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Abstract: Myxozoa (Cnidaria) is a large group of microscopic obligate endoparasites that can cause
emerging diseases, affecting wild fish populations and fisheries. Recently, the myxozoan Myxobolus
bejeranoi was found to infect the gills of hybrid tilapia (Nile tilapia (Oreochromis niloticus) × Jor-
dan/blue tilapia (O. aureus)), causing high morbidity and mortality. Here, we used comparative
transcriptomics to elucidate the molecular processes occurring in the fish host following infection
by M. bejeranoi. Fish were exposed to pond water containing actinospores for 24 h and the effects of
minor, intermediate, and severe infections on the sporulation site, the gills, and on the hematopoietic
organs, head kidney and spleen, were compared. Enrichment analysis for GO and KEGG pathways
indicated immune system activation in gills at severe infection, whereas in the head kidney a broad
immune suppression included deactivation of cytokines and GATA3 transcription factor responsible
for T helper cell differentiation. In the spleen, the cytotoxic effector proteins perforin and granzyme B
were downregulated and insulin, which may function as an immunomodulatory hormone inducing
systemic immune suppression, was upregulated. These findings suggest that M. bejeranoi is a highly
efficient parasite that disables the defense mechanisms of its fish host hybrid tilapia.

Keywords: Myxozoa; Myxobolus; parasite; tilapia; infection; immune response; immune suppression;
gills; head kidney; transcriptome

1. Introduction

The Tilapia (family Cichlidae), which is a recommended food item by the United
Nations’ Food and Agriculture Organization, is the second most cultured fish worldwide [1],
accounting for 60% of total production in Israel [2]. Tilapia have gained popularity in
aquaculture due to their fast growth, tolerance to a wide range of environmental conditions,
resistance to stress and ability to reproduce effectively in captivity [1]. Tilapia hybridization
has been practiced in Israel since the early 1960s. The most popular hybrid in commercial
use is an all-male Oreochromis niloticus (Nile tilapia) females × O. aureus (Jordan/Blue
tilapia) males [3].

In the last 15 years, intense Myxozoa infections have been reported in Israeli fish
ponds. Recently, the causative agent was classified as Myxobolus bejeranoi, which infects the
hybrid tilapia at more than 50% prevalence [4]. The infection, which is limited to the gills
and was not found in any other organ, can lead to impaired respiratory function and high
mortality [4]. Therefore, M. bejeranoi infection of hybrid tilapia has high economic impact
on commercial fish farms.

Myxozoa is a large group of microscopic obligate endoparasites affect wild and farmed
fish populations, causing diseases such as whirling disease and proliferative kidney dis-
ease [5]. Recent morphological and phylogenomic analyses have placed Myxozoa within
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the phylum Cnidaria, which also contains corals, sea anemones, jellyfish, and hydroids
(recently reviewed by [6]). Compared with their free-living cnidarian relatives, myxozoans
have highly reduced body plans. Moreover, their genomes lack several key elements of sig-
naling pathways and transcription factors that are hallmarks of multicellularity, but retain
genes necessary for their function as obligate parasites [7,8]. The complex Myxozoan life
cycle includes two hosts; a vertebrate, mostly fish, and an invertebrate, mostly worm [9,10].
Transmission between hosts is achieved by two distinct types of waterborne spores termed
actinospores and myxospores [11,12].

Currently, there are no available treatments or vaccines against myxozoan diseases.
Therefore, prevention measures or strategies that enhance the fish immune system have
the most potential [13]. In recent years, knowledge of the immune system of fish and,
particularly, of their immune response against parasites has greatly increased [14]. However,
there are large gaps in our understanding of the molecular aspects of Myxozoa infection.
Thus, elucidating the cellular processes that unfold in the fish host following infection is of
great economic significance.

Teleost fish is the first taxonomic group to acquire both innate and adaptive im-
munity [13,15,16]. Teleost and mammalian immune systems share a repertoire of cells,
including lymphocytes, monocytes, macrophages, granulocytes, thrombocytes, mast cells,
non-specific cytotoxic cells, and possibly dendritic cells, as well as molecules such as T and
B cell receptors, major histocompatibility complex (MHC), and immunoglobulins [17,18].
However, fish lack bone marrow and lymph nodes and their main lymphohematopoietic
organs are the head kidney and spleen.

Typically, the first contact of myxozoans with the fish host is through mucosal sur-
faces, namely skin, gills, buccal cavity, or gastrointestinal tract [19]. Parasites can be
eliminated by molecules present in the mucus, such as lysozyme, lectins, complement, and
immunoglobulins; alternatively, they may pass undetected by the immune system [20,21].
At the following mucosal layer, the parasite will be challenged by various cell types such
as macrophages, granulocytes, including mast cells, B cells, T cells and immunoglobu-
lins [22]. After passing mucosal and epithelial barriers, the parasite travels through the
bloodstream to its specific target tissue, where it proliferates. Some myxozoans are termi-
nated in the blood by cellular and humoral immune factors [23–25]. Once the parasite is
at the target tissue, the host activates immune mechanisms including immunoactivating
and immunosuppressive cytokines [17,26,27]. A common histopathological response to
myxozoan infection is the formation of granulomata, which encapsulate the parasite by
connective and epithelioid tissue layers, thereby isolating it and preventing its dispersal to
surrounding tissues [17,28]. However, some myxozoans can survive within this tissue and
will eventually be able to release new spores to the environment (reviewed by [17]. The
innate host response to myxozoan infection was previously described as a double-edge
sword [13]. Whereas the absence of an immune response can result in coexistence or host
death, hyperreaction can cause immune-related pathologies and will not necessarily stop
parasite proliferation.

