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Abstract: Arbuscular mycorrhizal fungal (AMF) inoculants are sustainable biological materials that
can provide several benefits to plants, especially in disturbed agroecosystems and in the context
of phytomanagement interventions. However, it is difficult to predict the effectiveness of AMF
inoculants and their impacts on indigenous AMF communities under field conditions. In this review,
we examined the literature on the possible outcomes following the introduction of AMF-based
inoculants in the field, including their establishment in soil and plant roots, persistence, and effects
on the indigenous AMF community. Most studies indicate that introduced AMF can persist in the
target field from a few months to several years but with declining abundance (60%) or complete
exclusion (30%). Further analysis shows that AMF inoculation exerts both positive and negative
impacts on native AMF species, including suppression (33%), stimulation (38%), exclusion (19%),
and neutral impacts (10% of examined cases). The factors influencing the ecological fates of AMF
inoculants, such as the inherent properties of the inoculum, dosage and frequency of inoculation,
and soil physical and biological factors, are further discussed. While it is important to monitor the
success and downstream impacts of commercial inoculants in the field, the sampling method and the
molecular tools employed to resolve and quantify AMF taxa need to be improved and standardized to
eliminate bias towards certain AMF strains and reduce discrepancies among studies. Lastly, inoculant
producers must focus on selecting strains with a higher chance of success in the field, and having
little or negligible downstream impacts.

Keywords: arbuscular mycorrhizal fungi; symbiosis; commercial inoculants; community structure;
ecosystem functions; metabarcoding

1. Introduction

Mitigating the environmental impacts of intensive agriculture, such as greenhouse
gas emission, eutrophication, the pollution of surface and underground water, global soil
loss to salinity and compaction, loss of microbial diversity, etc., calls for the integration of
multiple sustainable management approaches including the diversification of crop rotations,
intercropping, integrated farm management, conservation, precision agriculture, and the
‘4R’ framework of nutrient management (meaning applying the right type and quantity
of nutrient in right place and at the right time). Another important strategy that can
help to reduce the environmental footprint of agriculture, restore soil health, and protect
biodiversity is the introduction of beneficial microorganisms into agroecosystems [1,2].

Arbuscular mycorrhizal fungi (AMFs) are essential soil microbial communities that
form obligate symbiosis with 80% of terrestrial plants [3]. AMF promotes plant growth
by facilitating nutrient acquisition through the extraradical mycelia that spread from the
host’s roots into surrounding soils [4,5]. By increasing plant access to nutrients, AMF
application can offset phosphorus fertilizer demand by ~50% [6]. A growing number of
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studies also indicate that the application of AMF can reduce nitrogen losses in the form of
nitrous oxide emission and nitrate leaching [7–10]. AMF can also stimulate the production
of phytohormones and secondary metabolites, that can improve plant productivity [11],
crop quality [12,13], and build resilience against environmental stress such as salinity [14],
drought [15,16], heat, and pathogens [17,18]. Thus, intervention with commercial AMF is
tenable in soils with high P-fixing potential, anthropized sites that exhibit low diversity
and richness of native AMF species, and arid and semi-arid areas [19–24].

The AMF inoculant market is burgeoning and gaining wide recognition, although
commercial products are majorly based on a few AMF strains belonging to the Glomeraceae
genera: Rhizophagus, Funneliformis, and Claroideoglomus strains [2]. AMF inoculants consist-
ing of several AMF strains can produce additive or synergistic effects on target crops [25],
however increasing the diversity of AMF in inoculants may fail to produce additional
benefits if constituent strains are redundant i.e., performing similar functions [26]. Simi-
larly, the concerted application of AMF with other bioinoculants such as growth-promoting
rhizobacteria (PGPR) or nitrogen-fixing bacteria, and organic substances such as humic
acid can produce greater plant response [27,28]; however, only a few commercial products
are based on such complex formulation [2].

Despite the growing demand for biofertilizers, results from commercial AMF inocu-
lants have been largely context-dependent, especially under field conditions, contrary to
the common laboratory successes [29–32]. The inconsistent narrations from the research
community regarding the reliability of AMF inoculation as a valid agricultural manage-
ment technique [33] are generating low consumer confidence that is hindering large-scale
adoption of the technology. Although, quantifiable or marketable gains (such as yield
enhancement, nutrient replacement, watering costs, seedling growth, and nursery raising)
are the mostly sought benefits of AMF, agricultural benefits of AMF extend beyond imme-
diate monetary gains. The non-marketable benefits of AMF include the improvement of
food and fiber quality; plant stress mitigation as well as ecosystem services, such as soil
erosion control; the prevention of nutrient losses (nitrous oxide emission and N leaching);
carbon sequestration; and landscape recreation [34,35]. Notwithstanding, to win growers’
confidence and market sustainability, investment in inoculant technology must pay off
either in the short- or long-term.

Field success of commercial inoculants relies on the ability of the introduced strains
to establish and persist at the target site for a desired or specified period. However,
AMF establishment is complex and are often determined by the inherent features of the
target agroecosystem. Unfortunately, most microbial inoculants are selected based on their
expressed functional traits in a greenhouse, without proper consideration of the ecologically
relevant traits that determine establishment and persistence under natural conditions [36].
While many cases of inoculation failures could be attributed to poor product quality
stemming from the lack of regulatory or quality control frameworks that mandate best
practices, resulting in a market flooded by substandard products [29,32,37], there is also
lack of understanding of ecology and of the mode of action of inoculants [38]. Duell
et al. [29] recently demonstrated that inoculants could decouple native plant symbiosis
with indigenous strains in a natural ecosystem already containing a large diversity of AMF
community, without conferring additional benefits. Thus, inoculation in such ecosystems
with high mycorrhizal potential may prove unproductive.

