secreted proteins of sapro-
phytes that are non-pathogenic to plants to train their negative datasets. In their recent
work, the authors of Predector [220], mentioned that “saprobes are not expected to possess
effector proteins that facilitate plant-host infection” although they recognize that “(saprobes)
may still possess proteins with similar functional or physical properties.” Undeniably, the
lagging rate of characterization of effectors of beneficial microorganisms is a major limi-
tation in the use of these proteins to train effector prediction algorithms for their use in
non-pathogenic microorganisms.

3. Conclusions and Perspectives

The elucidation of pathogen effectoromes helps us better understand how pathogens
successfully infect their hosts, causing significant crop losses in agriculture that range from
food shortages to famines. In the last 20 years, our knowledge of these molecules has greatly
expanded, but our understanding of effectors is still in its infancy as we continue to uncover
numerous effectors and novel classes of effectors in plant-pathogenic and non-pathogenic
organisms. In effectoromics, we have naturally seen a bias towards plant pathogenic
effectors since these organisms are formidable threats to food security. R-gene pyramiding
and S-gene manipulation through gene editing are among the prevalent effector-assisted
disease control strategies [221–224]. Comparative studies are necessary to ascertain whether
promoting effector-triggered defense or hindering effector-triggered susceptibility is more
durable in plant protection; the suitability of each approach must be evaluated on a case-
by-case basis. In the advancement of effector biology, we suggest the following lines of
investigation:

(a) Bottlenecks still exist in effector identification; effectors of plant-beneficial organisms
as well as those pathogenic effectors which do not possess all the canonical effector
characteristics (small size, high cysteine content, etc.) may not be well represented in
in silico deduced effectoromes. Newer pipelines should take these limitations into
consideration, looking beyond the common physicochemical protein characteristics
of effectors currently used.

(b) Effector identification is occurring at a rapid pace, but characterization is lagging
relative to the large amount of effector candidates identified per organism. It is
necessary to propose novel strategies and, if possible, establish standardized means
of prioritizing candidates for further characterization.

(c) More attention should be placed on the effectors of plant-beneficial organisms and
their characterization. This can foster effector-based screening and selection of better
strains of biological control organisms for their implementation in the agricultural
sector. Furthermore, the isolation and application of novel effectors from pathogens,
as well as plant-beneficial organisms, may prove viable in plant protection strategies.
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