Here, we characterize the temporal progression of M. bejeranoi infection and the
immune response of hybrid tilapia by performing transcriptomic analyses of both the
sporulation site, the gills, and the immuno-organs head kidney and spleen. We present
an interesting case study, where the myxozoan parasite displayed an immune evasion
strategy of a thorough shutdown of the immune arsenal in head kidney. The conse-
quence is an immune-deprived fish, which is expected to be highly susceptible to other
opportunistic pathogens.

2. Materials and Methods
2.1. Evaluating the Infectious Potential of the Fish Pond Water

The study was conducted in an earthen fish pond with an area of 40,000 square
meters at Reshafim Pisciculture, Beit She’an Valley, Israel. Juvenile hybrid tilapia fish (Nile
tilapia (Oreochromis niloticus) × blue tilapia (O. aureus)) were translocated into the pond
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on 12 July 2020 for commercial use. The hybrids genetic diversity is unknown since mix of
hybrids have been bred by the local aquaculture industry for many generations. The level
of infectious actinospores in the pond was monitored throughout the spring and summer of
2020 by screening for actinospores in the water and by assessing the percentage of infected
fish in the pond. Water temperatures were recorded constantly using a temperature data
logger (HOBO).

2.2. Detection of Waterborne Actinospores, Filtering and DNA Extraction

Water samples taken from the pond during early spring 2020 were filtered first through
a 60-µm pore-size nitrocellulose membrane (Merck Millipore Ltd., Ref: NY1104700) and
then through an 11-µm membrane. The first membrane filtered out much of the larger
plankton and detritus, whereas the pore size of the second membrane was appropriate for
trapping M. bejeranoi actinospores. The 11-µm membrane was collected after filtering 1–2 L
of water, as one replicate, and was stored at −20 ◦C for DNA extraction.

Next, filter membrane was incubated with 1 mL of lysis buffer (40 mM EDTA, 50 mM
Tris HCl (pH 8.3) and 0.75 M sucrose), 10 mg/mL of proteinase K, and 10% SDS, for 1 h at
55 ◦C with occasional vortexing, as previously described [29], with minor modifications.
Following phenol-chloroform-isoamyl alcohol phase separation, 1/10 volume of 3 M
sodium acetate (NaOAc; pH 5.2) was added along with 2 volumes of EtOH. Following
incubation for 20 min at −80 ◦C and 15 min centrifugation at 4 ◦C, DNA pellet was washed
with 80% EtOH. DNA quantification and purity were assessed using Nanodrop 2000c
spectrophotometer (ThermoScientific, Waltham, MA, USA).

2.3. PCR Analysis

From the obtained DNA samples, M. bejeranoi small subunit ribosomal RNA gene
(SSU rDNA; NCBI accession number MF401455) [4] was amplified. Universal eukaryotic
primers for 18S [30] were utilized as a positive control (Supplementary Table S1). PCR was
performed in 25 µL volumes with 0.02 unit/µL of Phusion Hot Start Flex DNA Polymerase
(New England BioLabs, Ipswich, MA, USA), 1× of Phusion HF 5× Buffer, 200 µM of
dNTPs, 0.5 µM of forward and reverse primers, and 1 µL (10 ng) of template. Denaturation
of DNA (98 ◦C for 5 min) was followed by 35 cycles of amplification (98 ◦C for 10 s, 67 ◦C
for 10 s, and 72 ◦C for 30 s), ending with a 5 min extension (72 ◦C). PCR products were run
in a 1% agarose gel and the presence of actinospores was confirmed by a positive result for
M. bejeranoi primers.

2.4. Evaluating Percentage of Infected Fish

Hybrid tilapia fish that hatched on 27 May 2020 were introduced to the pond using
confined cages of ~100 L (100 cm × 30 cm × 30 cm) for a limited exposure time of either
one week or one day. The cages were tailor-made of a PVC frame coated with a 5 mm
sized mesh, which allowed free flow of water from the pond. Additionally, to assess the
effect of a continuous exposure to the infectious actinospores in the pond water, fish were
sampled from outside the cage. Fish were euthanized with 1 mL/L of 2-phenoxyethanol
(Sigma-Aldrich, St. Louis, MO, USA) and gills (n = 10−30) were sampled into TNES-urea
buffer (pH 8.0) containing 10 mM Tris-HCl, 125 mM NaCl, 10 mM EDTA (pH 8.0), 0.5%
SDS and 4 M urea.

Gill tissue was digested in TNES-urea buffer supplemented with 100 µg/mL pro-
teinase K (Biological Industries), following a previously described protocol [31]. PCR was
conducted as described above, but with 100 ng of extracted DNA template.