Therefore, understanding the factors that influence the establishment and persistence
of AMF inoculants will inform decisions, as well as the management practices necessary,
to ensure inoculation success [39]. Tracing the survival and persistence of the introduced
strains will help identify which AMF strains adapt well to the local conditions and induce
the observed plant response following long-term persistence and will help determine
whether another inoculation exercise is necessary. Moreover, monitoring the downstream
impacts of the introduced inoculant [40] is necessary to prevent the intentional propagation
of detrimental or ineffective strains and the elimination of keystone taxa [41].
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In the past, efforts to keep track of inoculants in the field have been scarce, resulting
in knowledge gaps about persistence of introduced AMF as well as the downstream
pressure/disturbance imposed on the native community. In part, this could be attributed to
a lack of the molecular tools necessary to distinguish between related taxa [42]. However,
highly sensitive and robust molecular markers coupled with rapid and cost-effective
sequencing technologies are becoming increasingly accessible to resolve AMF species
diversity with greater accuracy and precision. Consequently, a growing number of studies
are monitoring the fate of AMF inoculants in the field. Therefore, this paper reviews
the possible outcomes following the introduction of AMF inoculants into field soils. We
highlight the survival limit or persistence of introduced AMF inoculum based on available
evidence, and we also examine what factors drive the various outcomes post-inoculation.
Lastly, we identify the impacts of foreign AMF inoculants on indigenous AMF communities
and discuss the need to harmonize the techniques employed in monitoring inoculants in
the field.

2. Analysis of Published Studies on the Impact of Introduced AMF Inoculants in
the Field

Most studies investigating AMF inoculants are conducted in greenhouses or in micro-
cosms, using sterilized soils to compare the performance of non-AMF- and AMF-inoculated
plants. This approach does not only fail to consider the realities of the agricultural field
or agroecosystem, it also fail to capture the interactions of inoculants with indigenous
species [43]. Field studies on AMF are notably scarce [44], especially those investigating
the ecological consequences of inoculation [42]. In December 2021, we performed search
operation on Scopus and Web of Science to collect studies monitoring AMF inoculants in
the field using metabarcoding techniques. We used the following keywords: “persistence”
or “survival” and “arbuscular mycorrhizal fung*”, “inocula*” and we recovered 407 references
( After screening of titles and abstracts, ten studies (16 site-specific studies) that fulfilled
the screening criteria that is, carried out in the field and used metabarcoding to detect
AMF in plant roots or soil, were selected for further examination (Table 1). The search
was updated in September 2022 using using the following keywords: (“arbuscular mycor-
rhizal fung*”, “inocula*” and “resident or “indigenous” or “autochthonous” and “community”
and “field condition”). A total of 136 articles were retrieved from both databases involving
studies conducted between 1980–2022. After screening the abstracts, 15 studies that investi-
gated the impact of introduced AMF on indigenous AMF communities in the field using
molecular tools were further examined, culminating in a total number of 23 independent
(site-specific) studies (Figure S1, Table 2). A separate search was carried out on the same
databases to screen studies that assessed the persistence of introduced AMF in the field
using metabarcoding techniques. Although we recovered 407 articles based on the search
inputs (persistence or survival and arbuscular mycorrhiza* and field), only 10 articles that
fulfilled the screening criteria were further selected for further examination. We analyzed
the studies to identify the location of experiment and the identity of AMF. All AMF investi-
gated belong to Rhizophagus (46%), Funneliformis (41%), Claroideoglomus (15%), Glomus (9%)
and Gigaspora (2%) (Figure 1), corresponding to the AMF strains frequently obtained in
commercial inoculants as reported in our previous study [2]. Moreover, the studies were
conducted in ten countries located in different continents: Europe (10), North America (5),
Asia (4) South America (2) and Africa (1) (Figure S1).
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Table 1. Persistence of introduced AMF under field conditions. Criteria for selection are experiment in field and use of molecular tools to trace or monitor introduced AMF.

AMF Name, Isolate
(Brand, Manufacturer) Location of Trial Soil Type Climate Crop Persistence Tracking

Period
Change in Abundance of Introduced

AMF over Time References

Funneliformis mossaeae
BEG12 and

AZ225C, Rhizophagus
irregularis BEG141

Manciano (Grosseto) Italy Haplic Calcisol
or Inceptisol Humid Mediterranean Medicago sativa L. 2 years

F. mosseae AZ225C was most persistent,
followed by BEG12 and BEG141.

Abundance of local F. mosseae cluster was
reduced, while the abundance of native

R. irregularis increased.

[45]

Rhizophagus Irregularis,
DAOM 197198 (Myke Pro,

Premier Tech)

Canada (Swift Current) Brown Chernozem Semi-arid Pea-wheat 2 years, 5 months Inoculant decreased from 27% in first
season to 15% in years two and three.

[41]

Canada (Outlook) Dark Brown Chernozem Semi-arid 2 years, 5 months Introduced AMF decreased from 17% in
year one to 4% in years two and three.

Canada (Scott) Chernozem Sub-humid 3 months
Relative abundance of introduced AMF

was 33% but detection failed in
subsequent years.

Canada (Melfort) Black Chernozem Sub-humid 1 year, 3 months
AMF detected in year one with 10%
abundance and 4% in year two but
declined completely in year three.

Rhizophagus irregulare,
DAOM 197198 (Myke Pro

GR, Premier Tech)

Swift Current,
Saskatchewan _ _

Lentil Lens culinaris, Linum
usitatissimum (Flax var.

Bethune) rotation
inoculation year 1 only

_ Inoculation did not affect abundance of
target AMF in roots.

[46]
Beaverlodge, Alberta _ _

Pisum sativum, Linum
usitatissimum (Flax

var. Bethune)
_ Inoculation did not affect abundance of

target AMF in roots.

Melfort, Saskatchewan _ _ _ Abundance of introduced isolate was
less in inoculated site than control

STR Saskatchewan _ _ 2 years
Abundance of introduced isolate was
higher in inoculated plots in year one,

but did not differ in year two.