2.5. Transcriptome Experimental Design

On 1 September 2020, 400 hybrid tilapia fish with a mean weight of 4.98 g were
introduced to the pond using four confined cages of ~100 L (100 cm × 30 cm × 30 cm).
The mean water temperature during the experiment was 30.3 ◦C. Before the experiment,
five representative fish were subjected to thorough parasitological examination, which
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showed no indication for their presence. Additionally, plating of spleen and kidney samples
on blood tryptic soy agar (TSA; Novomed, Jerusalem, Israel), brain heart infusion agar
(BHI; Oxoid, UK) and thiosulfate citrate bile salts sucrose (TCBS; Himedia, Mumbai, India)
resulted in no microbiological growth. After a 24 h exposure, the fish were randomly
translocated to four 100-L indoor aquarium tanks at the Central Fish Health Laboratory, Nir
David. Tanks had a flow-through system with dechlorinated tap water at a temperature of
~25 ◦C. Fish were fed daily with commercial fish pellets.

Fish were sampled (n = 10–30) immediately (time point 0) and at 2, 5, and 8 days
post-exposure. At each time point, fish were euthanized (1 mL/L 2-phenoxyethanol) and
whole-gill tissue (four and a half gill lamellae) from one side, head kidney (HK) and spleen
were collected and snap-frozen in liquid nitrogen (Figure 1). Each sampling point included
fish from all four tanks in order to avoid tank effects.

Figure 1. Experimental design. Approximately 400 3-month-old hybrid tilapia fish (Nile tilapia
(Oreochromis niloticus) × blue tilapia (O. aureus)) were introduced to an earthen pond at Reshafim
Pisciculture, Beit She’an Valley, Israel, in four confined cages. After 24 h of exposure to the pond
water, fish were translocated to 100-L indoor aquarium tanks in the Central Fish Health Laboratory,
Nir David. Fish were sampled immediately and after 2, 5, and 8 days. To study M. bejeranoi infection
intensity, DNA samples were extracted from gill tissue and to analyze host response, RNA samples
were extracted from gill tissue and the immuno-organs HK and spleen.

2.6. RNA and DNA Extraction

Simultaneous extraction of RNA and DNA from gill tissue and RNA extraction from
internal organs were performed using TRIzol Reagent (Themo Scientific) according to the
manufacturer’s instructions, with minor modifications. For each 0.1 g of frozen sample,
1.5 mL of TRIzol was added and the mixture was homogenized using four 3 mm glass beads
(CS Chemicals Ltd., Ahmedabad, India) and a TissueLyser II (Qiagen, Hilden, Germany) for
3 min at 30 Hz. Following incubation with chloroform (Sigma-Aldrich, St. Louis, MO, USA)
and centrifugation of 15 min at 12,000× g and 4 ◦C, the upper aqueous phase containing
RNA was retrieved, while the interphase and organic phases were utilized for DNA
extraction. Extracted RNA was treated in-column with DNase I (Ambion, Austin, TX, USA)
according to RNA Clean & Concentrator-25 kit (Zymo Research, Irvine, CA, USA). The
concentration of RNA and DNA was measured using a NanoDrop 2000c spectrophotometer
(ThermoScientific, Waltham, MA, USA), and RNA integrity (RIN > 7; mean, 8.5) was
assessed by a 2200 TapeStation System (Agilent Technologies, Santa Clara, CA, USA).
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2.7. Evaluation of Infection Severity by Quantitative RT-PCR

To evaluate M. bejeranoi infection progression in the fish gills, quantitative PCR (RT-
PCR) was applied to DNA extracted from gills. Primers were designed to amplify M. bejera-
noi small subunit ribosomal RNA gene (SSU rDNA) (NCBI accession number MF401455) [4]
(Supplementary Table S1). Tilapia β-actin gene was used as a normalizer [32] for the com-
parative ∆∆CTs method. RT-PCR was performed using Step One Plus (Applied Bio systems)
96-well machine. A DNA sample of 25 ng was used in technical triplicates for 10 µL RT-PCR
reactions including 5 µL of Fast SYBR Green Master Mix (Applied Bio systems) and 0.5 µL
each of forward and reverse primer, for 40 cycles. To test for nonspecific amplification, a
melt curve obtained by incubating the reactions for 15 s at 0.3 ◦C increments between 60 ◦C
and 90 ◦C was generated for each amplicon. Primer efficiencies for M. bejeranoi SSU rDNA
and tilapia β-actin were determined using a standard curve analysis with a 5-fold dilution
series, and were calculated to be 98.6% and 93.3%, respectively.

The computed RT-PCR relative quantity (RQ) was denoted as the relative infection
severity index, which was categorized into three infection stages: minor (stage 1; RQ, 0.1–1;
mean, ~0.6), intermediate (stage 2; RQ, 32–57; mean, ~45), and severe (stage 3; RQ, 110–300;
mean, ~212). Five replicates from each category from gill tissue, spleen, and HK (45 RNA
samples in total) were sent for sequencing.