Rhizophagus Irregularis IR27 Senegal Tropical ferruginous Semi-arid Jujube (Ziziphus mauritiana
lam., Tasset and Gola) 1 years, 5 months Abundance of R. irregularis was low (15%

after 18 months). [47]

Funneliformis Mosseae
AZ225C and IMA1 Pisa, Italy Sandy loam Mediterranea climate M. sativa 2 years

2 years, relative proportion of F. mosseae
decreased in favor of native species,

abundance of isolate AZ225C dropped
from 100% to 16.3%, while isolate IMA1

survived only three months.

[48]

Glomus sp., G. intraradices
and a mixture of both

Vicente Banes, Molina
de Segura,

Southeastern Spain)

Typic Torriorthent
(silty clay)

Semi-arid
Mediteeranean climate O. europaea 1 year, 2 months

Abundance varied by AMF species:
Glomus sp.: 20%, G. intraradices: 48.2%,
and mixed (G. intraradices: 14%, Glomus

sp.: 39.7%).

[49]

G. intraradices IMA6 and
F. mosseae AZ 225C, and

mixture of both
Italy Mediterranean climate

Artichoke (Cynara
cardunculus L. var.

scolymus F.)
3 months

Inoculation increased the abundance of
Glomus OTUs in inoculated plants

compared to control.
[12]
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Table 1. Cont.

AMF Name, Isolate
(Brand, Manufacturer) Location of Trial Soil Type Climate Crop Persistence Tracking

Period
Change in Abundance of Introduced

AMF Over Time References

Gigaspora margarita CK
(cerakinkong, Central glass

Co., Tokyo, Japan)

Mizunashi River, Mt
Fugendake, Nagasaki

Prefecture, Japan
Reforested soil

Eragrosis curvula (weeping
love grass) and Miscanthus

sinensis (Japanese
Pampas grass)

4 years G. margariata isolate CK was detected in
rhizosphere and root of E. curvula. [50]

Funneliformis (syn. Glomus)
mosseae BEG12, 167 G.

intraradices BEG 141 (IBG),
G. eutenicatum BEG 168,

(Endol, Biorize)

Daxing, Hebei
Province, China - Sweet potato, (Ipomoea

batatas L.) 3 months

Contaminating AMF, G eutenicatum had
longer persistence than G. mosseae, the

establishment of which was not
successful in year 2; similarly, low

amounts of F. mosseae BEG 167 were
detected compared to contaminating

G. eutenicatum.

[51]

R. irregularis GEG140,
F. mosseae BEG95,

C. claroideum
BEG96, (Symbiom)

Coal mine spoil bank,
Mekur, North Bohemia,

Czech Republic
_ _ Phalaris arundinacea 3 years Introduced AMF persisted and

co-existed with native strains. [52]

Table 2. Impact of introduced AMF on indigenous community. Criteria for selection were experiment in field and use of molecular tools to trace or monitor
AMF communities.

AMF and Product Name Molecular Method and Target Region Crop Location Impacts on Native Community References

Funneliformis mossaeae BEG12 and
AZ225C, Rhizophagus

irregularis BEG141
SSU-ITS-LSU (8SrDNA) sequencing Medicago sativa L. Manciano (Grosseto) Italy Local F. mosseae clusters was suppressed while

native R. irregularis stimulated [45]

R. irregularis DAOM197198,
(Myke Pro)

SSU-ITS-LSU (18S rDNA)
454 Pyrosequencing Pea–wheat rotation

Canada (Swift Current) Indigenous Claroideglomus was suppressed in
third season.

[41]

Canada (Outlook)

Abundance of Glomus and Funneliformis was
decreased in year one, while Claroideglomus,

Paraglomus, Archaeospora, and Diversispora were
increased. Rhozophagus was excluded in

third year.

Canada (Scott) Indigenous Claroideoglomus and Paraglomus
were stimulated, while Funneliformis decreased

Canada (Melfort)

Glomus, Funneliformis suppressed while
Claoroideoglomus and Paraglomus stimulated.
Rhizoglomus and Archaespora were excluded

over three cropping seasons.
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Table 2. Cont.

AMF and Product Name Molecular Method and Target Region Crop Location Impacts on Native Community References

R. irregularis IR27, lab-made
inoculum propagated in greenhouse

trap culture

LSU (18S rDNA)
Illumina MiSeq Jujube (Z. mauritiana Senegal Inoculation decreased

Rhizophagus/Glomus ratio. [47]

F. coronatum GO01, GU53, F.
Caledonium GM24, R. intraradices GB6
and GG32, F. mosseae GP11 and GC11,

and Septoglomus viscosum (GC41)

SSU (18S rDNA) 454 pyrosequencing Fodder maize (Zea mays L.
var. ‘Kalumet’ Carmagnola, Italy

Inoculation induced an increase in
alpha-diversity indices in roots by reducing

species dominance.
[53]

R. intraradices, F. mosseae, and mixture
of both

(MycAgro Lab)
Illumina MiSeq (ITS2) Saffron (Crocus sativus L.) Saint Christophe, Italy

(Morgex, Aosta Valley, Italy)

Inoculation did not impact field fungal
communities; results differed by year of

sampling and field.
[54]

Glomus sp. Illumina MiSeq (18S rDNA) Welsh onion cv. Motokura Okasaki, Ayabe, Tsugaru, Japan

OTUs related to introduced AMF were
decreased, while those belonging to distant
taxa such as Gigaspora, and Acaulospora were

consistently enriched.

[55]

R. irregularis GEG140,
F. mosseae BEG95, C. claroideum BEG96

(Symbiom)
PCR-RFLP (25S rDNA) Phalaris arundinacea Coal mine spoil bank, Mekur, North

Bohemia, Czech Republic
AMF persisted for 3 years and co-existed with

native haplotypes of same species. [52]

Rhizophagus irregularis SAF 22 Blazk,
Wubet, Renker and Buscot

SSU-ITS-LSU (18S rDNA) SMRT
and qPCR Swiss corn Eight farmers’ fields Establishment of inoculated strains correlated

negatively with root colonization. [56]

R. irregularis DAOM 197198 (Myke
Pro Liquid, Myke Pro Soybean

Liquid, Myke Pro PS3, Premier Tech)

ITS-SSU (18S rDNA)
Illumina MiSeq

Zea mays, cultivar Elite 49A12 Cruiser
Max Quattro, St-Elzear Quebec

Inoculation did not affect abundance or
community diversity.

[57]Glycine max cv. Pioneer, 90YO1, Notre-Dame-du-Mont-Carmel,
Quebec

Wheat (T. aestivum), cv. Touran Sainte-Helene-de-
Kamoraska, Quebec

Glomus spp. SSU (18S rDNA) PCR-RFLP Spice pepper (C. annuum L. var.
longum), cv. Szegedi and cv. Kalocsai

Inoculation affected structure of resident
AMF community, but there was no remarkable

effect on AMF species composition.
[58]

G. intraradices BEG140, G. mosseae
BEG95, G. etunicatum BEG92, G.

claroideum BEG96, G. microaggregatum
BEG56, G. geoposporum BEG199

(Symbivit, Symbiom)

PCR-RFLP (18S rDNA) Capsicum annuum L. var. longum and
cv. Szegedi

Godollo, Hungary,
Continental

Inoculation affected relative abundance of
AMF ribotypes but did not

influence composition.
[59]

R. irregularis DAOM 197198 (AGTIV) Illumina MiSeq (ITS,
mitochondrial rDNA)

Flax,
lentil

Saskatchewan (Swift Current) Single inoculation had no effect, but
continuous AMF inoculation reduced Shannon
diversity and Pielou’s evenness indices in flax
rhizosphere in second rotation in Beaverlodge.

[60]
Alberta (Beaverlodge)

R. irregularis GD50 Illumina MiSeq (ITS)

Lentil–wheat, Swift Current, Saskatchewan No effect of inoculation in rotation phase 1, but
AM altered fungal community structures of
rhizosphere and root of flax grown in Swift

Current in rotation phase 2.

[61]
Pea–flax Beaverlodge
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Table 2. Cont.

AMF and Product Name Molecular Method and Target Region Crop Location Impacts on Native Community References

R. irregularis R-10 Illumina MiSeq (25S rDNA) Glycine max (L.) Merrill.
cv. Fukuyutaka

Kyushu, Okinawa Agricultural
Research Center, Miyakonojo,

Miyazaki Japan

Inoculation increased read abundance of
inoculum R. irregularis (70%) compared to 30%
in non-inoculated site, by competing for niche

commonly distributed communities.

[62]

R. irregularis DAOM 19178 from four
products:

Myke Pro p-801,
Myke Pro GR,

Mycorise ASP, and
Symplanta

454 pyrosequencing (25S rDNA) Solanum tuberosum c.v. INIAP-FIpapa

Zamora Huayco Research
station, Loja

No effect on indigenous AMF community.
Introduced AMFs were outcompeted by

indigenous Acaulospora sp.
[63]

Santa Catalina Research
Station, Ecuador
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Figure 1. (A) AMF genera whose ecological effects were investigated in the field (B) Time-dependent
changes in the abundance of introduced AMF according to results from six sites where the abundance
of introduced AMF was monitored using metabarcoding twice or more. Introduced AMF: decreased
in abundance compared to previous sampling; excluded (not detected in the sample) or abundance
remained the same.

Further examination of the studies indicate that introduced AMF can survive in the
field up to four years post inoculation. This survival period was perhaps limited by the
study duration, which peaked at 4 years (Table 1). However, most of the studies reported
a time-dependent decline in abundance of the introduced strains (60%), while others
observed complete exclusion (29%) or no change (14%) (Figure 1B). Concerning the effects
of introduced AMF on the indigenous AMF communities, we identified varied impacts that
include suppression, stimulation, exclusion, or neutral effects (Figure 2). Mixed effects were
observed in same experimental locations where certain AMF strains were stimulated, at the
same time, others were suppressed or excluded (Figure 2 and Table 2). Lastly, the studies
employed different markers targeting specific DNA regions (usually the nuclear ribosomal
DNA or mitochondrial rDNA gene) as well as different quantification and sequencing
platforms (Table 2).
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Figure 2. Impacts of inoculated strains on indigenous AMF under field condition. The figure was
produced by case-by-case analysis of inoculants impacts as reported in the studies listed in Table 2.

3. Establishment and Persistence of Introduced AMF in Field
3.1. Establishment

The influence of AMF on plants and microbial communities relies both on the suc-
cessful colonization of plant roots and on the maintenance of live propagules that can
form mycorrhizal association for a given period after their application [64]. However, the
establishment success of introduced AMF in the field is context-specific, varying according
to the type and composition of the inoculant, as well as the physical and biotic conditions of
the target field [31]. The establishment of AMF is largely successful regardless of soil type,
nutrient concentration, or the composition of the indigenous AMF communities (Table 1).
In other contexts, AMF may fail to establish at the target site due various factors. For
example, Rhizophagus irregularis (DAOM197198), often regarded as a generalist AMF with a
cosmopolitan distribution, did not influence grapevine growth in a five-year trail [65,66].
Renault et al., 2020 [57] also observed no difference in root colonization between control and
non-inoculated plots of corn soybean, or in wheat treated with same isolate of R. irregularis.
In composite trials, where AMF inoculants were applied in different fields, establishment
was successful at one site and failed at the other [60,61].

Surprisingly, there seems to be greater discrepancies among commercial and laboratory
inoculants tested in the same field. In 2017, Berruti et al. [53] reported that a commercial inoculant
failed to establish in the field, while other studies obtained inconsistent results, where some
commercial inoculants survived better under greenhouse conditions [30–32]. A recent global
evaluation of commercial AMF inoculants in greenhouse and field conditions demonstrated
that only 4 out of 28 AMF inoculants were successfully established in a greenhouse experiment,
and only one successfully influenced plant performance in the field, whereas the inoculum
obtained from the laboratory established successfully in both ecosystems [32].