2.8. Library Preparation and Sequencing

RNA measurements, library preparation and sequencing were performed at the
Technion Genome Center, Technion-Israel Institute of Technology, Haifa, Israel. RNA
concentration was measured using Qubit 4 Fluorometer (ThermoFisher Scientific) and
RNA quality was measured using Agilent 2200 TapeStation (Agilent). RNA sequenc-
ing libraries were prepared using the CEL-Seq2 protocol, as described by Hashimshony
et al. [33], with one modification of using 2 ng purified RNA instead of single cells as
input for library preparation. The CEL-Seq2 libraries were analyzed for average frag-
ment size using Agilent 2200 TapeStation and concentration was measured using Qubit
4 Fluorometer (ThermoFisher Scientific). The libraries were sequenced on the Illumina
NextSeq 2000 sequencer (Illumina), 12 bases for read 1 and 65 bases for read 2. Demul-
tiplexing was performed in two steps. First, Illumina demultiplexing was performed
using bcl2fastq Illumina software with the following parameters: barcode-mismatches = 1,
minimum-trimmed-read-length = 0, and mask-short-adapter-reads = 0. Second, Cell-seq
demultiplexing using the published pipeline [33] was executed with the following parame-
ters: min_bc_quality = 10, bc_length = 6, umi_length = 6, and cut_length = 70.

2.9. Quantification of Gene Expression and Enrichment Analysis

Raw sequence reads were filtered and trimmed for quality using Cutadapt (v3.4) [34].
Filtered reads were mapped to O. niloticus genome (Ensembl release 104; http://ftp.
ensembl.org/pub/release-104/fasta/oreochromis_niloticus/) (accessed on 3 October 2021)
and to the O. aureus genome (Ensembl release 104; http://ftp.ensembl.org/pub/release-
104/fasta/oreochromis_aureus/) (accessed on 3 October 2021). Reads were mapped to
the genome using STAR (v2.7.7a) [35] with standard parameters and the annotation file
for optimization of mapping. Mapping percentages were between 86.2% and 92.3%
for O. niloticus and between 74.9% and 87.3% for O. aureus (mean difference of 7.5%
between fish species). Due to improved mapping to the O. niloticus genome, we con-
tinued to quantification and analysis using this genome. The HTseq tool [36] (https:
//github.com/yanailab/CEL-Seq-pipeline/blob/stable/htseq_wrapper.py) (accessed on
22 September 2021) was used for the construction of raw read-count matrices for each of
the samples. DESeq2 [37] with default settings was used for identification of differentially
expressed genes and determination of their log-fold change between different levels on
infection (infection levels 2 vs. 1; 3 vs. 1) for each tissue. For differentially expressed genes,
adjusted p-value < 0.1 was considered statistically significant. For gene set enrichment anal-
ysis (GSEA) [38], a pre-ranked list of genes was generated based on log-fold change. Using
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the ‘fgsea’ package in R (v.1.18.0) [39], GSEA was performed with Gene ontology (GO)
and Kyoto encyclopedia of genes and genomes (KEGG) gene set annotations. Minimum
and maximum gene set sizes were set to 10 and 1000, respectively, and 1000 permutations
were performed.

A process with a positive or negative normalized enrichment score (NES) was denoted
as up-or down-regulated, respectively. Significantly enriched gene sets were filtered based
on a cutoff of q < 0.25 [38] and were clustered based on shared genes. For this purpose, pair-
wise Jaccard distances were calculated between each pair of enriched GO or KEGG terms
based on binary table indicating the presence or absence of each gene in each term. Jaccard
distances were calculated using function ‘vegdist’ in R package ‘vegan’ (v2.5.7) (https:
//cran.r-project.org/web/packages/vegan/vegan.pdf, accessed on 27 October 2021). The
Jaccard similarity matrix was then used for generation of a similarity network among terms,
which was calculated and visualized with Cytoscape (v3.9.0).

An enrichment score was calculated for each group of GO/KEGG terms, which was
defined as the minus log of the geometric mean of the all the p-values of the GO cat-
egories within the group [40]. Heat maps were generated using shinyheatmap (http:
//shinyheatmap.com) (accessed on 11 April 2022) using the default parameters [41]. Net-
works of highly interconnected proteins were generated using the STRING 11.5 database [42]
and exported to Cytoscape [43] for graphical editing.

3. Results

Before conducting the transcriptomic analysis, the infectious potential of the acti-
nospores in the fish pond water was evaluated. The first indication of the presence of
actinospores in the pond water was found on 27 July 2020, when the extracted DNA from
filtered membrane was PCR-positive for myxozoan actinospores. In addition, 17% of
tested fish were positive for M. bejeranoi infection (Figure 2). The numbers of infected fish
increased gradually, and the peak was at late August–mid-September. On 25 August, 90%
of the fish were infected after an exposure of only 24 h to the pond water. By the end of
September, the pond water no longer contained actinospores, consistent with the decline in
water temperatures (Figure 2).

Figure 2. Infectious season of the pond water through 2020. Percentages of infected fish following a
continuous exposure (grey line) or limited exposures of 24 h (blue line) or one week (orange line) to

https://cran.r-project.org/web/packages/vegan/vegan.pdf
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the pond water (n = 10–30) throughout the summer of 2020. Water temperatures (black line) were
recorded using a data logger placed at a depth of 2 m in the pond water.