3.2. Persistence

Most studies indicate that AMF could survive for a long period after the first inocu-
lation. More specifically, introduced AMF could survive for relatively few months after
inoculation to several years (Table 1); however, no study has monitored the persistence of
AMF in the field beyond four years, according to the information available while gathering
data for this study. The survival limit, as well as the abundance of the introduce species, is
majorly affected by the type of AMF as well as the biotic and abiotic conditions of the target
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sites. For example, out of the two non-native Funneliformis mosseae isolates—AZ2256C and
IMA1, which originated from the USA and the UK, respectively—only the former was
detected two years after inoculation, but in lower proportions compared to the native R. ir-
regularis and R. intraradices, despite early establishment success and the stimulatory effects
of both strains on the roots of Medicago sativa [67]. In a recent study, Pellegrino et al. [45]
also reported that although the AMF strains F. mossaeae BEG12 and AZ225C were detected
in alfalfa roots two years post-treatment, the AZ225C strains had longer persistence.

Does persisting inoculant consistently improve plant growth, as in the initial stage of
its introduction? Results from a 2012 study by Pellegrino et al. [48] suggest that persistent
AMF could sustain yields two years after inoculation. A recent study by Pellegrino et al. [45]
also indicated that AMF could sustain positive effects on the host crop several months
after inoculation, whereby both F. mossaeae BEG12 and AZ225C enhanced alfalfa yield,
nutrients, and fatty acid content. Similar findings were reported by Thioye et al. [47] where
the growth-promoting effects of R. irregularis IR27 on Ziziphus mauritiana Lam continued
18 months after planting. However, Farmer et al. [51] and Alguacil et al. [49] could not
correlate the persistence of inoculants with plant growth, even though inoculation increased
plant growth in both studies.

Moreover, most studies reported a decline in the abundance of the persistent strains
over time due to competition and suppression by native communities. For example,
R. irregularis MUCL 41833 DNA was detected at a concentration 100 to 1000 times lower
than native R. irregularis strains in three potato cultivars grown in the field in Belgium [68].
In a recent trial, the levels of the AMF abundance of inoculates introduced in four Canadian
agricultural fields varied between 3 and 27 months [41]. Rhizophagus irregularis IR27
represented 11 to 15% of the Rhizophagus genus in Ziziphus mauritiana roots after 13 and
18 months [69]. A low abundance of introduced AMF compared to native strains indicates
that exotic AMF can co-exist with native strains without posing a negative threat to local
biodiversity. Lastly, the results obtained by Kokkoris et al., 2019 [46] also demonstrated
that the establishment and persistence of AMF was site-dependent and not related to
crop management.

4. What Determines the Establishment Success and Survival of an Inoculum?

It is difficult to predict whether an introduced AMF will establish or fail; however, it is
necessary to examine AMF root colonization more closely, which involves time-limited and
host-independent pre-symbiotic and symbiotic phases occurring inside the root cortical
cells. In a 2015 study, Bonfante and Desirò [70] indicated that there is no one single factor
that can predict the post-application performance of AMF. Nevertheless, the survival of
introduced AMF relies on inherent competitive traits, as well as the taxa, and the diversity
of both the introduced AMF and the indigenous community [71]. Introduced species must
be compatible both with the prevailing physical conditions of the soil and with the plant
genotype [72–74]. Therefore, the factors affecting the performance of introduced inoculants
in the field can be summarized as follows: the quality and type of the introduced strain, the
local biotic and abiotic conditions of the target site, and priority advantage and propagule
pressure (Figure 3).

4.1. Quality, Formulation, and Type of Inoculants

The success of inoculation depends on the inherent properties of inoculants such as
the propagule type (i.e., spore, roots, hyphae, or mixture), the quantity formulation, the
germination requirement and viability of the inoculant, the dose, and the frequency of inoc-
ulation [42,75]. Commercial inoculants lacking viable propagules will fail to colonize plant
roots or compete with native AMF species. Some manufacturers’ claims about propagule
compositions can be erroneous, as shown in Berruti et al. (2017) [53], where Funneliformis
and Septoglomus were not detected in a commercial product, contrary to the manufacturer’s
claims. Similarly, in a commercial AMF inoculum, Funneliformis mosseae BEG167 was con-
firmed, but only in low amounts compared to the contaminating G. eutenicatum [51]. Other
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products might have lost viability due to prolonged shelf-life, formulation, or inappropriate
storage conditions, as observed by Salomon et al. (2022) [32].

The compatibility of the AMF strain with the target crop can also affect the establish-
ment and survival of inoculants after inoculation. For example, Imperiali et al. (2017) [76]
reported that R. irregularis SAF22 and another R. irregularis from a commercial inoculum
were detected in roots, while F. mosseae SAF12, and C. claroideum SAF12 did not establish in
wheat roots; these results are in line with the findings of Pellegrino et al. (2011) and Framer
et al. (2007) [48,51]. Moreover, the appropriate dosage of inoculum must be considered as
this is pertinent, not only for establishment success, but also to maintain an optimum AMF
level in plant roots that does not offset plant symbiotic gain. For example, doses containing
50 to 100 spores of G. intraradices produced optimum root colonization that enhanced the
targeted plant traits, whereas higher doses consisting of 200 to 400 spores resulted in higher
root colonization that negatively impacted the plant traits in sugarcane (Saccharum spp. cv
Mex 69–290) [77].

4.2. Priority advantage and Frequency of Application

To promote an inoculant’s chances of successful establishment in soil with a highly
diverse native AMF community, introduced strains must have an inherent competitive
advantage, strong mutualistic qualities, or a high propagule fostered via pre-inoculation, a
high dosage, or repeated inoculation [40,78]. Pre-inoculations are usually carried out on
seeds or root stocks before cultivation to forestall priority advantage, since mycorrhization
operates on a first come, first served basis [78,79]. However, priority advantage does not
always translate to greater inoculant establishment, as observed in vines [66]. Similarly, an
increased frequency of inoculation can generate propagule pressure, helping propagules
move closer to the roots or seeds (i.e., seed coating) and favoring competitiveness [74,80],
but this is often not feasible due to technical difficulties, and is not always effective [46,60,61].
High propagule pressure may even decrease the benefits of symbiosis [81] or promote the
proliferation of invasive species [82].