To investigate the molecular processes involved in the progression of M. bejeranoi
infection in cultured hybrid tilapia, we performed a transcriptomic study on fish collected
when infection rates were at their peak. All sampled fish were exposed to the same natural
conditions of the pond for 24 h. We analyzed tissues from the sporulation site, the gills, and
from the hematopoietic organs HK and spleen. Additionally, we compared the obtained
data between fish with minor, intermediate and severe infection levels.

Enrichment analysis for GO and KEGG pathways revealed distinct cellular patterns
for each examined tissue, with some similarities between the two hematopoietic organs
(Figure 3, Supplementary Table S2). In the sporulation site, the nervous system (GABAergic
synapse pathway) and muscular system (myofibril assembly and cGMP-PKD signaling
pathway) were up-regulated already at the intermediate infection level (stage 2). However,
processes related to the innate and adaptive immune response, such as NF-kappa B signal-
ing pathway, protein interaction with cytokine and cytokine receptor, immune disease, and
infectious disease, were activated only upon severe infection (stage 3). Ribosome biogenesis
was up-regulated at both these stages. Among the down-regulated categories were skeletal
system development, hedgehog signaling pathway, and lipid metabolism (Figure 3A).

In the spleen, while some immune system categories, i.e., infectious diseases: bac-
terial/viral, immune disease, protein interaction with cytokine and cytokine receptor
were down-regulated, B cell receptor signaling pathway and infectious disease: bacterial
were up-regulated at stages 2 and 3, respectively. Other processes that were significantly
enriched included down-regulation of apoptosis and ribosome and translation, and up-
regulation of signal transduction (Figure 3B). In both spleen and HK, enrichment analysis
revealed processes involved in oxygen maintenance in the cell, namely heme binding,
oxygen transport, and respiratory chain and erythrocyte differentiation (Figure 3B,C). At
intermediate infection, insulin secretion was activated in the HK and spleen and in the
latter, additional insulin-related processes such as insulin signaling pathway and insulin
resistance were up-regulated.

Results of the HK analysis showed a different trend regarding the immune system.
Immune response processes such as immune disease, infectious disease, Th1 and Th2 cell
differentiation, antigen processing and presentation, cytokine signaling, and natural killer
mediated cytotoxicity were down-regulated (Figure 3C). This trend started at stage 2 of the
infection and intensified at stage 3, as additional enriched processes and higher enrichment
scores were observed. As in the gills, in the HK the nervous system was activated upon
the progression of the infection. Whereas DNA replication, rRNA and tRNA processing
and translation increased already at stage 2, at stage 3 more processes related to cell cycle
and replication and the required substrates, such as nucleotide and amino acid metabolism,
were up-regulated. Several categories related to signal transduction and skeletal muscle
tissue development were down-regulated.

Figure 4 shows for each tissue networks of enriched GO processes and KEGG path-
ways based on the shared genes between them (Supplementary Table S3). In the gills
(Figure 4A), GABAergic synapse and neuroactive ligand-receptor interaction at stage 2 are
connected to stage 3 Th1 and Th2 cell differentiation of the immune cluster via cGMP-PKD
signaling pathway. Moreover, the process of myofibril assembly, which relates to muscle
activity and was up-regulated at stage 2, is linked to IL-17 signaling pathway and Th17
cell differentiation, which were enriched at severe infection. The shared gene that governs
these processes was heat shock protein 90 alpha (hsp90aa1.1) (Supplementary Table S4),
with log2 fold change (log2FC) of 3.2 and 3.9 at infection stages 2 and 3, respectively. A
secreted signaling molecule with chemokine activity that participated in the innate immune
response process was an uncharacterized protein with interleukin-8-like domains. This
gene )LOC100699978 (was up-regulated in all examined tissues at the severe infection level.
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Figure 3. Gene ontology and KEGG pathways enrichment analysis. Enrichment scores, calculated
from adjusted p-values, are presented for gills (A), spleen (B), and HK (C) at intermediate (2) (lighter
shades) and severe (3) (darker shades) infection stages. Up- and down-regulated processes are
indicated by red and blue colors, respectively. Clusters of cellular processes are marked. See
Supplementary Table S2 for additional details of GO and KEGG terms.
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Figure 4. Network analysis for enriched processes (GO/KEGG pathways) based on shared genes.
(A) Enriched processes in the gills were clustered according to the state of the infection. Intermediate
infection are enriched with nervous and muscular-related terms that are linked to severe infection
showing enrichment of a cluster of immune-related terms. (B) Enriched processes that are related
to immune function or signaling are presented for the spleen. (C) Immune-related processes in HK.
Node fill is color-scaled according to mean NES (up-regulated, red; down-regulated, blue), and node
shape indicates the infectious stage (see legend). Edge lengths were derived from shared genes
between the connected nodes. Border-colored nodes and colored edges (yellow/brown) represent a
differentially expressed signaling/effector gene that participates in the process, as each legend details.
See Supplementary Table S3 for additional details of the terms.

In the spleen, three contigs representing the effector protein perforin-1, which is
responsible for cytolysis, with membrane attack domain, as well as the serine protease
granzyme B, were down-regulated (Figure 4B, Supplementary Table S4). These genes
are involved in proteolysis, apoptosis, and autoimmune diseases, which were also down-
regulated. The cluster of up-regulated processes contains two immune-related pathways,
as well as signaling pathways that are related to insulin secretion.

Figure 4C shows deactivated immune-related GO and KEGG pathways in HK, which
were clustered based on shared gene expression. Down-regulation of extracellular cytokine
activity (processes Th1 and Th2 cell differentiation, inflammatory bowel disease, cytokine-
mediated signaling pathway, and immune response) was accompanied by expression of
interleukin-12 subunit beta (il12ba), chemokine (C-C motif) ligand 25b (ccl25b), chemokine
(C-X-C motif) ligand 12a (stromal cell-derived factor 1; cxcl12), and monocyte chemotactic
protein 1B (mcp-1) (Supplementary Table S4).



Microorganisms 2022, 10, 1893 10 of 19

The pathway of insulin secretion was up-regulated in both hematopoietic organs at
intermediate infection and insulin gene was significantly up-regulated in the spleen with
an extremely high fold change of ~560 (Supplementary Table S4). This gene participates
in signal transduction process, which was enriched in the gills at stage 3. Therefore, we
analyzed the network of insulin first neighbors based on shared genes among all enriched
processes in the three tested organs (Figure 5, Supplementary Table S5). Insulin secretion
was related to signaling pathways, such as MAPK, PI3-AKT, and cGMP-PKG; to the
nervous system; and to the immune processes natural killer cell mediated cytotoxicity, CD
molecules, exosome, leukocyte transendothelial migration, and infectious diseases, which
are all down-regulated, with the exception of the up-regulated processes B cell receptor
signaling pathway and inflammatory mediator regulation of TRP channels.

Figure 5. Insulin secretion network analysis for enriched GO and KEGG pathways. Enriched
processes from gills, spleen, and HK were organized into a network based on shared genes. Edge
lengths are derived from common genes between the connected nodes. Network presents processes
that are first neighbors to insulin secretion (labeled in red). Node fill is color-scaled according to
mean NES (up-regulated in red, down-regulated in blue), and node shape indicates the tissue, as
legend details. Processes that are related to the immune system are with thicker node border. See
Supplementary Table S5 for additional details of the terms.

The gene expression patterns of all immune-related genes, which are shown in a
hierarchical clustering heat map (Figure 6A), illustrate the differences in tissue response
to infection. The sporulation site was characterized by up-regulation, HK mostly by
down-regulation, while the spleen was in-between them, displaying a mixed effect in the
expression of the immune-related genes.



Microorganisms 2022, 10, 1893 11 of 19

Figure 6. Expression patterns of immune-related genes and network analysis. (A) Heat map showing
hierarchical clustering of gene expression patterns (log2FC) in the three tissues at intermediate
and severe infection stages (up-regulated, red; down-regulated, blue). (B) Network of significantly
differentially expressed genes based on protein interactions (STRING database). Node fill is color-
scaled according to log2 FC (up-regulated, red; down-regulated, blue) and node shape indicates the
tissue, as the legend details. See Supplementary Table S6 for additional details of the genes labels.

STRING interaction network of differentially expressed immune-related genes was
found to be significantly enriched with protein–protein interactions (p = 1.78 × 10−15)
(Figure 6B, Supplementary Table S6). The mean number of interactions per protein (mean
node degree) was 2.2. However, some key proteins had multiple interactions, such as signal
transduction and activator of transcription 1 (stat1a), which had 11 first neighbors. This
gene was up-regulated in HK at stage 3 (p = 0.01), but the adjusted p-value was borderline
insignificant (0.13). We did not discriminate it from the network due to its multiple
interconnections. Another transcription factor that had numerous interactions was GATA
binding protein 3 (gata3), which was down-regulated in HK. Protein tyrosine phosphatase
receptor type C showed a similar trend; however, it had multiple connections (12) and it
seemed central in the network. Finally, HSP90 was uniquely found to be significantly up-
regulated in all tissues and all infection stages and had 6 protein interactions, for example
with elongation factors, stat1, and chemokine receptor.
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4. Discussion

The most important function of a parasite is to secure its transmission to a new
host by surviving the host immune response [44,45]. Therefore, many parasites have
developed varied strategies to avoid detection, suppress immunity and deviate immune
attack mechanisms [46]. Our results imply that the myxozoan parasite M. bejeranoi triggers a
systemic immune suppression in its host, the fish hybrid tilapia. Although we documented
an activation of the immune system at the local sporulation site, the gills, this occurred
only at a severe infection stage. Moreover, the hematopoietic organs responsible for
systemic immunity seem to fail in the combat against the infection already at intermediate
infection level. Immune suppression is well known in parasitic infection. However, the
literature on fish-myxozoan interaction is ambiguous, as some studies indicate immune
activation [47,48] while others report suppression [49–52]. Noteworthy, these studies differ
in the studied Myxozoa-host species, target tissue, and experimental layout, including the
stage of the infection.

Prolongation of host cell life through modulation of apoptosis is another tactic em-
ployed by parasites to ensure their proliferation ([46,53] and in Myxozoa [54]). The down-
regulation of apoptosis in spleen may further indicate impaired immune response, whereas
the increased cell maintenance and cell cycle processes in HK may reflect efforts to sustain
host cell life.