4.3. Soil Abiotic Conditions

The physical properties of the soil are also crucial for the survival and functioning of
microbial inoculants [83]. The sources and quantity of P in the soil can affect the diversity
of microbiome associating with plant roots, and can affect root colonization and the subse-
quent performance of the AMF inoculant [84]. Long-term fertilization with rock phosphate
enhanced AMF association symbiosis in maize compared to triple superphosphate [85]. On
the contrary, studies have shown that AMF can establish symbiosis with hosts even in the
presence of high amounts of P. For example, the establishment of R. irregularis SAF22 in
eight Swiss farmers’ fields positively correlated with total soil P and organic carbon [56,75].

AMF diversity and its co-occurrence network has been shown to decrease with long-
term fertilization management; however, changes in the rhizosphere usually differ from
the root endosphere. For example, AMF diversity decreased in a wheat rhizosphere but
increased in the endosphere relative to the control in response to 35 years of NPK appli-
cation [86]. Furthermore, AMF species respond differently to fertilization. For example,
Ma et al. [86] also demonstrated that Glomeraceae were most dominant in both the rhizo-
sphere and endosphere of wheat under long-term non-fertilization, whereas Claroideoglomer-
aceae and Paraglomeraceae were predominant in both biotopes under long-term fertilization.
Moreover, the abundance of Glomeraceae in the endosphere and rhizosphere correlated
negatively with the total and available P, whereas it correlated positively with the C/P
ratio, indicating that soil organic carbon can promote AMF symbiosis. On the contrary,
the abundance of Paraglomus correlated strongly with soil nutrient status; this suggests
that Paraglomeracea can establish more successfully under high-input agricultural systems,
while Glomeracea might be more successful in low-input agriculture.

Other studies indicate that drought can hinder the establishment and survival of
AMF [87,88], while soil pH also influence the germination, growth, and distribution of
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AMF [89]. Negative impacts of acidic soil on AMF performance have been documented,
whereas liming and pasteurization improved AMF performance [90,91].

4.4. Soil Biotic Conditions

Soil with a low diversity of the native AMF community or reduced niche overlap,
especially arid or semi-arid soil, has been shown to promote inoculant establishment
and persistence for many years [92]. Conversely, a high diversity of indigenous AMF
communities can reduce or eliminate introduced inoculants in the long term, even after
successful root colonization. Bender et al. [56] reported that the abundance of established
inoculum was negatively correlated with that of native AMF species. Sato et al. [93]
also demonstrated that the indigenous AMF community affected the establishment of
introduced species, which had an abundance of 48.3% of all the AMF species, compared to
fumigated soil, where it accounted for two-thirds (89.6%).

In addition to diversity, the species composition of the indigenous community can
also affect the performance of introduced inoculants. For example, R. irregularis mostly
survived in soil where conspecific strains were not part of the indigenous communities;
meanwhile, survival was inconsistent in soil with a highly diverse and abundant indigenous
AMF community due to greater competition, reducing survival to one or two years in
some fields [41]. Bender et al. (2019) [56] also suggested that the presence of genetically
related indigenous species tends to have a negative impact on the success of inoculants;
sites with a high proportion of F. mosseae, F. caledonius, and Paraglomus brasilianum had
negative mycorrhizal growth rates compared to sites with more divergent members, such
as Diversispora spp., which had positive mycorrhizal growth rates.

5. Effect of Inoculation on the Structure of Indigenous AMF Communities

The enhancement of soil microbial diversity leading to better soil health and greater
plant performance is the main objective of inoculation. However, the effect of the in-
troduced strains on local microbiota can be unpredictable due to the complexity of the
rhizosphere [94]. AMF inoculant can change the community dynamics of indigenous
species in many ways including suppression, stimulation, and exclusion (Figure 3). Un-
intended effects of inoculation may include loss of biodiversity, the promotion of plant
diseases, and plant invasion that can result in economic losses. Given the growing concern
about the risks that commercial inoculants pose to the biodiversity, it is imperative to
monitor the consequences of inoculation on native species; however, only a few studies
have examined commercial inoculants in the field (Figure S2A). The development of highly
sensitive markers and high-throughput sequencing is providing the scientific community
with the opportunity to evaluate species richness and the diversity of native microbiota pre-
and post-inoculation. Therefore, the major findings for the literature are highlighted below.

5.1. The Impacts of Inoculation on Indigenous Communities Are Context-Specific

The introduction of AMF inoculants can induce neutral [47,52,54,57,63,95], nega-
tive [56,60,67], positive [53], or mixed [40,41,55] effects on the abundance and diversity of
indigenous taxa (Table 2). These impacts can sometimes evade detection due to unfavorable
conditions such as drought [87,88], as shown by Symanczik et al. [88] that the impacts of
AMF on indigenous communities were only notable under wet conditions. In one case,
inoculation induced a shift in the structure of resident communities [53] despite failure to
colonize plant root. The alteration of native communities may result from microbial agents
such as Trichoderma sp. and Beauveria sp., which were detected in the inoculum [53].
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5.2. Inoculation mostly results into Shift in Structure, Rather Than in Composition

Most studies indicated that inoculation often influence the structure (relative abun-
dance) of endogenous taxa rather than loss of species figure, especially in roots (Figure 2).
The exclusion of certain taxa was however reported in a study [41], where Rhizoglomus
and Archaeospora were not detected in the inoculated soil three years after inoculation.
It is difficult to conclude, based on the above study, whether the exclusion of or failure
to detect such AMF taxa resulted from inoculation alone, given that similar effects were
observed in one control site where Diversispora only appeared during wheat rotation in the
three cropping seasons, indicating that there may be other confounding variables (i.e., time
of sampling) that could bias the detection of AMF taxa.