We hypothesize that the signal for the systemic immune suppression in HK and spleen
originates in the site of sporulation. However, the fundamental question of the nature of
this signal remains unanswered. We mined our data for differentially expressed genes
encoding for signaling molecules that could be secreted by gill cells and reach the HK
through the blood stream via the branchial efferent arteries. We found that LOC100699978
is up-regulated in the gills at stage 3, and also in spleen and HK. It contains a domain of
chemokine interleukin-8-like, which is a pro-inflammatory cytokine that was shown in
fish to have a chemotactic effect on HK leukocytes and macrophages [55–57]. Another
gene-of-interest is insulin, which was up-regulated at intermediate infection in spleen with
extremely high fold change of ~560. Insulin is an important signaling molecule regulating
a wide array of processes in fish [58]. Moreover, studies indicate that insulin could be an
immunomodulatory hormone in fish, inducing immune suppression [59–61]. The high
involvement of insulin secretion in down-regulated immune processes in HK and spleen
further supports its possible role as the signal for immune shutdown in tilapia following
M. bejeranoi infection. However, this intriguing hypothesis should be further examined in
future studies (Figure 7).

A substantial immune response in the gills commenced only at severe infection stage.
However, the gill tissue clearly responds to the infection. As cysts are located on striated
muscle of the gill filament base [4], they press on local nerves and muscle tissue, which is
expected to cause up-regulation of related genes. Indeed, ribosome biogenesis, which is
required to satisfy the increased demand for gene activation, was up-regulated. Further,
changes in gill branchial arches cartilage may be indicated by the down-regulation in skele-
tal system development and Hedgehog signaling pathway. Formation of cartilage has been
reported to be tightly regulated by Hedgehog signaling [62,63], with indications of a similar
function also in fish chondrocytes, which are responsible for cartilage formation [64–67].
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Figure 7. A Model illustrating the key findings and open questions regarding Myxobolus bejeranoi
infection of hybrid tilapia. M. bejeranoi sporulation takes place in the gills within encapsulated cysts.
The cysts, which are located on striated muscles at the base of the gill filament, trigger modifications
in local nerve, muscle, and cartilage. As infection severity increases, the immune system is activated.
We hypothesize that a signal is sent from the gills to the hematopoietic organs HK and spleen,
leading to a systemic immune suppression. While a cytokine with domains of interleukin 8 (il8)
was up-regulated in all examined tissues, the fundamental question regarding the nature of this
signal remains unanswered. In HK, cell cycle processes are activated, while the immune system is
suppressed. Suppression includes deactivation of the master regulator transcription factor GATA3,
which leads to less differentiation of Th2 cells and deactivation of cytokines. Amongst the latter
is interleukin 12 (il12), whose inactivation leads to decrease in Th2 cells differentiation and may
induce down-regulation of cytotoxic agents (perforin, granzyme B) in natural killer cells in the spleen.
Thus, deactivation of these cytotoxic agents may lead to decrease in apoptosis. Spleen exhibited
alterations in the erythrocyte machinery and hemoglobin production. Insulin levels were highly
increased in the spleen, suggesting that this immunomodulatory hormone may further signal for
immune suppression.

In teleost fish, HK and spleen are the two main lymphoid and hematopoietic or-
gans [68]. Therefore, it is unsurprising that we found some similarities in HK and spleen
differentially expressed processes. Gene expression patterns common to HK and spleen
were previously reported in turbot severely infected with the myxozoan Enteromyxum
scophthalmi [54]. Amongst the shared processes in our study are immune-related processes,
insulin secretion, and heme binding. The latter, along with down-regulation of respiratory
chain and erythrocyte differentiation in the spleen, may indicate alterations in the erythro-
cyte machinery and hemoglobin production [54]. Interestingly, the spleen displayed an
immune response that was halfway between the activated gills and suppressed HK. Some
pathogens operate by disrupting the host cytoskeleton [46], which correlates with the find-
ings of modification of cytoskeleton-related genes in enteromyxosis [54], enteronecrosis [52],
proliferative kidney disease [47], and the activation in the spleen in this study.

The immune system cluster in HK includes down-regulated exosomes and autophagy.
Exosomes play an important role in antigen presentation, inflammation and pathogene-
sis [69,70] and the autophagy interface is essential for immunity and inflammation [71]. In
fish, it was found that HK cells secrete exosomes when the immune system is triggered by
a viral infection [72,73]. Inhibition of autophagy was detected in a transcriptomic study
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of a sea bream infected by a flatworm [74], and in rainbow trout infected with the myxo-
zoan parasite Tetracapsuloides bryosalmonae [75]. The involvement of both processes in fish
immune suppression following Myxozoa infection is still unclear.