The order of arrival and priority advantage are also crucial to determining the exclu-
sion or inclusion of AMF in host roots [42,74]. If they have a minimum head start that
confers a root colonization advantage [78], introduced strains can suppress and reduce the
abundance of native species colonizing roots—although the frequency of this phenomenon
differs drastically depending on the introduced AMF species or isolate. Pre-inoculation
with Septoglomus deserticola (syn. Glomus deserticola) and Claroideoglomus claroideum syn.
(Glomus claroideum) restricted other AMF taxa, while Gigaspora margarita and Gigaspora
gigantea had no influence on indigenous AMF taxa [40]; other studies [47,66], however,
found no effects or priority advantage. Regardless of priority advantage, the abundance
of the introduced AMF diminishes over time, due to either competition with indigenous
species or the lack of strong mutualism traits [41,56,67,90]; this is because plants allocate
more photosynthates to beneficial symbionts, regardless of competitiveness [96]. The dor-
mancy and reproductive periods of AMF species differ, especially when recovering from
disturbance or seasonal variation [23,97]. Another possibility is that the excluded AMF
taxa were dormant and not actively colonizing roots when the samples were taken; if this
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is the case, it will be necessary to consider both roots and soil in future investigations into
the outcomes of inoculation, especially in the field.

5.3. Niche Availability Influences Fate of Both Introduced and Indigenous AMF Communities

Niche competition and the composition of the indigenous community are important
ecological factors that determine the fate of the introduced inoculum. The introduced AMF
can be suppressed by indigenous strains, or vice versa, if there is niche overlap between the
communities. Thus, the AMF inoculum may stimulate certain AMFs from the indigenous
community, while suppressing or excluding others from plant roots [41,55]. However, in
the sites characterized by higher diversity of indigenous AMF species, inoculation can
stimulate the abundance of AMF species in roots, without necessarily displacing native
species [46,98]. Conversely, introduced strains may be eliminated in the presence of local
ecotypes that have already adapted to the conditions of the site, such as agricultural
disturbances and contamination, or in the presence of native AMF species that occupy
the same niche [41,60,62]. Competition between AMF species can also occur between
two similar strains inoculated together, as shown by Alguacil et al. (2011) [49], where root
colonization by G. intraradices (syn, Rhizophagus intraradices) was decreased by 70% in the
presence of Glomus sp.

5.4. Alteration in the Functions of Indigenous AMF Communities Are Scarcely Reported

Almost all the studies that investigated AMF either focus on plant performance
or the effect on community structure or composition, how observed alteration in the
community structure of indigenous AMF leads to shift in functional dynamics are largely
unknown. Several studies have reported a positive response in plant traits (biomass
and nutrient uptake) to AMF inoculation, but often fail to correlate it with mycorrhization
intensity [19,51,53,99], suggesting that other mechanisms might be involved in the observed
plant response. Furthermore, AMF species perform many ecological services, such as the
promotion of soil aggregation through the secretion of glomalin-related protein, nutrient
cycling, soil organic matter mineralization, etc. [34]. Therefore, an inclusive approach to
studying the post-inoculation consequences of AMF introduction must account for all
possible outcomes, including changes in plant fitness, carbon dynamics between the plant
and AMF, carbon sequestration, metabolic activities, community structure, community
composition, and the functions of native communities.

6. Monitoring Survival and Ecological Consequences of AMF Inoculants in the Field

Keeping track of introduced isolates among the large pool of indigenous AMF commu-
nities after inoculation is a complex task that requires the development of highly sensitive
molecular markers that can identify AMF species at an isolate level. Absolute quantita-
tive PCR is among the most accurate and reliable quantification methods that have been
successfully utilized to trace AMF inoculants [100–102]. The establishment of introduced
inoculants in roots can be assessed by comparing root colonization parameters and gene
copy numbers, determined via absolute qPCR of the inoculated strains in control and
in treatment plots [56]. The microscopic methods commonly used to assess inoculation
success, by comparing the percentage root fragment colonized by AMF in the inoculated
trial with a non-inoculated control, does not distinguish between species co-colonizing
the same roots; thus, they cannot be relied upon to track the persistence of the introduced
strains and disturbance in the indigenous community. Therefore, specific molecular tools
are crucial to differentiating introduced strains from indigenous AMF communities when
they are co-colonizing the same crop roots.

Metabarcoding studies monitoring AMF in the soil and roots usually target four
nuclear ribosomal DNA loci; the partial small subunit (SSU), the large subunit (LSU),
5.8S rRNA genes, and the internal transcribed spacers (ITS), are the regions that are usually
targeted with primers to differentiate AMF at the family and species levels [68,103]. Primers
targeting one out of the four nuclear single rDNA loci can detect the presence or absence
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of specific fungi [51,95]; however, multiple copies of locus per genome, differences in
the copy number among isolates, and genetic variations among these loci often generate
low recovery of Glomeromycota sequences, especially when two isolates of a single AMF
species are involved. Amplifying both the LSU and SSU regions together with ITS is a
more sensitive alternative [95,104]. Thus, using two primers (NS31 and LSUGlom1) to
amplify the 3′ end of the SSU and the 5′ end of LSU rRNA, together with the ITS region,
Pellegrino et al. (2012) [67] traced an isolate of Funneliformis mosseae from an inoculum,
using the polymerase chain reaction–terminal restriction fragment length polymorphism
(PCR-(T)-RFPL) method. Pellegrino et al. [45] also targeted the SSU, ITS, and LSU regions
to resolve both local and exotic F. mosseae and R. irregularis AMF strains.

The partial SSU-ITS-LSU fragment is 1.5-kb long and cannot be directly sequenced by
the second-generation high-throughput sequencing platforms, such as 454 pyrosequencing
(fragment length approximately 800 bp) or MiSeq (approximately 500 bp); however, they
can be sequenced by third-generation long-read sequencing technologies such as single
molecular real times (SMRT) analysis provided by PacBio, which can read DNA sequences
of more than 20 Kb, although with lower sequence quality than MiSeq [105]. Interestingly,
Kolarikov et al. (2021) [106] successfully amplified the entire operon spanning the trio
of SSU, ITS, and LSU in a two-step nested PCR using different primer combinations, i.e.,
AML1/LSUmAr and NS31/LSUmAr for the initial PCR and NS31_Glo3/LSUmBr for the
second PCR. The 2.5 kb-long read was later sequenced using the single molecular real times
(SMRT) analysis on the PacBio platform.

Intraspecific markers based on large subunits of a mitochondrial (mt) rDNA gene (rnl
gene) are more reliable than each of the nuclear rDNA loci due to the lack of polymor-
phism in certain conserved domains and substantial variation among isolates, which enable
distinctions to be made between haplotypes [96,107,108]. One technique involves the am-
plification of a region located in the cox3-rnl intergene of mtDNA, which harbors numerous
mobile elements that have high sequence diversity; these include plasmid-related DNA
polymerase genes (dpo), homing endonuclease genes, and small inverted repeats which are
useful targets for the development of AMF strain-specific markers [109]. This technique
has been successfully employed to distinguish between isolates of Rhizophagus irregularis,
due to its insertion as a single-copy sequence and the absence of a nuclear type [100–102].
Badri et al. (2016) [102] employed this approach to develop a TaqMan-based qPCR method
to quantify the spores of a commercial inoculant containing R. irregularis DAOM-197198
with high robustness and sensitivity. However, the major drawback of mtDNA-based
markers is that they are only available for R. irrgularisis [101], and could be hindered by
heteroplasmy produced by anastomosis; this may occur between compatible AMF isolates
to form a hybrid consisting of both parents’ mitochondria, although it has been shown
to be transient [110]. The occurrence of a hybrid progeny may affect the accuracy and
interpretability of biodiversity indices, as such progenies can also form symbioses with
plant roots [37].

Regardless of the method employed, there will always be a trade-off in terms of
the cost, length of the sequence, and quality of the read. Notwithstanding, the various
techniques must be standardized and harmonized to enable comparisons among studies
and to eliminate the discrepancies that can stem from methodological biases towards certain
AMF families [95].

7. Conclusions

The application of bioinoculants remains an integral part of sustainable solutions to
reduce the environmental footprints of conventional agriculture. However, it is necessary
to address certain critical issues, such as the establishment and persistence of inoculants, as
well as their short- and long-term impacts on indigenous communities; further research
into these issues will inform management practices and regulations to avoid unintended
consequences, such as the loss of native species and ecosystem functionality. The present
review examines the fate of AMF inoculant intervention in the field from the perspective
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of establishment, survival, and whether they impact local communities, relying on the
information available from field-based studies. We found that both the establishment and
persistence of AMF inoculants are context-specific, and are affected by factors including
inoculant quality, application practices, and local conditions. Some studies reported that
the success of commercial inoculants tends to be more variable compared to laboratory
strains, perhaps due to low-quality propagules or a loss of quality due to long-term storage
conditions or erroneous claims by manufactures. After successful establishment, intro-
duced AMF can survive for many years effects on crops are unpredictable. Furthermore,
AMF inoculants may shift the community structure of native community assemblages by
increasing or decreasing the relative abundance, while cases of complete exclusion are
relatively scarce.

8. Future Directions

The persistence, long-term performance, and the impacts of introduced AMF on
indigenous species are influenced by both intrinsic (e.g., inoculant quality and viability)
and extrinsic factors (e.g., soil and climatic conditions), which must be factored in when
selecting AMF strains for commercial production. The intrinsic factors i.e., inoculant
viability can be addressed perfectly by adopting the regulatory framework proposed by
Salomon et al. [37] which can help forestall the proliferation of poor-quality products and
win consumer confidence. However, continuous effort must be taken to monitor inoculant
performance in the field under different edaphic and climatic conditions. Such studies
will inform further transparency on product specifications and recommendations, as well
policies towards the management of micro- and macro-biodiversity.

Moreover, the abundance and richness of indigenous AMF communities often cor-
relates with soil physical properties such as soil organic matter (SOM), nitrogen, and
precipitation [89,111–114], that can serve as clues for soil mycorrhizal potential. Such
parameters can be modelled to predict inoculation success and post-inoculation effects
on local microbiota. In addition, the distribution and abundance of AMF differ between
the rhizosphere and root endosphere; while higher-endospheric populations can indicate
greater establishment and persistence, it does not necessarily translate to greater plant ben-
efits. On the contrary, lower AMF abundance in the endosphere versus higher extraradical
abundance may indicate greater symbiotic advantage for plants [86]. Future studies need
to investigate whether the abundance of AMF in the endosphere or rhizosphere is more
important to plant response. However, in the meantime, samples from both biotopes, i.e.,
soil and root.

Are consortia the ideal inoculant to improve inoculant AMF establishment and persis-
tence in the field, and to increase microbial diversity? AMF inoculants life cycle involves
many stages including capture and refinement, production, establishment, persistence and
function, and downstream impacts thus, beneficial traits in one context may be detrimental
in another, necessitating a trade-off among these traits [36]. Selecting multiple AMF families
having contrasting traits that favor diverse conditions can mitigate these compromises and
help improve the chances of success in the field. A mixture of foreign inoculants consisting
of F. mosseae and R. irregularis had greater persistence in alfalfa root than the respective sin-
gle strain and local mixture, while also exerting the greatest impact on plant yield, nitrogen
and phosphorus content, and fatty acids [45]. Merely increasing AMF diversity may not
produce additional benefits [26]; however, the selected AMF should include distant family,
which is likely to increase the possibility of finding complementary traits, as shown by
Parhar et al. [115], who reported that consortia consisting of distant AMF families conferred
greater additive effects than closely related ones. That is, the combination of more distant
species, i.e., R. fasciculatus and Gigaspora sp., led to a greater effect on pea yield (50%) than
F. Mosseae and R. intraradices (40%). Therefore, future studies should focus on screening and
identifying more compatible phylogenetically distant AMF strains to develop commercial
AMF inoculants that does not only productive in greenhouse but also successful under
natural environments.
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