Differentially expressed cytokines drive inflammatory signals to regulate the capacity
of phagocytes to destroy the invading pathogen. The profile and magnitude of cytokine
response determine whether the immune responses will be beneficial or detrimental to
the host [76]. The four down-regulated cytokines we identified in HK at severe infection
were previously found to have prominent roles in fish immune system. IL-12 induced
Th1-type immunity [77] and was down-regulated following a parasitic infection [78] or a
LPS-induced inflammation [79]. CCL25 promoted leukocytes and macrophages recruit-
ment [80–82] and was activated in carp’s liver infected with Myxobolus wulii. However,
the opposite trend was observed in fish infected with helminth [83], ciliated parasite [84],
virus [85], or bacteria [86]. In mammals, CXCL12 affects the migration, proliferation and
differentiation of leukocytes [87]. Correspondingly, in myxozoan-infected fish, CXCL12 was
up-regulated [47,88], but following viral infection the gene was down-regulated [85]. MCP-
1 (also termed CCL2) has a positive effect on the chemotaxis of monocytes/macrophages
and neutrophils [89] and, thus, was activated in a bacterial [89] or viral infection [90]. While
several of the above-cited studies aimed at elucidating the function of these cytokines
in fish, this field of research is in its infancy and the reported trends in gene expression
upon exposure to various pathogens are often inconsistent, thought in some cases consen-
sus of the immune modulation was observed (PKD, enteromyxosis). In our study, all of
these signaling molecules were significantly down-regulated along with the corresponding
GO/KEGG pathways. Nevertheless, the question of what induced their transcriptional
down-regulation in M. bejeranoi-infected hybrid tilapia remains to be answered.

The common dogma is that the balance between Th1 and Th2 cell types determines
the susceptibility to disease states [91]. Our results indicate deactivation of both paths. In
fish and mammals, Th1 cells orchestrate immune response to intracellular pathogens by
activating macrophages and cytotoxic T cells [13]. The differentiation process to Th1 is
promoted by (amongst others) IL-12 and controlled by the transcription factor STAT1 [92].
IL-12 is a potent activator of natural killer (NK) cell-mediated cytotoxicity, which activates
transcription of perforin and granzyme [93]. The de-activation of IL-12 in HK might have
triggered deactivation of these effector cytotoxic agents in the spleen. In mammals, cytotoxic
T cells kill target cells via the secretory pathway that is governed by the cytotoxins perforin,
granzyme, and granulysin/NK-lysin. When CD8+ T cells recognize peptides presented
by MHC-I molecules, perforin is released, forming pores in the membrane of target cell.
Then, granzyme B enters the cytoplasm through these pores and induces apoptosis [92].
In fish, non-specific cytotoxic cell activity in HK was higher following infection by the
myxozoan Enteromyxum leei [26]. Nonetheless, while some studies support this result and
show higher expression of perforin, granzyme, or NK-lysin in fish infected by E. leei [91],
Ceratonova shasta [25,52] or Myxobolus honghuensis [88], other works in fish infected by E.
scophthalmi [54] or C. shasta [52] report down-regulation.

Th2 cells are related to immune response to extracellular parasites and promote B cell
proliferation and antibody production [94]. In our study, indication to the suppression
of this path is in the down-regulation of the master regulator GATA3 transcription factor,
which drives Th2 cell differentiation [94] (Figure 7). GATA3 was previously found to be
down-regulated in fish spleen and HK following exposure to myxozoan parasites E. leei
and T. bryosalmonae [91,95]; however, in other reports it was up-regulated [25,51,88,96].

In the case study of M. bejeranoi vs. hybrid tilapia, the myxozoan parasite appears to
be highly efficient in silencing the immune response of the host, prolonging host cell life
and proliferating without much interruption. Thus, as most of the fish defense mechanisms
are down, the parasite renders its host more susceptible to other opportunistic pathogens.
Aquaculture earthen ponds are home to highly dynamic microbial communities [97]. These
include Aeromonas [98], the causative agent of motile Aeromonas septicaemia disease,
and the highly contagious tilapia lake virus (TiLV) [99]. Coinfection of M. bejeranoi and
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another pathogen [4] is expected be detrimental to tilapia health condition and annual fish
stocks, as heterogeneous coinfection studies in other myxozoan species were shown to have
synergistic affects [100,101]. Elucidating gene expression patterns in the myxozoan during
infection will improve the understanding of the processes enabling the highly compact
myxozoan parasite to effectively immune-suppress its host for its own needs.

5. Conclusions

This study examined how infection with the parasitic myxozoan M. bejeranoi affects
cellular processes and immune response of hybrid tilapia, cultured in its natural farming
environment. Analysis of the sporulation site indicated that the nervous and muscular
systems were triggered along with the immune system. However, a systemic immune
suppression was documented mostly at the primary hematopoietic organ, the head kidney,
which included significant down-regulation of cytokines and transcription factors. The
magnitude of the shutdown was manifested also in the deactivation of cytotoxic effectors
in the spleen. For a parasite such as M. bejeranoi, which does not colonize an immune-
privileged organ, immunomodulation is an effective survival strategy. Our study is the
first to document the implementation of such a strategy in a Myxobolus species. The ability
of the parasite to transmit an effective shutdown signal from a confined granulomata in the
gills to the immune organs is intriguing.

Supplementary Materials: The following supporting information can be downloaded at: https:
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Figure 3; Table S3: Details on labels of enriched GO/KEGG pathways of Figure 4 networks; Table S4:
Key secreted signaling / effectors significantly differentially expressed genes; Table S5: Details on
labels of enriched GO/KEGG pathways of Figure 5 network; Table S6: Details on labels of significantly
differentially expressed immune-related genes of Figure 6 network.
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